Lecture 2: different memory and variable types

Prof. Mike Giles
mike.giles@maths.ox.ac.uk
Oxford University Mathematical Institute
Oxford e-Research Centre

Memory

Key challenge in modern computer architecture

- no point in blindingly fast computation if data can’t be moved in and out fast enough
- need lots of memory for big applications
- very fast memory is also very expensive
- end up being pushed towards a hierarchical design

CPU Memory Hierarchy

- **Main memory**
 - 2 – 8 GB
 - 1GHz DDR3
 - 200+ cycle access, 20-30GB/s

- **L3 Cache**
 - 2 – 6 MB
 - 2GHz SRAM
 - 25-35 cycle access

- **L1/L2 Cache**
 - 32KB + 256KB
 - 3GHz SRAM
 - 5-12 cycle access

This wide bus is only way to get high bandwidth to slow main memory

Memory Hierarchy

Execution speed relies on exploiting data locality

- **temporal locality**: a data item just accessed is likely to be used again in the near future, so keep it in the cache
- **spatial locality**: neighbouring data is also likely to be used soon, so load them into the cache at the same time using a ‘wide’ bus (like a multi-lane motorway)
Caches

The cache line is the basic unit of data transfer; typical size is 64 bytes \(\equiv 8 \times 8 \)-byte items.

With a single cache, when the CPU loads data into a register:
- it looks for line in cache
- if there (hit), it gets data
- if not (miss), it gets entire line from main memory, displacing an existing line in cache (usually least recently used)

When the CPU stores data from a register:
- same procedure

Lecture 2 – p. 5

Importance of Locality

Typical workstation:
10 Gflops CPU
20 GB/s memory \(\leftrightarrow \) L2 cache bandwidth
64 bytes/line

\[20 \text{GB/s} \equiv 300 \text{M line/s} \equiv 2.4 \text{G double/s} \]

At worst, each flop requires 2 inputs and has 1 output, forcing loading of 3 lines \(\implies 100 \text{ Mflops} \)

If all 8 variables/line are used, then this increases to 800 Mflops.

To get up to 10Gflops needs temporal locality, re-using data already in the cache.

Lecture 2 – p. 6

Fermi

128 bytes cache line (32 floats or 16 doubles)
384-bit memory bus from device memory to L2 cache
up to 190 GB/s bandwidth
unified 768kB L2 cache for all SM's
each SM has 16kB or 48kB of L1 cache (64kB is split 16/48 or 48/16 between L1 cache and shared memory)
no global cache coherency as in CPUs, so should (almost) never have different blocks updating the same global array elements

Lecture 2 – p. 7

Fermi

Fermi GPU
GPU Memory Hierarchy

Device memory
- 1 – 6 GB
- 1GHz GDDR5
- 200-300 cycle access, 150GB/s

L2 Cache
- 768KB
- 200-300 cycle access, 300GB/s

L1 Cache
- registers
- 80 cycle access

Practical 1 kernel

__global__ void my_first_kernel(float *x)
{
 int tid = threadIdx.x + blockDim.x * blockIdx.x;
 x[tid] = threadIdx.x;
}

- 32 threads in a warp will address neighbouring elements of array x
- if the data is correctly “aligned” so that x[0] is at the beginning of a cache line, then x[0] – x[31] will be in same cache line
- hence we get perfect spatial locality

Importance of Locality

1Tflops GPU (single precision)
150 GB/s memory ↔ L2 cache bandwidth
128 bytes/line

150GB/s ≡ 1200M line/s ≡ 20G double/s

At worst, each flop requires 2 inputs and has 1 output, forcing loading of 3 lines ⇒ 400 Mflops

If all 16 doubles/line are used, then this increases to 6.4 Gflops.

To get up to 500Gflops needs about 25 flops per double transferred to/from device memory

Even with careful implementation, many algorithms are bandwidth-limited not compute-bound

A bad kernel

__global__ void bad_kernel(float *x)
{
 int tid = threadIdx.x + blockDim.x * blockIdx.x;
 x[1000 * tid] = threadIdx.x;
}

- in this case, different threads within a warp access widely spaced elements of array x
- each access involves a different cache line, so performance will be awful
Global arrays

So far, concentrated on global / device arrays:
- held in the large device memory
- allocated by host code
- pointers held by host code and passed into kernels
- continue to exist until freed by host code
- since blocks execute in an arbitrary order, if one block modifies an array element, no other block should read or write that same element

Global variables

Global variables can also be created by declarations with global scope within kernel code file

```c
__device__ int reduction_lock=0;
__global__ void kernel_1(...) {
    ...
}
__global__ void kernel_2(...) {
    ...
}
```

Constant variables

Very similar to global variables, except that they can’t be modified by kernels:
- defined with global scope within the kernel file using the prefix `__constant__`
- initialised by the host code using `cudaMemcpyToSymbol`, `cudaMemcpyFromSymbol`
 or with standard `cudaMemcpy` in combination with `cudaGetSymbolAddress`
- I use it all the time in my applications; practical 2 has an example

Global variables

- the `__device__` prefix tells `nvcc` this is a global variable in the GPU, not the CPU.
- the variable can be read and modified by any kernel
- its lifetime is the lifetime of the whole application
- can also declare arrays of fixed size
- can read/write by host code using special routines `cudaMemcpyToSymbol`, `cudaMemcpyFromSymbol`
 or with standard `cudaMemcpy` in combination with `cudaGetSymbolAddress`
- in my own CUDA programming, I rarely use this capability but it is occasionally very useful
Constant variables

Only 64KB of constant memory, but big benefit is that each SM has a 8KB cache

- when all threads read the same constant, I think it’s as fast as a register
- doesn’t tie up a register, so very helpful in minimising the total number of registers required
- Fermi provides new capabilities to use same cache for global arrays declared to be read-only within a kernel

Constants

A constant variable has its value set at run-time

But code also often has plain constants whose value is known at compile-time:

```c
#define PI 3.1415926f
a = b / (2.0f * PI);
```

Leave these as they are – they seem to be embedded into the executable code so they don’t use up any registers

Registers

Within each kernel, by default, individual variables are assigned to registers:

```c
__global__ void lap(int I, int J,
    float *u1, float *u2) {
    int i = threadIdx.x + blockIdx.x * blockDim.x;
    int j = threadIdx.y + blockIdx.y * blockDim.y;
    int id = i + j*I;

    if (i==0 || i==I-1 || j==0 || j==J-1) {
        u2[id] = u1[id];  // Dirichlet b.c.’s
    } else {
        u2[id] = 0.25f * ( u1[id-1] + u1[id+1]  
                          + u1[id-I] + u1[id+I] );
    }
}
```

- 32K 32-bit registers per SM
- up to 63 registers per thread
- up to 1536 threads (at most 1024 per thread block)
- max registers per thread \Rightarrow 520 threads
- max threads \Rightarrow 21 registers per thread
- not much difference between “fat” and “thin” threads
Registers

What happens if your application needs more registers?

They “spill” over into L1 cache, and from there to device memory – precise mechanism unclear, but

either certain variables become device arrays with one element per thread

or the contents of some registers get “saved” to device memory so they can used for other purposes, then the data gets “restored” later

Either way, the application suffers from the latency and bandwidth implications of using device memory

Avoiding register spill is now one of my main concerns in big applications, but remember:

- with 1024 threads, 400-600 cycle latency of device memory is usually OK because some warps can do useful work while others wait for data

- provided there are 20 flops per variable read from (or written to) device memory, the bandwidth is not a limiting issue

Local arrays

What happens if your application uses a little array?

```c
__global__ void lap(float *u) {
  float ut[3];
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int k=0; k<3; k++)
    ut[k] = u[tid+k*gridDim.x*blockDim.x];
  for (int k=0; k<3; k++)
    u[tid+k*gridDim.x*blockDim.x] =
}
```

In simple cases like this (quite common) compiler converts to scalar registers:

```c
__global__ void lap(float *u) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  float ut0 = u[tid+0*gridDim.x*blockDim.x];
  float ut1 = u[tid+1*gridDim.x*blockDim.x];
  float ut2 = u[tid+2*gridDim.x*blockDim.x];
  u[tid+0*gridDim.x*blockDim.x] =
    A[0]*ut0 + A[1]*ut1 + A[2]*ut2;
  u[tid+1*gridDim.x*blockDim.x] =
  u[tid+2*gridDim.x*blockDim.x] =
    A[6]*ut0 + A[7]*ut1 + A[8]*ut2;
}
```
Local arrays

In more complicated cases, it puts the array into device memory
- still referred to in the documentation as a “local array” because each thread has its own private copy
- held in L1 cache by default, may never be transferred to device memory
- 16kB of L1 cache equates to 4096 32-bit variables, which is only 8 per thread when using 1024 threads
- beyond this, it will have to spill to device memory

Shared memory

In a kernel, the prefix __shared__ as in
__shared__ int x_dim;
__shared__ float x[128];
declares data to be shared between all of the threads in the thread block – any thread can set its value, or read it

There can be several benefits:
- essential for operations requiring communication between threads (e.g. summation in lecture 4)
- useful for data re-use (I use it for unstructured grid applications)
- alternative to local arrays in device memory
- reduces use of registers when a variable has same value for all threads

Shared memory

If a thread block has more than one warp, it’s not pre-determined when each warp will execute its instructions – warp 1 could be many instructions ahead of warp 2, or well behind.

Consequently, almost always need thread synchronisation to ensure correct use of shared memory.

Instruction

__syncthreads();

inserts a “barrier”; no thread/warp is allowed to proceed beyond this point until the rest have reached it (like a roll call on a school outing)

So far, have discussed statically-allocated shared memory – the size is known at compile-time

Can also create dynamic shared-memory arrays but this is more complex

Total size is specified by an optional third argument when launching the kernel:
kernel<<<blocks,threads,shared_bytes>>>(...)

Using this within the kernel function is complicated/tedious; see B.2.3 in Programming Guide
Shared memory

Fermi has 64KB which is split 16/48 or 48/16 between L1 cache and shared memory:

- this split can be set by the programmer using cudaFuncSetCacheConfig or cudaThreadSetCacheConfig
- not clear to me what the default is – I think it may be 48KB of shared memory, or whatever was used by previous kernel
- would probably like it to allocate 48KB to shared memory if the shared memory requirements limit the number of blocks on each SM

Texture memory

Finally, we have texture memory:
- intended primarily for pure graphics applications
- I have also used it for look-up tables on Tesla GPUs, and for another version of the 3D Laplace solver on Fermi, not yet sure if it has a useful role for scientific computing applications – may be better to use global arrays and rely on efficient caching

Active blocks per SM

Each block require certain resources:
- threads
- registers (registers per thread \times number of threads)
- shared memory (static + dynamic)

Together these decide how many blocks can be run simultaneously on each SM – up to a maximum of 8 blocks

Active blocks per SM

My general advice:
- number of active threads depends on number of registers each needs
- good to have at least 2-4 active blocks, each with at least 128 threads
- smaller number of blocks when each needs lots of shared memory
- larger number of blocks when they don't need shared memory
Active blocks per SM

On Fermi:
- maybe 2 big blocks (512 threads) if each needs a lot of shared memory
- maybe 6 smaller blocks (256 threads) if no shared memory needed
- or 4 small blocks (128 threads) if each thread needs lots of registers

Summary
- dynamic device arrays
- static device variables / arrays
- constant variables / arrays
- registers
- spilled registers
- local arrays
- shared variables / arrays
- textures

Key reading
CUDA Programming Guide, version 3.2:
- Appendix B.2 – essential
- Chapter 3, sections 3.2.1-3.2.2
- Chapter 5, sections 5.1-5.3

Other reading:
- Wikipedia article on caches:
 en.wikipedia.org/wiki/CPU_cache
- web article on caches:
 lwn.net/Articles/252125/
- “Memory Performance and Cache Coherency Effects on an Intel Nehalem Multiprocessor System”:
 portal.acm.org/citation.cfm?id=1637764