This note responds to a question raised by Zhaoting Wei on MathOverflow in July 2015 (see http://mathoverflow.net/questions/211535, where I outlined a very elementary proof in rank 1):

If an object M in the BGG category \mathcal{O} is “tensor-closed” (meaning that $M \otimes N$ is in \mathcal{O} whenever N is), must $\dim M < \infty$?

The answer is yes. This is part of the folklore of the subject but apparently not written down explicitly. Of course it then shifts attention to tensoring in \mathcal{O} just with finite dimensional M, which has been a standard emphasis in the literature. Here we provide a proof, relying only on the most basic facts about \mathcal{O} (see for example the 1976 BGG paper [2] or the early chapters of my textbook [4], whose notational conventions are used here).

Fix a semisimple Lie algebra \mathfrak{g} over an algebraically closed field of characteristic 0, as well as a Cartan subalgebra \mathfrak{h} and a system of simple roots. Let $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{n} \oplus \mathfrak{n}^-$ be the resulting Cartan decomposition. Write $U(\mathfrak{g})$ for the universal enveloping algebra. Recall that the category \mathcal{O} of $U(\mathfrak{g})$-modules consists of finitely generated modules M which are direct sums of their weight spaces relative to \mathfrak{h}, while the action of \mathfrak{n} is locally finite dimensional. It follows from the axioms that each $M \in \mathcal{O}$ is finitely generated. Moreover, \mathcal{O} is closed under taking submodules and taking quotients. All weight spaces M_ν (with $\nu \in \mathfrak{h}^*$) of $M \in \mathcal{O}$ are finite dimensional, even though M itself is usually infinite dimensional.

Objects in \mathcal{O} include the universal highest weight modules (Verma modules) $M(\lambda)$ and their unique simple quotients $L(\lambda)$ for $\lambda \in \mathfrak{h}^*$; the latter exhaust the simple objects in \mathcal{O}. Moreover, each $M \in \mathcal{O}$ has a finite Jordan–Hölder series with simple subquotients.

Proposition. Suppose $M \in \mathcal{O}$ satisfies the property: $M \otimes N \in \mathcal{O}$ for all $N \in \mathcal{O}$. Then $\dim M < \infty$.

Proof. Since M has finite length, and \mathcal{O} is closed under taking subquotients, it is clearly enough to assume that $M = L(\lambda)$ for some $\lambda \in \Lambda$. Also, we may take $N = M(\mu)$ to be a Verma module. Set $T := M \otimes N$. Assuming that M is infinite dimensional, we aim to derive a contradiction. Of course, it is the finite generation axiom that T violates, but this is hard to prove directly. Instead, the idea is to show T fails to have finite length, essentially because its weight space dimensions grow “too fast” in this situation.

Since T is assumed to lie in \mathcal{O}, it has a formal character [4, 1.15]. So we can extend the reasoning in the standard BGG argument from [1, §4, Lemma 5] outlined as an exercise in [4, 3.6]. The only change is that the weights
of \(L(\lambda) \) form an infinite list, compatible with the usual partial ordering of weights; we write them as \(\lambda_1, \lambda_2, \ldots \). Then the formal character of \(T \) involves all characters of Verma modules having highest weights \(\lambda_i + \mu \), which contradicts the finite length of \(T \) as an object in \(\mathcal{O} \).

References

