1. (18 points)

(a) Consider the complex plane \(\mathbb{C} \) as a two dimensional vector space with basis \(\beta = \{1, i\} \). Let \(T : \mathbb{C} \rightarrow \mathbb{C} \) be multiplication by the complex number \(2 + 3i \), i.e., \(T(z) = (2 + 3i)z \). Find the \(\beta \)-matrix of \(T \).

(b) Let \(A = \begin{pmatrix} 5 & -5 \\ 4 & 1 \end{pmatrix} \). Find the characteristic polynomial of \(A \) and determine the eigenvalues of \(A \).

(c) Find an invertible matrix \(P \), with complex entries, and a diagonal matrix \(D \), such that \(P^{-1}AP = D \). Justify your answer!

(d) Find an invertible matrix \(S \), with real entries, and real numbers \(a, b \), such that \(S^{-1}AS = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \). Justify your answer.

2. (18 points)

(a) Assume given a \(3 \times 3 \) matrix \(A \) and a \(3 \times 3 \) upper triangular matrix \(U = \begin{pmatrix} 2 & u_{12} & u_{13} \\ 0 & 3 & u_{23} \\ 0 & 0 & 5 \end{pmatrix} \). Consider the sequence of row operations

1) Interchange row 1 and row 2 of \(A \) to obtain the matrix \(B \).
2) Multiply by \(\frac{1}{2} \) row 3 of \(B \) to obtain the matrix \(C \).
3) Add \(-2\) times row 1 to row 2 of \(C \) to obtain the matrix \(D \).
4) Add \(-3\) times row 2 to row 3 of \(E \) to obtain the matrix \(U \).
Assume that these elementary row operations reduce \(A \) to \(U \). Compute \(\det(A) \). Justify your answer!

(b) For which values of the real constants \(a \) and \(b \) is the matrix \(\begin{pmatrix} 2 & a \\ 0 & b \end{pmatrix} \) diagonalizable? Justify your answer!

(c) Let \(\mathbb{R}^{3\times3} \) be the vector space of matrices of size \(3 \times 3 \) and \(T : \mathbb{R}^{3\times3} \rightarrow \mathbb{R}^4 \) a linear transformation. What are all the possible values of \(\dim(\ker(T)) \)? Justify your answer!

3. (a) (5 points) Find all orthogonal matrices of the form \(\begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & a \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & b \\ \frac{1}{\sqrt{3}} & 0 & c \end{pmatrix} \).

(b) (5 points) Let \(A \) be an \(n \times n \) matrix and \(A^T \) its transpose. Recall that \(\det(A) = \det(A^T) \) and \(\det(AB) = \det(A) \det(B) \) for any \(n \times n \) matrix \(B \). Use the above properties of the determinant to show that if \(A \) is an orthogonal \(n \times n \) matrix, then \(\det(A) \) is equal to 1 or \(-1\).
4. (18 points) The vectors $v_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 6 \\ 7 \end{pmatrix}$ are eigenvectors of the matrix $A = \begin{pmatrix} 0.3 & 0.6 \\ 0.7 & 0.4 \end{pmatrix}$.

(a) The eigenvalue of v_1 is _______.
(b) Set $w := \begin{pmatrix} 13 \\ 13 \end{pmatrix}$. Find the coordinate vector $[w]_\beta$ of w in the basis $\beta := \{v_1, v_2\}$.
(c) Compute $A^{100} \begin{pmatrix} 13 \\ 13 \end{pmatrix}$.
(d) As n gets larger, the vector $A^n \begin{pmatrix} 13 \\ 13 \end{pmatrix}$ approaches _______. Justify your answer.

5. (18 points)

(a) Let P be the vector space of polynomials of arbitrary degree. Consider the transformation $T : P \to P$, given by $T(f(t)) = t^2 f''(t) - 2tf(t) + 2f''(t)$. Show that T is linear.
(b) P_2 the subspace of P of polynomials of degree ≤ 2. Note that T maps P_2 into P_2. Let $S : P_2 \to P_2$ be given by the same formula above, $S(f(t)) = t^2 f'(t) - 2tf(t) + 2f'(t)$. Find the matrix of S in the basis $\beta = \{1, t, t^2\}$.
(c) Determine if S is an isomorphism. Justify your answer!
(d) The function $f(t) = t^2 - 2t + 2$ is an eigenvector of S. What is its eigenvalue? Justify your answer!

6. (18 points) Let $v_1 = \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix}$, and V the subspace of \mathbb{R}^4 spanned by v_1 and v_2.

(a) Let $w = \begin{pmatrix} 20 \\ 0 \\ 0 \\ 0 \end{pmatrix}$. Find the orthogonal projection $\text{Proj}_V(w)$ of w to V. Justify your answer!
(b) Write w as a sum of a vector in V and a vector orthogonal to V.
(c) Find the distance from w to V, i.e., the distance from w to the vector in V closest to w.
(d) Let W be the subspace of \mathbb{R}^4 spanned by the set $\beta := \{v_1, v_2, w\}$. Use the Gram-Schmidt process with the basis β of W to find an orthonormal basis of W. Explain every step of the Gram-Schmidt process you used.