C for CUDA

- Subset of C with extensions
- C++ templates for GPU code

CUDA goals:
- Scale code to 100s of cores and 1000s of parallel threads
- Facilitate heterogeneous computing: CPU + GPU

CUDA defines:
- Programming model
- Memory model
CUDA Kernels and Threads

Parallel portions of an application are executed on the device as **kernels**

- One **kernel** is executed at a time
- Many threads execute each **kernel**

Differences between CUDA and CPU threads

- CUDA threads are extremely lightweight
 - Very little creation overhead
 - Fast switching
- CUDA uses 1000s of threads to achieve efficiency
 - Multi-core CPUs can only use a few

Definitions:

- **Device** = GPU; **Host** = CPU
- **Kernel** = function that runs on the device
Arrays of Parallel Threads

A CUDA kernel is executed by an array of threads
- All threads run the same code
- Each thread has an ID that it uses to compute memory addresses and make control decisions

```c
float x = input[threadID];
float y = func(x);
output[threadID] = y;
...```

threadID 0 1 2 3 4 5 6 7
Thread Cooperation

- Threads may need or want to cooperate
- Thread cooperation is a powerful feature of CUDA
- Thread cooperation is valuable because threads can
  - Cooperate on memory accesses
  - Bandwidth reduction for some applications
  - Share results to avoid redundant computation

- Cooperation between a monolithic array of threads is not scalable
  - Cooperation within smaller *batches* of threads is scalable
Thread Batching

- Kernel launches a grid of thread blocks

- Threads within a block cooperate via shared memory
- Threads in different blocks cannot cooperate
- Allows programs to transparently scale to different GPUs
Hardware is free to schedule thread blocks on any processor.
Multidimensional IDs

- Block ID: 1D or 2D
- Thread ID: 1D, 2D, or 3D
- Simplifies memory addressing when processing multidimensional data
  - Image processing
  - Solving PDEs on volumes
CUDA Programming Model

A kernel is executed by a grid of thread blocks

- A thread block is a batch of threads that can cooperate with each other by:
  - Sharing data through shared memory
  - Synchronizing their execution

- Threads from different blocks cannot cooperate
Memory Model

- **Registers**
  - Per thread
  - Data lifetime = thread lifetime

- **Local memory**
  - Per thread off-chip memory (physically in device DRAM)
  - Data lifetime = thread lifetime

- **Shared memory**
  - Per thread block on-chip memory
  - Data lifetime = block lifetime

- **Global (device) memory**
  - Accessible by all threads as well as host (CPU)
  - Data lifetime = from allocation to deallocation

- **Host (CPU) memory**
  - Not directly accessible by CUDA threads
Memory model

Thread

Per-thread Registers
Memory model

Thread

Per-thread Local Memory
Memory model

Block

Per-block Shared Memory
Memory model

Sequential Kernels

Per-device Global Memory

Kernel 0

Kernel 1
Memory model

Host memory

Device 0 memory

Device 1 memory
Simple Hardware View

Multiprocessor

Global Memory

PCle

CPU Chipset
Execution Model

- **Kernels are launched in grids**
  - One kernel executes at a time

- **A thread block executes on one multiprocessor**
  - Does not migrate

- **Several blocks can reside concurrently on one multiprocessor**
  - Number is limited by multiprocessor resources
    - **Registers** are *partitioned* among all resident threads
    - **Shared memory** is *partitioned* among all resident thread blocks
Outline of CUDA Basics

Basics to set up and execute GPU code:
- GPU memory management
- GPU kernel launches
- Some specifics of GPU code

Some additional features:
- Vector types
- Synchronization
- Checking CUDA errors

Note: only the basic features are covered
- See the Programming Guide and Reference Manual for more information
Managing Memory

- CPU and GPU have separate memory spaces

- Host (CPU) code manages device (GPU) memory:
  - Allocate / free
  - Copy data to and from device
  - Applies to *global* device memory (DRAM)
GPU Memory Allocation / Release

- `cudaMalloc(void **pointer, size_t nbytes)`
- `cudaMemset(void *pointer, int value, size_t count)`
- `cudaFree(void *pointer)`

```c
int n = 1024;
int nbytes = 1024*sizeof(int);
int *d_a = 0;
cudaMalloc((void**)&d_a, nbytes);
cudaMemset(d_a, 0, nbytes);
cudaFree(d_a);
```
Data Copies

`cudaMemcpy(void *dst, void *src, size_t nbytes, enum cudaMemcpyKind direction);`

- `direction` specifies locations (host or device) of `src` and `dst`
- Blocks CPU thread: returns after the copy is complete
- Doesn’t start copying until previous CUDA calls complete

`enum cudaMemcpyKind`
- `cudaMemcpyHostToDevice`
- `cudaMemcpyDeviceToHost`
- `cudaMemcpyDeviceToDevice`
Executing Code on the GPU

Kernels are C functions with some restrictions

- Can only access GPU memory
- Must have `void` return type
- No variable number of arguments ("varargs")
- Not recursive
- No static variables

Function arguments automatically copied from CPU to GPU memory
Function Qualifiers

- **__global__**: invoked from within host (CPU) code, cannot be called from device (GPU) code, must return void

- **__device__**: called from other GPU functions, cannot be called from host (CPU) code

- **__host__**: can only be executed by CPU, called from host

- **__host__** and **__device__** qualifiers can be combined
  - Sample use: overloading operators
    - Compiler will generate both CPU and GPU code
Launching kernels

- Modified C function call syntax:
  
  \[
  \text{kernel}<<<\text{dim3 grid, dim3 block}>>>(...) 
  \]

- Execution Configuration ("<<< >>>"):
  
  - grid dimensions: \( x \) and \( y \)
  - thread-block dimensions: \( x, y, \) and \( z \)

  ```
 \text{dim3 grid}(16, 16);
 \text{dim3 block}(16,16);
 \text{kernel}<<<\text{grid, block}>>>(...);
 \text{kernel}<<<32, 512>>>(...);
  ```
CUDA Built-in Device Variables

All __global__ and __device__ functions have access to these automatically defined variables

- `dim3 gridDim;`  
  Dimensions of the grid in blocks (at most 2D)
- `dim3 blockDim;`  
  Dimensions of the block in threads
- `dim3 blockIdx;`  
  Block index within the grid
- `dim3 threadIdx;`  
  Thread index within the block
Data Decomposition

Often want each thread in kernel to access a different element of an array

blockIdx.x
blockDim.x = 5
threadIdx.x

blockIdx.x*blockDim.x + threadIdx.x

Grid

0 1 2 3 4
0 1 2 3 4
0 1 2 3 4

0 1 2 3 4  5 6 7 8 9  10 11 12 13 14
Minimal Kernels

__global__ void minimal( int* d_a)
{
    *d_a = 13;
}

__global__ void assign( int* d_a, int value)
{
    int idx = blockDim.x * blockIdx.x + threadIdx.x;
    d_a[idx] = value;
}
Example: Increment Array Elements

Increment N-element vector $a$ by scalar $b$

Let’s assume $N=16$, $\text{blockDim}=4$  -> 4 blocks

```
 0 1 2 3
 4 5 6 7
 8 9 10 11
 12 13 14 15
```

```
blockIdx.x=0
blockDim.x=4
threadIdx.x=0,1,2,3
idx=0,1,2,3
```

```
blockIdx.x=1
blockDim.x=4
threadIdx.x=0,1,2,3
idx=4,5,6,7
```

```
blockIdx.x=2
blockDim.x=4
threadIdx.x=0,1,2,3
idx=8,9,10,11
```

```
blockIdx.x=3
blockDim.x=4
threadIdx.x=0,1,2,3
idx=12,13,14,15
```

```
int idx = blockDim.x * blockIdx.x + threadIdx.x;
```

will map from local index $\text{threadIdx}$ to global index

NB: $\text{blockDim}$ should be $\geq 32$ in real code, this is just an example
Example: Increment Array Elements

### CPU program

```c
void increment_cpu(float *a, float b, int N) {
 for (int idx = 0; idx<N; idx++)
 a[idx] = a[idx] + b;
}
```

```c
void main()
{

 increment_cpu(a, b, N);
}
```

### CUDA program

```c
__global__ void increment_gpu(float *a, float b, int N) {
 int idx = blockIdx.x * blockDim.x + threadIdx.x;
 if (idx < N)
 a[idx] = a[idx] + b;
}
```

```c
void main()
{

 dim3 dimBlock (blocksize);
 dim3 dimGrid(ceil(N / (float)blocksize));
 increment_gpu<<<dimGrid, dimBlock>>>(a, b, N);
}
```
Minimal Kernel for 2D data

```c
__global__ void assign2D(int* d_a, int w, int h, int value)
{
 int iy = blockDim.y * blockIdx.y + threadIdx.y;
 int ix = blockDim.x * blockIdx.x + threadIdx.x;
 int idx = iy * w + ix;

 d_a[idx] = value;
}
...
assign2D<<<dim3(64, 64), dim3(16, 16)>>>(...);
```
Host Synchronization

- All kernel launches are *asynchronous*
  - control returns to CPU immediately
  - kernel executes after all previous CUDA calls have completed

- `cudaMemcpy()` is *synchronous*
  - control returns to CPU after copy completes
  - copy starts after all previous CUDA calls have completed

- `cudaThreadSynchronize()`
  - blocks until all previous CUDA calls complete
Example: Host Code

// allocate host memory
int numBytes = N * sizeof(float)
float* h_A = (float*) malloc(numBytes);

// allocate device memory
float* d_A = 0;
cudaMalloc((void**)&d_A, numbytes);

// copy data from host to device
cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice);

// execute the kernel
increment_gpu<<< N/blockSize, blockSize>>>(d_A, b);

// copy data from device back to host
cudaMemcpy(h_A, d_A, numBytes, cudaMemcpyDeviceToHost);

// free device memory
cudaFree(d_A);
Variable Qualifiers (GPU code)

__device__
- Stored in device memory (large capacity, high latency, uncached)
- Allocated with `cudaMalloc (__device__ qualifier implied)
- Accessible by all threads
- Lifetime: application

__shared__
- Stored in on-chip shared memory (SRAM, low latency)
- Allocated by execution configuration or at compile time
- Accessible by all threads in the same thread block
- Lifetime: duration of thread block

Unqualified variables:
- Scalars and built-in vector types are stored in registers
- Arrays may be in registers or local memory (registers are not addressable)
Using shared memory

Size known at compile time

```c
__global__ void kernel(...)
{
 ...
 __shared__ float sData[256];
 ...
}

int main(void)
{
 ...
 kernel<<<nBlocks, blockSize>>>(...);
 ...
}
```

Size known at kernel launch

```c
__global__ void kernel(...)
{
 ...
 extern __shared__ float sData[];
 ...
}

int main(void)
{
 ...
 smBytes = blockSize*sizeof(float);
 kernel<<<nBlocks, blockSize, smBytes>>>(...);
 ...
}
```
Built-in Vector Types

Can be used in GPU and CPU code

- [u]char[1..4], [u]short[1..4], [u]int[1..4],
  [u]long[1..4], float[1..4]
  Structures accessed with \(x, y, z, w\) fields:

```c
uint4 param;
int y = param.y;
```

- dim3
  - Based on uint3
  - Used to specify dimensions
  - Default value (1,1,1)
void __syncthreads();

Synchronizes all threads in a block
- Generates barrier synchronization instruction
- No thread can pass this barrier until all threads in the block reach it
- Used to avoid RAW / WAR / WAW hazards when accessing shared memory

Allowed in conditional code only if the conditional is uniform across the entire thread block
Textures in CUDA

Texture is an object for reading data

Benefits:
- Data is cached (optimized for 2D locality)
  - Helpful when coalescing is a problem
- Filtering
  - Linear / bilinear / trilinear
  - Dedicated hardware
- Wrap modes (for “out-of-bounds” addresses)
  - Clamp to edge / repeat
- Addressable in 1D, 2D, or 3D
  - Using integer or normalized coordinates

Usage:
- CPU code binds data to a texture object
- Kernel reads data by calling a fetch function
Texture Addressing

**Wrap**
- Out-of-bounds coordinate is wrapped (modulo arithmetic)

**Clamp**
- Out-of-bounds coordinate is replaced with the closest boundary
Two CUDA Texture Types

**Bound to linear memory**
- Global memory address is bound to a texture
- Only 1D
- Integer addressing
- No filtering, no addressing modes

**Bound to CUDA arrays**
- CUDA array is bound to a texture
- 1D, 2D, or 3D
- Float addressing (size-based or normalized)
- Filtering
- Addressing modes (clamping, repeat)

**Both:**
- Return either element type or normalized float
CUDA Texturing Steps

Host (CPU) code:
- Allocate/obtain memory (global linear, or CUDA array)
- Create a texture reference object
  - Currently must be at file-scope
- Bind the texture reference to memory/array

When done:
- Unbind the texture reference, free resources

Device (kernel) code:
- Fetch using texture reference
- Linear memory textures:
  - tex1Dfetch()
- Array textures:
  - tex1D() or tex2D() or tex3D()
## GPU Atomic Integer Operations

- Requires hardware with compute capability $\geq 1.1$
  - G80 = Compute capability 1.0
  - G84/G86/G92 = Compute capability 1.1
  - GT200 = Compute capability 1.3

### Atomic operations on integers in global memory:
- Associative operations on signed/unsigned ints
  - add, sub, min, max, ...
- and, or, xor
- Increment, decrement
- Exchange, compare and swap
Blocks must be independent

Any possible interleaving of blocks should be valid
- presumed to run to completion without pre-emption
- can run in any order
- can run concurrently OR sequentially

Blocks may coordinate but not synchronize
- shared queue pointer: OK
- shared lock: BAD … can easily deadlock
Shared memory atomics & warp voting

- Requires hardware with compute capability >= 1.2

- Adds atomic integer operations for shared memory (in addition to global memory)

Warp vote functions:
- \texttt{__all(int predicate)} returns true iff the predicate evaluates as true for all threads of a warp
- \texttt{__any(int predicate)} returns true iff the predicate evaluates as true for any threads of a warp

A warp is a group of 32 threads within a block (more on this later)
CUDA Error Reporting to CPU

- All CUDA calls return error code:
  - Except for kernel launches
  - cudaError_t type

- cudaError_t cudaGetLastError(void)
  - Returns the code for the last error (no error has a code)
  - Can be used to get error from kernel execution

- char* cudaGetErrorString(cudaError_t code)
  - Returns a null-terminated character string describing the error

```c
printf("\%s\n", cudaGetErrorString(cudaGetLastError()));
```
CPU can query and select GPU devices
- `cudaGetDeviceCount( int* count )`
- `cudaSetDevice( int device )`
- `cudaGetDevice( int *current_device )`
- `cudaGetDeviceProperties( cudaDeviceProp* prop, int device )`
- `cudaChooseDevice( int *device, cudaDeviceProp* prop )`

Multi-GPU setup:
- device 0 is used by default
- one CPU thread can control one GPU
  - multiple CPU threads can control the same GPU
    - calls are serialized by the driver
CUDA resources allocated by a CPU thread can be consumed only by CUDA calls from the same CPU thread (more specifically, the same context)

**Violation Example:**
- CPU thread 2 allocates GPU memory, stores address in \( p \)
- thread 3 issues a CUDA call that accesses memory via \( p \)
CUDA Event API

- Events are inserted (recorded) into CUDA call streams

Usage scenarios:
- measure elapsed time for CUDA calls (clock cycle precision)
- query the status of an asynchronous CUDA call
- block CPU until CUDA calls prior to the event are completed

AsyncAPI sample in CUDA SDK

```c
#include <cuda_runtime.h>

cudaEvent_t start, stop;

cudaEventCreate(&start);
cudaEventCreate(&stop);

cudaEventRecord(start, 0);
kernello<<grid, block>>>(...);

cudaEventRecord(stop, 0);

cudaEventSynchronize(stop);

float elapsedTime;

cudaEventElapsedTime(&elapsedTime, start, stop);

cudaEventDestroy(start);
cudaEventDestroy(stop);
```
Driver API

Up to this point the host code we’ve seen has been from the *runtime API*
- Runtime API: *cuda*(*) functions
- Driver API: *cu*(*) functions

**Advantages:**
- No dependency on runtime library
- More control over devices
  - One CPU thread can control multiple GPUs
- No C extensions in host code, so you can use something other than the default host CPU compiler (e.g. icc, etc.)
- PTX Just-In-Time (JIT) compilation
  - Parallel Thread eXecution (PTX) is our virtual ISA (more on this later)

**Disadvantages:**
- No device emulation
- More verbose code

Device code is identical whether you use the runtime or driver API
Initialization and Device Management

- Must initialize with `cuInit()` before any other call

- Device management:

```c
int deviceCount;
cuDeviceGetCount(&deviceCount);
int device;
for (int device = 0; device < deviceCount; ++device) {
 CUdevice cuDevice;
 cuDeviceGet(&cuDevice, device);
 int major, minor;
 cuDeviceComputeCapability(&major, &minor, cuDevice);
}
```
Context Management

- CUDA context analogous to CPU process
  - Each context has its own address space

- Context created with `cuCtxCreate()`

- A host CPU thread can only have one context current at a time
- Each host CPU thread can have a stack of current contexts

- `cuCtxPopCurrent()` and `cuCtxPushCurrent()` can be used to detach and push a context to a new thread

- `cuCtxAttach()` and `cuCtxDetach()` increment and decrement the usage count and allow for interoperability of code in the same context (e.g. libraries)
Module Management

- Modules are dynamically loadable pieces of device code, analogous to DLLs or shared libraries.

- For example to load a module and get a handle to a kernel:

  ```c
 CUmodule cuModule;
 cuModuleLoad(&cuModule, "myModule.cubin");
 CUfunction cuFunction;
 cuModuleGetFunction(&cuFunction, cuModule, "myKernel");
  ```

- A module may contain binaries (a .cubin file) or PTX code that will be Just-In-Time (JIT) compiled.
Execution control

cuFuncSetBlockShape(cuFunction, blockWidth, blockHeight, 1);
int offset = 0;
int i;
cuParamSeti(cuFunction, offset, i);
offset += sizeof(i);
float f;
cuParamSetf(cuFunction, offset, f);
offset += sizeof(f);
char data[32];
cuParamSetv(cuFunction, offset, (void*)data, sizeof(data));
offset += sizeof(data);
cuParamSetSize(cuFunction, offset);
cuFuncSetSharedSize(cuFunction, numElements * sizeof(float));
cuLaunchGrid(cuFunction, gridWidth, gridHeight);
Memory management

- Linear memory is managed using `cuMemAlloc()` and `cuMemFree()`
  
  ```c
 CUdeviceptr devPtr;
 cuMemAlloc(&devPtr, 256 * sizeof(float));
  ```

- Synchronous copies between host and device
  
  ```c
 cuMemcpyHtoD(devPtr, hostPtr, bytes);
 cuMemcpyDtoH(hostPtr, devPtr, bytes);
  ```
Summary of Runtime and Driver API

- The runtime API is probably the best place to start for virtually all developers
- Easy to migrate to driver API if/when it is needed
- Anything which can be done in the runtime API can also be done in the driver API, but not vice versa (e.g. migrate a context)
- Much, much more information on both APIs in the CUDA Reference Manual
New Features in CUDA 2.2

“Zero copy”
- CUDA threads can directly read/write host (CPU) memory
- Requires “pinned” (non-pageable) memory
- Main benefits:
  - More efficient than small PCIe data transfers
  - May be better performance when there is no opportunity for data reuse from device DRAM

Texturing from pitch linear memory
- Reduces or eliminates the need for device to device memory copies
- Can read from it via texture fetches
- Can also read (uncached, unfiltered) and write