Hw 3 (due Feb. 18, Thursday)

2.132
[Sol] Let define the following events,
\(F_i \) : the plane is found in region \(i \) when it is searched,
\(N_i \) : the plane is not found in region \(i \) when it is searched,
\(R_i \) : the plane is in region \(i \).
Then \(P(R_i) = 1/3 \) for all \(i \), \(P(F_i \mid R_i) = 1 - \alpha_i \) and \(P(N_i \mid R_i) = \alpha_i \).

(a) \(P(R_1 \mid N_1) = \frac{P(N_1 \cap R_1)}{P(N_1)} = \frac{P(N_1 \mid R_1)P(R_1)}{P(N_1)} = \frac{\alpha_i}{\alpha_i + \frac{1}{3}} = \frac{1}{\alpha_i + 2} \)

(b) \(P(R_2 \mid N_1) = \frac{P(N_1 \cap R_2)}{P(N_1)} = \frac{P(N_1 \mid R_2)P(R_2)}{P(N_1)} = \frac{\frac{1}{3}}{\alpha_i + \frac{1}{3} + \frac{1}{3}} = \frac{1}{\alpha_i + 2} \)

(c) \(P(R_3 \mid N_1) = \frac{P(N_1 \cap R_3)}{P(N_1)} = \frac{P(N_1 \mid R_3)P(R_3)}{P(N_1)} = \frac{\frac{1}{3}}{\alpha_i + \frac{1}{3} + \frac{1}{3}} = \frac{1}{\alpha_i + 2} \)

2.135
[Sol] Let define the following events ,
\(M \) : travelers fly on major airlines, \(P \) : travelers fly on privately owned planes, \(C \) : travelers fly on commercially owned planes, \(B \) : the person travels on business.
Then \(P(M) = .6, P(P) = .3, P(C) = .1, P(B \mid M) = .5, P(B \mid P) = .6 \) and \(P(B \mid C) = .9 \).

(a) \(P(B) = P(B \cap (M \cup P \cup C)) = P((B \cap M) \cup (B \cap P) \cup (B \cap C)) = P(B \cap M) + P(B \cap P) + P(B \cap C) = P(M) \times P(B \mid M) + P(P) \times P(B \mid P) + P(C) \times P(B \mid C) = .6 \times .5 + .3 \times .6 + .1 \times .9 = .57 \)

(b) \(P(P \cap B) = P(P) \times P(B \mid P) = .3 \times .6 = .18 \)

(c) \(P(P \mid B) = \frac{P(P \cap B)}{P(B)} = \frac{.18}{.57} = .3158 \)

(d) \(P(B \mid C) = .9 \)

3.2
[Sol] The simple events and corresponding \(Y \) are Since \(P(E_i) = 1/4 \) for each \(i \), the probability

<table>
<thead>
<tr>
<th>(E_i)</th>
<th>HH</th>
<th>HT</th>
<th>TH</th>
<th>TT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>2</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

distribution for \(Y \) is

<table>
<thead>
<tr>
<th>(y)</th>
<th>-1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p(y))</td>
<td>1/2</td>
<td>1/4</td>
<td>1/4</td>
</tr>
</tbody>
</table>
3.4
[Sol] Define the following events.
\(A \): valve 1 fails, \(B \): valve 2 fails, \(C \): valve 3 fails.
Then \(P(Y = 2) = P(A \cap B \cap C) = .8^3 = .512 \),
\(P(Y = 0) = P(A \cap (B \cup C)) = P(A)P(B \cup C) = P(A)(P(B) + P(C) - P(B \cap C)) = 0.2 \cdot (0.2 + 0.2 - 0.2 \cdot 0.2) = 0.072 \),
\(P(Y = 1) = 1 - P(Y = 2) - P(Y = 0) = 0.416 \).

3.9
[Sol] The random variable \(Y \) takes on the values 0, 1, 2, and 3. We can assume that the three entries are independent.
(a) Let \(E \) denote an error on a single entry; let \(N \) denote that there is no error. There are 8 sample points; \(EEE, EEN, ENE, NEE,ENN,NEN,NNE,NNN \).
Thus, \(P(Y = 3) = P(EEE) = 0.05^3 = 0.000125 \),
\(P(Y = 2) = P(EEN) + P(ENE) + P(NEE) = 3 \cdot 0.05^2 \cdot 0.95 = 0.007125 \),
\(P(Y = 1) = P(ENN) + P(NEN) + P(NNE) = 3 \cdot 0.05^2 \cdot 0.95^2 = 0.135375 \),
\(P(Y = 0) = P(NNN) = 0.95^3 = 0.857375 \).
(c) \(P(Y > 1) = P(Y = 2) + P(Y = 3) = 0.00725 \).

3.12
[Sol] \(E(Y) = \sum_y yp(y) = 1 \cdot 0.4 + 2 \cdot 0.3 + 3 \cdot 0.2 + 4 \cdot 0.1 = 2.0 \),
\(E(1/Y) = \sum_y (1/y)p(y) = 1 \cdot 0.4 + (1/2) \cdot 0.3 + (1/3) \cdot 0.2 + (1/4) \cdot 0.1 = 0.6417 \),
\(E(Y^2 - 1) = E(Y^2) - 1 = 1^20.4 + 4^20.3 + 9^20.2 + 16^20.1 - 1 = 4 \),
\(V(Y) = E(Y^2) - E(Y)^2 = 5 - 2^2 = 1 \).

3.24
[Sol] Consider the probability distribution for \(Y \):
\[
\begin{array}{ccc}
 y & 0 & 1 & 2 \\
p(y) & 0.81 = (0.9^2) & 0.18 = (0.9 \cdot 0.1 \cdot 2) & 0.01 = (0.1^2) \\
\end{array}
\]
Then \(\mu = E(Y) = \sum_y yp(y) = 0 \cdot 0.81 + 1 \cdot 0.18 + 2 \cdot 0.01 = 0.2 \),
\(\sigma^2 = V(Y) = E(Y^2) - \mu^2 = 0 \cdot 0.81 + 1 \cdot 0.18 + 4 \cdot 0.01 - 0.2^2 = 0.18 \).

3.34
[Sol] The mean cost is \(E(10Y) = 10E(Y) \). Now \(E(Y) = 0 \cdot 0.1 + 1 \cdot 0.5 + 2 \cdot 0.4 = 1.3 \),
so that the mean cost is $13. The variance of the cost is \(V(10Y) = 100V(Y) \). Now
\(V(Y) = E(Y^2) - E(Y)^2 = 0 \cdot 0.1 + 1 \cdot 0.5 + 4 \cdot 0.4 - 1.3^2 = 0.41 \), so that the variance of the cost is \(100 \cdot 0.41 = 41 \).