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Abstract
This paper contains rigorous results on nonequilibrium steady states for a class
of particle systems coupled to unequal heat baths. These stochastic models
are derived from the mechanical chains studied by Eckmann and Young by
randomizing certain quantities while retaining other features of the model. Our
results include the existence and uniqueness of nonequilibrium steady states,
their relation to Lebesgue measure, tail bounds on total energy and number
of particles in the system, and exponential convergence to steady states from
suitable initial conditions.

Keywords: nonequilibrium steady states, particle systems, energy exchange,
Lyapunov functions, coupling
Mathematics Subject Classification: 37Hxx, 82C05, 93E03

(Some figures may appear in colour only in the online journal)

1. Introduction

While much of the existing dynamical systems theory focuses on systems defined by a single
equation or map, real-world systems seldom operate in isolation; they are interconnected and
the dynamics of each system are modified constantly by interactions with the external world.
Under stationarity assumptions on external forces, it is important to ask whether or not a
system will eventually equilibrate with its surroundings? And, will it tend to a steady state?
Mathematically, this is equivalent to asking if, starting from an arbitrary initial condition,
the evolution of the system will, as time goes to infinity, be described by a unique invariant
probability distribution on the set of all possible states? Here, ‘invariance’ is not with respect
to the system’s internal dynamics, but it is with respect to the combined action of its internal
dynamics and the sum total of all the external forces acting on it.
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Questions of this type have not received a great deal of attention and we believe the subject
can benefit from many more examples. In this paper we report on some results for a model
from nonequilibrium statistical mechanics, which is an excellent source of out-of-equilibrium
models. Although, given the nature of our model, the discussion here will take on a statistical
mechanics flavour, similar issues arise in dynamical systems and we propose to view these
questions in the more general context of steady state problems for open dynamical systems.

Model and results. Our starting point is the class of mechanical chains studied in [4]. In
these models, particles move about in a 1D array of interconnected cells. Although they
exchange energy with one another, they do not do it directly but they do it instead via rotating
discs with which the particles collide. The two ends of the chain are coupled to unequal heat
baths. Particles at characteristic energies are emitted by the baths at characteristic rates, and
are reabsorbed into the baths at later times. Bypassing mathematical issues. such as existence
and uniqueness of steady states, the authors of [4] showed, via a combination of analysis and
simulations, that these models have very reasonable physical properties. We would have liked
to provide rigorous proofs for some of the ‘facts’ taken for granted in [4], but they are currently
out of reach: the dynamics of this model are basically deterministic, and there are few tools
available for analysing statistical properties of deterministic systems except for those with
fairly strong hyperbolic properties (or certain other special qualities). The models in [4] are
not in these categories.

This paper rigorously treats some of the issues bypassed in [4] for a stochastic version
of the models considered there. Specifically, we randomize certain quantities while retaining
the main features of the model. For example, a particle loses memory of its precise location
within a cell. This leads naturally to random interaction times and random repartitioning of
energy upon collisions. Modifications of this kind turn the deterministic dynamics within
the chain into Markovian dynamics. Similar ideas were already proposed in [4]. For the
resulting stochastic models, we prove, under an additional technical condition, the existence
and uniqueness of nonequilibrium steady states for arbitrary bath temperatures and injection
rates. We provide statistical information on tail bounds for total energy and particle numbers,
as well as the relation of the invariant measure to Lebesgue measure. We also prove our results
on exponential rates of correlation decay.

Main issues. On the conceptual level, a major question for us is: what prevents the system
from gradually heating up? As energy and number of particles can be unboundedly large, in
order for the system to settle down to a steady state the average inflow and outflow of energy
and particles must be balanced. In our model, inflow is constant and is regulated by heat
baths. Outflow, on the other hand, is the product of the dynamics within the chain for which
we have no direct control. In a nutshell, we deduce that there is a balance between inflow
and outflow by showing that the process resembles a diffusion. That, however, is not entirely
straightforward to prove since the events governing particle movements and energy exchanges
are highly interdependent—this is so even in the stochastic model, which has inherited much
of the character of the deterministic dynamics.

A second potentially serious issue is the accumulation of large numbers of (inactive) low-
energy particles in the system. This problem is of a very different nature, and we do not deal
with it here: we avoid it by imposing a strictly positive lower bound on interaction rates. Aside
from turning the model in [4] into a stochastic model, this is the only additional technical
assumption we have imposed.
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Method of proofs and related works. For problems of this type, it is natural to attempt either a
spectral or a probabilistic approach. We have opted to use the latter. Our proof is a combination
of Lyapunov functions and coupling ideas [13]. While these methods are by now standard,
each application has context-specific issues, as we have discussed. We believe this body of
ideas can be used more widely in nonequilibrium statistical mechanics (see next paragraph)
and in dynamical systems in general.

Among the mathematical models of heat conduction in the literature, there are surprisingly
few rigorous results on nonequilibrium steady states. The following are the only ones we
know of. First, there are fairly complete results on chains of anharmonic oscillators driven by
stochastic heat baths. Under certain assumptions, these models can be described by stochastic
differential equations, and results that include the existence and uniqueness of nonequilibirum
steady states have been shown [3], as have exponential convergence and other statistical
properties [16, 17]; see also [1]. A second group consists of results for Hamiltonian models
similar to those in [4], with additional assumptions or special features to make the problem more
tractable (as noted earlier, Hamiltonian models are much harder), they include: [2, 20], which
prove ergodicity of the invariant measure assuming existence; [9], which proves existence and
uniqueness for a model in which all energy exchanges are exclusively with ‘thermostats’ (or
heat baths); and, [21], which treats a model with special geometry. A third group of results we
know of consists of [10] and variants of this model [11,15]. As with the present study, models
in this third group are stochastic versions of models with mechanical origin. Papers [10]
and [15] went beyond existence and uniqueness to prove local thermal equilibrium, which
is an important property of the invariant measure that gives meaning to the idea of ‘local
temperature’. Indeed, existence and uniqueness are only the very first step, one that opens the
door to further understanding of steady state dynamics.

Paper organization. In section 2, we give a description of our model, and compare its
equilibrium measure to that of the mechanical model from which it is derived. Section 3
contains the statement of results. The lower bounds on energy and particle outflow (see the
main issues paragraph above) are treated in section 4. Section 5 proves the contractivity of
the Markov operator, giving immediately some of the desired results for discrete-time chains.
The various loose ends are tied together in section 6.

2. Model description

This section introduces the stochastic model that is considered in the rest of this paper. It is
organized as follows. Section 2.1 contains a description of the class of mechanical models that
serve as starting point of the present study. In section 2.2 we build stochastic models out of
these mechanical models by imposing memory losses of certain kinds. To show that we have
retained crucial features of the original systems, section 3 will compare equilibrium measures
of the two models. In section 2.4, we introduce a further technical assumption needed for the
analysis in later sections.

The stochastic models introduced in section 2.2, modified by the addition of the technical
assumption in section 2.4, are the objects of our investigation in the rest of this paper.

2.1. Mechanical models with rotating discs and moving particles

The mechanical models considered here are very close to those studied in the second half
of [4], modified slightly to enhance memory loss in the local dynamics. It consists of a 1D
chain of identical cells each one of which is a bounded domain �i ⊂ R2, i = 1, 2, . . . , N ,
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Figure 1. A mechanical model that serves as starting point for the stochastic model
studied in this paper. A row of identical cells coupled to unequal heat baths (red) at the
two ends. Each cell contains a freely rotating disc (cyan) with fixed centre. Particles
move about in the domain ∪i�i (white) bouncing off the outer walls of the domain and
the many scatterers (grey).

with piecewise C3 boundary. The boundary of �i , ∂�i , is the union of (i) its outer walls with
two segments ∂�L

i on the left wall and ∂�R
i on the right wall removed, (ii) a large number of

pairwise disjoint simple closed curves bounding convex domains that serve as scatterers for
the particles, and (iii) a circle the interior of which is occupied by a rotating disc Di . (Item (ii)
is absent in [4].) For i = 1, . . . , N − 1, ∂�R

i is identified with ∂�L
i+1, forming a passageway

between the two cells. There are two heat baths, one attached to ∂�L
1 , and the other to ∂�R

N .
An example of this general lay-out is shown in figure 1.

Particles are injected into ∪N
i=1�i by the baths, entering through either ∂�L

1 or ∂�R
N , and

particles in ∪N
i=1�i exit the system upon reaching the same two openings. While in ∪N

i=1�i ,
they pass freely from cell to cell, moving about with uniform motion until they collide with
∪i∂�i , at which time the dynamics are defined by the rules below. The particles do not interact
directly with one another.

The rules governing particle injection and collisions are as follows:

(i) The temperatures of the left and right baths are TL and TR, and particles are injected into
the system with exponential rates ρL and ρR respectively. The points of entry of particles
from the left bath are uniformly distributed on ∂�L

1 , and the velocities of the entering
particles have density

2β
3/2
L√
π

e−βL|v|2 |v|| sin(φ)|dv (2.1)

where βL = T −1
L , v is a vector pointing into �1, and φ is the angle v makes with the

segment representing the opening. An analogous description holds for particles entering
from the right. The points of entry, initial velocities, and injection times for each bath are
i.i.d., and they are independent for the two baths.

(ii) When a particle collides with the outer walls of ∪i�i or with a scatterer, it is reflected
without energy exchange. More precisely, if v = (vt , vn) are the tangential and normal
components of its velocity relatively to ∂�i just before the collision, and v′ = ((vt )′, (vn)′)
its velocity immediately after the collision, then

(vn)′ = −vn; (vt )′ = vt .

(iii) When a particle collides with a rotating disc whose angular velocity is ω, the rule of
updating is

(vn)′ = −vn; (vt )′ = ω; ω′ = vt , (2.2)

where v = (vt , vn) is as above.
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Notice that both total energy and momentum tangential to the disc are conserved in (iii).
Equation (2.2) is the usual rule of energy and angular momentum conservation for a particular
choice of parameters (involving the mass of the particle and radius and moment of inertia of
the rotating disc). We have chosen to work with these parameters because the formulas have
an especially simple form. Conceptually, the general case (see [12]) should be no different.

2.2. From deterministic to stochastic dynamics

As noted in the Introduction, Hamiltonian models are considerably harder to work with than
stochastic ones. We present in this section a class of stochastic models obtained by replacing
the deterministic dynamics in the mechanical models described in section 2.1 by Markovian
dynamics. Although the resulting stochastic models are, mathematically, not equivalent to
the original mechanical models, they capture many of the characteristics of the mechanical
models, as we will show.

We first discuss informally how we plan to convert the model in section 2.1 into a stochastic
one, with the precise description to follow. The main simplification is to forget the geometry
within the cells, including

(i) locations of particles within cells,

(ii) their directions of travel, and

(iii) the directions of rotation of the discs.

(i) and (ii) imply that at any one moment in time, we take note only of the cell number, that
is, the i in �i , in which a particle resides, without distinguishing between different physical
locations within �i , and we record the energy of the particle, hence its speed, without paying
attention to its direction of travel. Likewise, the disc as a geometric object ceases to exist. It
is represented instead by a single quantity, namely its energy, or ω2. These modifications will
require new rules for particle injection, cell-to-cell movements of particles and their interactions
with discs. We assume the following:

(a) A particle in cell i carrying energy x will, at a random time given by an exponential
distribution whose mean is proportional to

√
x, either jump or exchange energy with the

‘disc’ in its cell.

(b) If it jumps, the particle will appear instantaneously in cell i ± 1 with equal probability.

(c) In the case of an exchange, its energy and that of the ‘disc’ at site i will be pooled together
and repartitioned in a way that respects (2.2); see below.

Collisions of particles with outer walls of cells and with scatterers are not by themselves
registered as events in this stochastic model. They are used, however, in the following
justification of (a) and (b). The exponential distribution is used because in a chaotic system with
strong hyperbolicity, the time to reach a pre-specified region starting from a random location
is known to often have exponentially small tails (see e.g. [22]). In the models in section 2.1,
the many convex scatterers produce a deterministic system with strong hyperbolicity. A more
intuitive way to say it is that after colliding many times with the scatterers, it is not unreasonable
to assume that a particle has lost memory of its initial location and direction of travel (while
its energy is unchanged). That the rates of the clocks are proportional to

√
x comes from the

fact that, in the mechanical model, a particle traveling the same trajectory but moving twice as
fast will arrive at its destination (be it a collision with the disc or a passageway between cells)
in half the time, hence, the

√
x scaling.
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Precise description of stochastic model. Formally, our stochastic model is a (continuous time)
Markov jump process taking values in a set of the form

Ω = �N
i=1	

i, 	i = ∪∞
k=0	

i
k,

where

	i
k = {(si, {xi

1, . . . , x
i
k}) | si, x

i
j > 0} .

Here i = 1, . . . , N are sites corresponding to the cells in the mechanical model. Each 	i

represents the set of all possible states of the ith site, and 	i
k represents those states with

exactly k particles at site i. The number of particles can be anywhere from zero to infinity—
including both zero and infinity, at least a priori—and ∪∞

k=0	
i
k above should be interpreted

as the disjoint union of 	i
0, 	

i
1, . . . , 	

i
∞. Focusing on one site at a time, si is the stored

energy at site i, representing the energy of the disc in the ith cell, and xi
j , j = 1, . . . , k, are

the particle energies at that site. We have used curly brackets to denote unordered lists. As
usual, for purposes of studying invariant measures or steady states, it is necessary to regard
particles as indistinguishable (if particles were named, one would have to deal with their exits
and re-entries into the system).

Note that 	i
k = R+ × ((R+)

k/ ∼) where R+ = [0, ∞) and ∼ is the following equivalence
relation: if (x1, . . . , xk) and (y1, . . . , yk) are elements of Rk , then (x1, . . . , xk) ∼ (y1, . . . , yk)

if and only if the two k-tuples are permutations of one another. There is a natural reference
measure Λ on Ω, namely Λ = �N

1 
i where 
i is the measure on 	i whose restriction to 	i
k

is λk+1/ ∼, the quotient of the Lebesgue measure on R × Rk by ∼.
The state of the system at time t , then, is defined by a random variable x(t) of the form

x = (
(s1, {x1

1 , . . . , x
1
k1

}), (s2, {x2
1 , . . . , x2

k2
}), . . . , (sN , {xN

1 , . . . , xN
kN

}))
where k1, k2, . . . , kN take values in N ∪ {0, ∞} = {0, 1, . . . ,∞}.

As in the mechanical model, we assume there are two heat baths located at sites 0 and
N + 1, and let (TL, ρL) and (TR, ρR) denote the temperatures and injection rates of the left and
right baths respectively. Particles with i.i.d. energy distributed with law

2β
3/2
L√
π

√
xe−βLx, βL = T −1

L ,

are emitted by the left bath at the exponential rate ofρL; emitted particles appear instantaneously
in site 1. The Gamma distribution above is in accordance with (2.1), integrated over φ. Notice
that the mean of this distribution is 3

2TL and not TL, as in the mechanical model. An analogous
description applies to the right bath.

We now turn to the updating of x(t) due to activity within the chain. Associated with
each particle in the system is an exponential clock which, at any one moment in time, rings at
rate (1 + m)S

√
x where x is the energy of the particle at that moment, and m and S are system

constants. When the clock of a particle rings, it ‘jumps’ with probability 1
1+m

, and ‘mixes’,
that is, exchanges energy with the stored energy at its site, with probability m

1+m
. The precise

rules for jumping and mixing for a particle at site i carrying energy xi
j follow.

If this particle jumps, it goes to site i + 1 or i − 1 with equal probability. Instantaneously
ki is decreased by 1, ki±1 is increased by 1, and the value xi

j is moved to the list associated
with sites i ± 1 as the case may be. For i = 1, jumping to i − 1 means that the particle exits
the system, and similarly for i = N when the particle jumps to i + 1.

If mixing occurs, and the stored energy at site i is si , then, in accordance with (2.2), si

and xi
j are instantaneously updated to s ′

i and (xi
j )

′ with

(s ′
i , (x

i
j )

′) = (xi
j cos2 θ, si + xi

j sin2 θ),
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Figure 2. Distribution of angles between approaching trajectories and rotating discs.

where θ is randomly drawn from a distribution that should reflect the distribution of angles
between the approaching trajectory and the tangent line in the mechanical model. To determine
this distribution, assume for definiteness that the disc is bounded by the unit circle C centred
at 0 in the (x, y)-plane, and consider approaching trajectories given by the family of parallel
lines {
a = {y ≡ a}, a ∈ (−1, 1)} as shown in figure 2. We assume a ∈ (−1, 1) is uniformly
distributed, in accordance with Liouville measure. This gives rise to a distribution for θ , namely
the angles these lines make with C. By the rotational symmetry of the disc, the distribution so
obtained is the desired distribution.

More precisely, suppose in figure 2 that at height y, the slope of the tangent line makes
an angle of θ with the horizontal. Then, the slope of this tangent line, which is equal to | dx

dy
|

where x =
√

1 − y2, is y/
√

1 − y2; equivalently cos θ = y. This leads to the following rule
of updating: when a particle carrying energy x interacts with stored energy s, the result is

(s ′, x ′) = (xu2, s + x(1 − u2)), u ∈ (0, 1) uniformly distributed. (2.3)

The description of our stochastic model is now complete.

2.3. Invariant measures at equilibrium

We remark that the models proposed in section 2.2 are not the random-halves models studied
in the first half of [4]. We have chosen interactions that more closely mimic those in the
mechanical model. As a step toward justifying our choices, we compare here the energy
and particle density distributions of the models in sections 2.1 and 2.2 when the system is in
equilibrium, that is, when the two heat baths are equal: TL = TR := T , and ρL = ρR := ρ. It
is easy to check that the invariant measure given in proposition 4.1 of [4], is invariant for the
mechanical models described in section 2.1; the shape of the domain and the addition of the
scatterers are immaterial.

The following proposition gives an invariant measure in the equilibrium case for the
stochastic models defined in section 2.2.

Proposition 2.1. For TL = TR = T and ρL = ρR = ρ, the N -fold product

ν
T,ρ

N := νT,ρ × · · · × νT,ρ,

where the ith copy of νT,ρ is the probability measure on 	i characterized by (1) and (2) below,
is left invariant by the dynamics. In particular, νT,ρ is itself an invariant measure for the case
N = 1 (and we omit the i indicating cell number in the conditions below).

(1) The number of particles present is a Poisson random variable of mean

4

S
√

π
· ρ√

T
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(2) The conditional probability density of νT,ρ on 	k is ckσk where

σk(s, {x1, . . . , xk}) = 1√
s

e−β(s+x1+...+xk),

β = T −1 and ck is the normalizing constant.

Proposition 2.1 is a special case of proposition 2.2, a proof of which will be given.
After performing the coordinate changes s = ω2 and x = |v|2, we observe that the measure

in proposition 2.1 has the same form as the invariant measure of the mechanical model given
in [4], section 4.2. The constants are different but have similar interpretations.

That these two invariant measures have the same scalings with respect to T and ρ implies
that they have the same statistics in terms of energies and particle densities. Specifically,
it follows from proposition 2.1 that the following hold when our stochastic system is in
equilibrium with TL = TR = T and ρL = ρR = ρ:

(i) The mean stored energy at each site is equal to T/2;
(ii) The mean per particle energy in the system is equal to T (not to be confused with the

mean per particle energy at collisions or jumps, which is 3
2T ); and,

(iii) The mean number of particles per site is ∝ ρ/
√

T .

These statistics are identical to those in the mechanical model, providing further justification
for the choices made.

2.4. A technical assumption

A technical hurdle that we encountered in our analysis of the stochastic model in section 2.2
is that, when the interaction rates can be arbitrarily close to zero, large numbers of low-energy
particles can in principle linger at a site for arbitrarily long without jumping to adjacent sites or
exchanging energy with the disc. This leads to many problems. To simplify the situation, we
impose a strictly positive lower bound on clock rates. For example, for fixed ε > 0, we may
take the clock rate for a particle with energy x to be (1+m)f (x) where f (x) = S max{√x, ε}.
More generally, we assume

(∗) the clock rate for a particle with energy x is given by (1 + m)f (x)

where f is measurable with infx∈(0,∞) (1 + m)f (x) := f0 > 0.

Proposition 2.2. Under assumption (∗), the statement of proposition 2.1 continues to hold
with the mean of the Poisson random variable in (1) replaced by

4√
π

β3/2ρ ·
(∫ ∞

0

√
x

f (x)
e−βx dx

)
and the density in (2) replaced by

σk(s, {x1, . . . , xk}) =
(

k∏
i=1

√
xi

f (xi)

)
1√
s

e−β(s+x1+...+xk).

We remark that the result in proposition 2.2 is in fact valid for any f provided the integral
in (1) is finite, and if f (x) = S max{√x, ε}, then the invariant measure above converges to
that in proposition 2.1 as ε → 0. A proof of proposition 2.2 is given in the appendix.

The rest of this paper will exclusively focus on the stochastic model defined in section 2.2
with interaction rate given by (*).
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The Markov chain generated by this stochastic model is denoted by �t . Let P t be the
transition probability kernel of �t . That is to say, for any t � 0 and x ∈ Ω, P t(x, ·) is a
probability measure on Ω, and given any Borel measurable set A ⊂ Ω, P t(·, A) is a measurable
function on Ω. The left and right operators generated by P t are written

(P tξ)(x) =
∫

Ω
P t(x, dy)ξ(y)

for a measurable function ξ on Ω, and

(µP t)(A) =
∫

Ω
P t(x, A)µ(dx)

for a probability measure µ on Ω. We also use the notation µ(ξ) = ∫
Ω ξ(x)µ(dx).

3. Main Results

3.1. Statement of main results

We introduce two functions, M and E, on Ω, the first giving the total number of particles and
the second the total energy of a state x ∈ Ω. In the notation of section 2.2,

M(x) =
N∑

i=1

ki and E(x) =
N∑

i=1


 ki∑

j=1

xi
j + si


 .

In the statement of results below, the clock rate f is fixed throughout. System size N ,
which we assume to be large, is also fixed in each statement—although from time to time we
point out the scaling with N .

Theorem 1 (Existence and uniqueness of invariant measure). Given (TL, ρL) and (TR, ρR),
the Markov chain �t admits a unique invariant probability measure π .

When (TL, ρL) = (TR, ρR), that is, when the system is in equilibrium, theorem 1 asserts
that the invariant probability measure given explicitly by proposition 2.2 is unique, hence
ergodic. When (TL, ρL) �= (TR, ρR), that is, when the system is out of equilibrium, theorem 1
asserts the existence of a unique (hence ergodic) nonequilibrium steady state π . It is easy to
check that in the nonequilibrium case π is not a product measure and does not appear to have
a form that can be written down explicitly.

Theorem 2 (Properties of invariant measure). The measure π in theorem 1 has the following
properties:

(a) It is absolutely continuous with respect to Λ on Ω with a strictly positive density.
(b) There are constants C, α > 0, α = O(N−2), such that

π({x | M(x) � n}) � Ce−αn and π({x | E(x) � x}) � Ce−αx

for all n and x.

The tail distributions in theorem 2(b) follow from our choice of function space, equivalently
space of measures, on which to apply the Markov operator. We introduce these spaces and
norms systematically. Let (X, A) be a measurable space, and let W : X → [1, ∞) be
a measurable function on X. We define the W -weighted supremum norm of a measurable
function ξ : X → R to be

‖ξ‖W = sup
x∈X

|ξ(x)|
W(x)

,
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and let ‖ξ‖ := supx∈X |ξ(x)| be the sup norm of ξ . We also define the W -weighted variation
norm of a signed measure µ on (X, A) to be

‖µ‖W =
∫

X

W(x)|µ|(dx),

where |µ| is the total variation of µ. Let LW(X) denote the set of all Borel probability measures
µ on (X, A) with µ(W) < ∞.

Theorem 3 (Contraction of Markov operator). There exists α = α(N, TL, TR, ρL, ρR) > 0
such that if V : Ω → [1, ∞) is given by

V (x) = eαE(x) + eαM(x), (3.1)

then the following hold:

(a) If µ ∈ LV (Ω), then µP t ∈ LV (Ω) for all t > 0.
(b) There exist constants c > 0 and r ∈ (0, 1) such that for all µ1, µ2 ∈ LV (Ω), we have

‖µ1P
t − µ2P

t‖V � c‖µ1 − µ2‖V rt for all t > 0.

(c) The measure π above is the unique fixed point of µ �→ µP t in LV (Ω) for all t > 0.

The results of the rates of mixing and convergence to steady state now follow readily.

Corollary 4 (Exponential convergence to steady state and correlation decay). Given
(TL, ρL) and (TR, ρR), the Markov chain �t has the following properties.

(a) For every x ∈ Ω,

‖P t(x, ·) − π‖V � cV (x)rt

where c and r are as in theorem 3.
(b) Let µ ∈ LV (Ω), and let ξ and ζ be measurable functions on (Ω, A) with ‖ξ‖ < ∞ and

‖ζ‖V < ∞. Then, the covariance

C
µ
ξ,ζ (t) :=

∫
X

(P tζ )(x)ξ(x)µ(dx) −
∫

X

(P tζ )(x)µ(dx)

∫
X

ξ(x)µ(dx)

decays exponentially, with

|Cµ
ξ,ζ (t)| � ‖ξ‖‖ζ‖V ‖µ‖V · 2crt for all t > 0.

We remark that the results in corollary 4 are new even in the equilibrium case. We do
not, however, have efficient bounds on how the rate of mixing in an N -chain scales with N .
Control, such as that in [5, 18], would be relevant for further studies.

3.2. Method of proof

The proof of theorem 3 uses the idea that unique ergodicity follows from (i) the existence of
‘small sets’ that are visited infinitely often together with (ii) Doeblin’s condition on a compact
part of the phase space. To implement these ideas, one generally constructs a Lyapunov
function; exponential mixing follows if the average value of this function decreases sufficiently
fast to the region on which coupling takes place. This body of ideas was developed by Meyn
and Tweedie [13]; some of the ideas go back to Harris [7]. The exposition below follows that
of Hairer and Mattingly [6], which contains an elegant formulation as well as a more direct
proof.

Consider a discrete-time Markov chain �n defined on a measurable space (X, A), with
transition kernel P̂ (x, ·). The following two conditions are relevant.
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Assumption (A1). There exist a measurable function W : X → [1, ∞) and constants K � 0,
γ ∈ (0, 1) such that

(P̂W)(x) − W(x) � −γW(x) + K for all x ∈ X.

Assumption (A2). Let D = {W � 2K/γ }. Then, there exist δ ∈ (0, 1) and a probability
measures ν on (X, A) such that

inf
x∈D

P̂ (x, ·) � δν(·).
Let ‖ · ‖W and LW(X) be as defined in section 3.1, just before the statement of theorem 3.

Theorem 3.1 (Theorems 1.2 and 1.3 in [6]). Assume (A1) and (A2) hold for the Markov
chain �n. Then

(a) µP̂ ∈ LW(X) for µ ∈ LW(X);
(b) there exist r̂ ∈ (0, 1) and Ĉ > 0 such that for all µ1, µ2 ∈ LW(X),

‖µ1P̂
n − µ2P̂

n‖W � Ĉr̂n‖µ1 − µ2‖W .

It follows that µ �→ µP̂ has a unique fixed point, that is, �n has a unique invariant probability
measure µ∗ in LW(X).

The rate r̂ in theorem 3.1 can be expressed explicitly in terms of the constants γ, K and
δ; see [6].

To directly apply these results, we will work with the time-T chain defined by our process
for a suitable T > 0. That is to say, instead of the continuous-time process �t , we consider the
discrete-time Markov chain �T

n , n = 1, 2, . . ., the transition probabilities of which are given
by P nT (x, ·).

Two major steps in our proof are to identify a suitable Lyapunov function, and to show
that it has the required properties. Once Assumptions (A1) and (A2) are verified, we obtain
by application of theorem 3.1 results analogous to those in theorem 3 for the time-T chain,
including the existence of a unique fixed point in the space of measures in question. While it is
natural to involve total energy and number of particles in a Lyapunov function, our particular
choice of V (see theorem 3) is motivated by a desire for exponential tail bounds in energy and
particle distributions. The bulk of the work goes into the verification of (A1), in proving lower
bounds for the amount of energy that flows out of the system in particular. This step, which
is essential for preventing energy and particle build-ups within the chain, can be considered
the single most important idea in our proof. Once (A1) and (A2) are checked, corollary 4 also
follows.

Arguments based on theorem 3.1 do not by themselves rule out the existence of invariant
measures outside of LV (Ω), nor do they identify the measure class of π , the unique fixed point
in LV (Ω). We prove in a separate argument that any invariant measure must necessarily have
a strictly positive density with respect to the reference measure Λ on Ω. It is this property that
implies the uniqueness, hence ergodicity, of π as asserted in theorem 1.

Finally, we must confirm that all of the results above hold not just for the time-T chain
�T

n but also for the continuous time Markov chain �t .

4. Outflow of energy and particles

This section contains a crucial step of the proof, concerning the mean amount of energy and
number of particles that flow out of the chain per unit time.
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To prove the existence of an invariant measure, we must control the amount of energy
and number of particles that (i) enter and (ii) leave the chain per unit time. In this model,
(i) is relatively straightforward, as the heat baths release, at known rates, particles carrying
known distributions of energy into the chain. In this section, we focus on (ii), which poses the
following challenge. The time that a particle exits the chain, and the amount energy it carries
with it when it leaves, are influenced by the stored energies with which it interacts. These
stored energies are in turn determined by their interactions with particles that pass through,
and all of these events are highly interdependent.

Our strategy for obtaining lower bounds on the outflow of energy and particles is to try
to extract as much independence from the situation as possible, and use worst-case scenario
bounds the rest of the time. Our main results are proposition 4.5 and lemma 4.6, which are
stated and proved in section 4.3.

4.1. Probabilistic preliminaries

We begin by recalling a version of the classical Chernoff bounds and some corollaries that we
will need. For a reference see any basic text in probability.

Lemma 4.1. Let X = ∑n
i=1 Xi where X1, . . . , Xn are independent Bernoulli random

variables, and let µ = E[X]. Then for any 0 < δ < 1,

P[X � (1 − δ)µ] �
(

e−δ

(1 − δ)(1−δ)

)µ

, P[X � (1 + δ)µ] �
(

eδ

(1 + δ)(1+δ)

)µ

.

Corollary 4.2. Let X be a Poisson random variable with mean µ. Then

P[X � x] � e−µ(eµ)x

xx
for x > µ;

P[X � x] � e−µ(eµ)x

xx
for x < µ.

We will also need the following small extension of lemma 4.1.

Lemma 4.3 ([14], theorem 3.2). Let X1, . . . , Xn be (possibly dependent) Bernoulli random
variables taking values 0 and 1. Assume that for each i, P[Xi = 1 | all Xj, j �= i] � pi . Let
X = ∑n

i=1 Xi and µ = ∑n
i=1 pi . Then, for any 0 < δ < 1,

P [X � (1 + δ)µ] �
(

eδ

(1 + δ)(1+δ)

)µ

.

Proof. Let Y1, . . . , Yn be independent Bernoulli random variables such that P[Yi = 1] = pi

and P[Yi = 0] = 1 − pi , and let Y = ∑n
i=1 Yi . In the proof of the classical Chernoff bounds

for Y , one first applies Markov’s inequality to etY to obtain

P[Y > (1 + δ)µ] = P[etY > et (1+δ)µ] � E[etY ]

et (1+δ)µ
. (4.1)

Then, one shows, via a computation, that

E[etY ]

et (1+δ)µ
�
(

eδ

(1 + δ)(1+δ)

)µ

. (4.2)

Since (4.1) is equally valid for X as for Y , the lemma follows once we show E[etX] � E[etY ],
equivalently, E[Xk] � E[Y k] for k = 0, 1, . . .. Now E[Xk] is a finite sum of terms of the form
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E[Xi1Xi2 · · · Xik ]. We fix (i1, . . . , ik), and let {j1, . . . , jk′ } be the set of distinct indices that
appear as some i
. Then

P[Xj1 = Xj2 = · · · = Xjk′ = 1]

= P[Xj1 = 1 | Xj2 , . . . , Xjk′ ] P[Xj2 = 1 | Xj3 , . . . , Xjk′ ] · · · P[Xjk′ = 1]

� pj1pj2 · · · pjk′

= P[Yj1 = Yj2 = · · · = Yjk′ = 1],

so that

E[Xi1Xi2 · · · Xik ] = P


∏

j


Xj

= 1


 � P


∏

j


Yj

= 1


 = E[Yi1Yi2 · · · Yik ]

completing the proof. �

4.2. Worst-case estimates for tagged particles

The aim of this subsection is to show that there exist a time T1 = O(N2), a probability p > 0,
and a proportion η ∈ (0, 1), such that the following holds. Let x0 ∈ Ω be an arbitrary initial
state. Then for every particle in the system at time 0, ‘independently of what other particles
do’, the probability that this particle will exit the system before time T1 carrying with it a
fraction � η of its initial energy is � p.

Since the energies, hence jump rates, of particles are inter-dependent, our first order of
business is to make precise what ‘independently of what other particles’ means. Given an
initial condition x0 ∈ Ω with M0 particles in the system, and assuming for the moment that
no new particles enter during the time period [0, T ), 0 < T � ∞, we claim that the set of all
sample paths on this time interval can be parametrized as follows. Let

� =
M0∏
j=1

�j, where �j = ((0, 1) × {J, M} × {L, R} × (0, 1))N

parametrizes the ‘randomness’, or ‘choices’, of particle j in a way to be made precise. The
space � is endowed with the M0-fold product νN × . . .×νN, where each νN is a probability on
�j and ν is the product of Lebesgue measure on (0, 1), the ( 1

1+m
, m

1+m
)-probability on {J, M}

and the ( 1
2 , 1

2 )-probability on {L, R}.
Two auxiliary functions will be used:

ϕλ : (0, ∞) → (0, 1) with ϕλ(t) = 1 − e−λt ,

and ψs,x : (0, 1) → (0, ∞) with ψs,x(u) = s + x(1 − u2).

Here, ϕλ parametrizes the set of all ring times for a clock with rate λ in such a way that
the distribution of ring times on (0, ∞) is carried to Lebesgue measure on (0, 1), that is, the
probability of ringing on (0, t) is equal to the Lebesgue measure of (0, ϕλ(t)). The function
ψ is related to energy exchanges; see section 2.2.

Let a point (σ1, . . . , σM0) ∈ � be fixed. Instead of describing the events in the order in
which they occur, it is simpler to specify how σ1 = (rn, an; bn, un)n=1,2,... ∈ �1 determines
the choices for particle 1, assuming that other particles are treated similarly. Let (i1(0), x1(0))

denote the location and energy of particle 1 at time 0, and let τ1 = ϕ−1
(1+m)f (x1(0))(r1) be the first

time its clock rings. At τ1, particle 1 jumps or mixes depending on whether a1 = J or M . If it
jumps, then it goes left or right depending on whether b1 = L or R. If it mixes, then x1(0) and
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si(0)(τ1) are pooled together and repartitioned, with the energy of particle 1 immediately after
the exchange given by x1(τ

+
1 ) = ψsi(0)(τ1),x1(0)(u1). We assume here that the value of si(0)(τ1)

is known; it is equal to si(0)(0) if no other particle has exchanged energy with this site, and it
is equal to something else defined by rules analogous to those for particle 1 if such exchanges
have already taken place. To continue to describe the evolution of particle 1, we repeat the
process above with initial condition (i1(τ

+
1 ), x1(τ

+
1 )); the next move is then determined by

(r2, a2; b2, u2) together with what si(τ+
1 ) may be at time τ2 = τ1 + ϕ−1

(1+m)f (x1(τ
+
1 ))

(r2), when its
clock rings again. This is continued until particle 1 exits the chain, after which σ1 becomes
irrelevant.

In general, particles do enter the system after time 0, and � has to be enlarged to

�+ = � ×
∞∏

j=M0+1

�+
j , �+

j = ({1, N}, (0, ∞)) × �j,

where �+
j parametrizes the initial location, energy and subsequent choices for each of the

particles that enters (in the order in which they enter). The associated probability is extended
to �+ in an obvious way, with the factor supported on ({1, N}, (0, ∞)) reflecting bath
temperatures and injection rates.

Finally, given an initial condition x0 ∈ Ω and an event A that involves only particle 1,
when we say A occurs with probability � p ‘independently of all other particles’, or

Px0 [A| all particles �= 1] � p,

what we mean is that for every (σ2, σ3, . . .) ∈ ∏M0
j=2 �j ×∏

j>M0
�+

j ,

νN
[
σ1 ∈ �1 leading to A | x0; (σ2, σ3, . . .)

]
� p.

Remark. The discussion above can be summarized as follows. The trajectories of individual
particles are usually expressed by (ij (t), xj (t)) where ij (t) is the location and xj (t) is the
energy of particle j at time t . Seen this way, trajectories of different particles depend on one
another and on conditions in the chain in a very complicated way. However, the underlying
‘choices’ or ‘decisions’ made by individual particles as expressed by σj above are entirely
independent. The σj are independent for different j ; for each j the sequence of choices as
indexed by n above are independent for different n, and for each n, the quantities rn, an, bn, un

are independent of one another. It is through the process of translating these ‘decisions’ into
actual trajectories that various layers of inter-dependence enter. Our proof will leverage the
independence of these ‘underlying decisions’.

In the rest of this subsection, we fix x0 ∈ Ω, tag an arbitrary particle in the system, and
refer to it as particle 1. Let us abbreviate Px0 [ · | all particles �= 1] as P∗

x0
[ · ], since this

notation will be used many times. Let T1 = 2�(1 + m)(N2 + 1)�/f0 where f0 is the minimum
clock rate (see section 2.4)1.

Lemma 4.4. The following statements pertain to particle 1, and are valid for any initial
condition x0 ∈ Ω:

(i) Let W be the number of jumps before it exits the chain. Then

P∗
x0

[W � N2] � 1
2 .

(ii) Let τ be the time of exit. Then

P∗
x0

[W � N2 and τ < T1] � 1
4 (1 − (2e−1)�(1+m)(N2+1)�) := p1.

1 �x� is the ceiling function; that is, the smallest integer � x.
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(iii) Let K be the number of energy exchanges before it exits. Then

P∗
x0

[W � N2, τ < T1 and K � mN2] � p1.

(iv) Let η be the fraction of x1(0) particle 1 carries with it as it exits the chain. Then

P∗
x0

[η � e−3mN2 | K � mN2] � 1
2 .

Proof.

(i) The problem is that of a simple random walk X0, X1, . . . with X0 = m, the initial location
of particle 1, Xn+1 = Xn ± 1 with probability ( 1

2 , 1
2 ), and W = infn{Xn = 0 or N + 1}. It

is well known that

EX0=m[W ] = m(N + 1 − m) .

(See e.g. [19].) Since m(N + 1 − m) � N2/2, it follows from the Markov inequality that
P[W � N2] � 1

2 .
(ii) We fix throughout a sample path for all particles �= 1 (in the sense discussed above),

and let S1, S2, . . . denote the sequence of times between consecutive clock rings for
particle 1. Although these random variables are not independent, when conditioned on
any (an, bn, un)n=1,2,... and S1, . . . , Si−1, each Si is exponentially distributed with mean
� 1/f0. Let Y be the number of clock rings before time T1. Then

P∗
x0

[Y �
⌈
(1 + m)(N2 + 1)

⌉ |(an, bn, un)n=1,2,...] � P[Ỹ �
⌈
(1 + m)(N2 + 1)

⌉
] (4.3)

where Ỹ is a Poisson random variable with mean f0T1 = �(1 + m)(N2 + 1)�, and
corollory 4.2 gives P[Ỹ � �(1 + m)(N2 + 1)�] � (2e−1)�(1+m)(N2+1)�.
To finish, let us assume for purposes of the next argument that after particle 1 enters the
bath its clock continues to ring with rate f0 and the probability of a ‘jump’ at each ring is
as before (of course, in reality particle 1 is forgotten once it exits the chain). Let

A = {of the first
⌈
(1 + m)(N2 + 1)

⌉
clock rings, � N2 are jumps}.

Then P[A] � 1
2 because the median of binomial distribution B(n, p) is less than �np�

(see [8]). The events A and {W � N2} are independent, and both are fully determined by
the sequence (an, bn)n=1,2,...,(1+m)N2 . Thus,

P∗
x0

[W � N2, τ < T1] � P∗
x0

[W � N2, Y �
⌈
(1 + m)(N2 + 1)

⌉
, A]

= P∗
x0

[W � N2] · P∗
x0

[A] · P∗
x0

× [Y �
⌈
(1 + m)(N2 + 1)

⌉ |W � N2, A]

� 1

4
(1 − (2e−1)�(1+m)(N2+1)�).

(iii) Since

{W � N2, τ < T1, K � mN2} ⊃ {W � N2, Y �
⌈
(1 + m)(N2 + 1)

⌉
, A} ,

the desired result follows immediately from the computation above.
(iv) Suppose Z0 = x1(0) > 0, and let Zk, k = 1, 2, . . ., denote the energy of particle 1 after the

kth energy exchange. Then, the distribution of Zk given Zk−1 is �(1−u2)Zk−1, u ∈ (0, 1)

uniformly distributed; this uses only that the stored energy relevant in the kth interaction
is �0. Thus, we have the relation

ln Zk �
k∑

i=1

Uk + ln Z0
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where U1, U2, . . . are i.i.d. with mean
∫ 1

0 ln(1 − u2) du = 2(ln 2 − 1) ≈ −1.4. Thus

P[(ln Zk − ln Z0) < −3k] � 1
2 ,

and letting K be as in (iii), we have

P∗
x0

[ZK > e−3mN2
Z0 | K � mN2] � 1

2

as claimed. �

4.3. Lower bounds for energy and particle outflow

Let

VE(x) = eαE(x) and VM(x) = eαM(x)

where x ∈ Ω is a state of the system, M(x) is the number of particles in state x, E(x) is
total energy, including both stored energy and energy carried by the particles, and α > 0 is
a parameter to be determined. This section is concerned with lower bounds for energy and
particle outflow, as measured via the functions VE and VM . We begin with some relevant
definitions.

Given an initial condition x ∈ Ω and a sample path ω, let t1 < t2 < · · · be the times on
the interval [0, T ) at which energy is expelled from the chain. Define E−

ω (t) to be the function
on [0, T ] given by

(i) E−
ω (0) = E(x),

(ii) E−
ω is piecewise constant except for downward jumps at ti , and

(iii) E−
ω (ti) − E−

ω (t+
i ) = σi where σi is the amount of energy expelled at time ti .

Likewise, let s1 < s2 < · · · be the times on the interval [0, T ) when energy is injected into
the chain. The function E+

ω is defined analogously, with E+
ω(s+

i ) − E+
ω(si) = ηi where ηi is

the amount of injected energy at time si . That is to say, the function E−
ω records only energy

outflow along this sample path, ignoring any inflow of energy, while E+
ω records only energy

inflow along ω, ignoring any outflow. It follows that Eω(t), total energy in the chain at time t ,
is given by Eω(t) = E+

ω(t) + E−
ω (t) − E(x).

Starting from x, of interest is the total drop in VE on [0, T ) along ω due to energy outflow;
that is,

�−VE(x, ω; [0, T )) :=
∑

ti

(
VE(ti) − VE(t+

i )
) =

∑
ti

(
eαEω(ti ) − eαEω(t+

i )
)

.

The quantity that we are able to estimate is σω := ∑
i σi , the total amount of energy expelled

on this time interval. These two quantities are related by

�−VE(x, ω; [0, T )) =
∑

ti

eα(E+
ω(ti )−E(x))

(
eαE−

ω (ti ) − eαE−
ω (t+

i )
)

�
∑

ti

(
eαE−

ω (ti ) − eαE−
ω (t+

i )
)

= eαE(x) − eαE−
ω (T ) = VE(x)(1 − e−ασω ),

the inequality above following from E+
ω(t) � E(x). Finally, we let

�−VE(x; [0, T )) =
∫

�−VE(x, ω; [0, T )) P(dω).

Quantities involving VM are defined analogously.
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Proposition 4.5. Given C0 > 0, there exist p0 > 0, Ē > 0, and T = constant ·N2, all of
which independent of α, such that, for all x ∈ Ω with E(x) � max{Ē, 1

2M(x)}, we have

�−VE(x; [0, T )) � p0(1 − e−αC0)VE(x).

The strategy of proof is to show that with a certain probability, there is a minimum amount
of energy that is released to heat baths before time T . We write E(x) as

E(x) = Es(x) + Ep(x) where Es(x) =
N∑

i=1

si(x)

and Ep(x) is the total energy carried by all of the particles in state x.

Proof. We will consider separately the following cases.

Case 1. Ep(x) � E(x)/4, and

Case 2. Ep(x) � E(x)/4,

where case 1 is further subdivided into

Case 1a. At least one particle carries energy �
√

Ep(x), and

Case 1b. No particle carries energy �
√

Ep(x).

In each case we propose a scenario that will lead to a desired outcome, and estimate the
probability of that scenario. For example, in case 1a, we will want a high-energy particle to
exit in time O(N2), whereas in case 1b, we will seek to expel a certain fraction of the particles.

As before, let T1 = 2�(1 + m)(N2 + 1)�/f0. Notation such as τ, η etc. is as in lemma 4.4
when there is no ambiguity to which particle it refers, and we omit x in E(x), Ep(x) etc.

Case 1a. We fix a particle carrying energy �
√

Ep, call it particle 1, and let P∗
x be as in

section 4.2. Then, by lemma 4.4(iii),(iv),

P∗
x[τ < T1, η > e−3mN2

] � 1
8 (1 − (2e−1)(1+m)N2

) = 1
2p1.

It follows from x1(0) �
√

Ep �
√

E/2 that if C is the amount of energy particle 1 carries
with it as it exits the chain, then

Px[τ < T1, C > 1
2 e−3mN2√

E] � 1
2p1.

For definiteness, we assume N is large enough that 1
2p1 > 1

10 .

Case 1b. Here M � 2E � 8Ep, and the maximum energy carried by any one particle at time
0 is

√
Ep. Let n be the number of particles carrying energy � 1

16 , and assume E is sufficiently
large that n � 1. From

Ep � n
√

Ep + (M − n) 1
16 � n(

√
Ep − 1

16 ) + 1
2Ep,

we deduce that n � 1
2

√
Ep � 1

4

√
E.

Labeling these n particles as particles 1 through n, we apply again lemma 4.4(iii),(iv) to
each one of them, obtaining for each

P∗
x[τ < T1, η � e−3mN2

] � 1
2p1.

Let Ai be the event that particle i either does not exit before time T1 or exits with energy
< 1

16 e−3mN2
. Then, Px[Ai] � 1 − 1

2p1. Applying now lemma 4.3 to the (possibly dependent)
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random variables 1A1 , . . . , 1An
and letting δ = ( 1

2p1 − 1
20 )/(1 − 1

2p1), we obtain

Px

[∑
i

1Ai
� 19

20
n

]
= Px

[∑
i

1Ai
� (1 + δ)n

(
1 − 1

2
p1

)]

�
(

eδ

(1 + δ)(1+δ)

)(1− 1
2 p1)

1
4

√
E

:= p2(E),

that is, with probability 1 − p2(E), 1
20n � 1

80

√
E particles do as prescribed. Letting C denote

the total energy expelled on the time interval [0, T1), we have

Px

[
C � 1

80

√
E · 1

16
e−3mN2

]
� 1 − p2(E).

Observe, finally, that if E � 1, then 1 − p2(E) � 1 − p2(1) > 0.

Case 2. An immediate consequence of Es � 1
4E is that there is at least one site—call it site

i0—with si0 � 1
4N

E. Since energy can only be carried out of the chain by particles, and there
may not be any particles at site i0, our first order of business is to ensure that a particle reaches
site i0 within reasonable time.

Suppose for definiteness that i0 � N/2. Consider a particle at site 1 (to be thought
of as having just been emitted by the left bath) performing an unbiased random walk as in
lemma 4.4(i), and let W be the number of steps to reach either 0, that is, the particle exits to
the left bath, or i0, our desired destination. Then E[W ] � N/2, so that P[W � N2] � 1

2N
,

and

P[W < N2, XW = i0] = P[W < N2] − P [W < N2, XW = 0]

� P[W < N2] − P[XW = 0]

�
(

1 − 1

2N

)
− N − 2

N
� 3

2N
.

Since walks of this kind are entirely independent of one another and of events in the chain, we
have that for every N particles emitted by the left bath, the probability that at least one will
reach site i0 in < N2 steps is � 1 − (1 − 3

2N
)N ≈ 1 − e− 3

2 .
Now, on a time interval of length 2N/ρL, the left bath is expected to emit 2N particles,

and the probability of its emitting � N particles is estimated by corollary 4.2. Conditioned
on this happening, the probability of at least one of them reaching site i0 in < N2 steps is
estimated in the last paragraph, and for such a particle the (real) time it takes to reach site
i0 can be estimated as in the proof of lemma 4.4(ii). Summarizing, we have shown that if
T2 = 2N/ρL + T1, then there exists p3 > 0 (independent of N ) such that

Px[at least one particle reaches site i0 before time T2] � p3.

We now invoke the fact that si0 � 1
4N

E(x). Let τ1 � 0 be the first time that there is a
particle in site i0. (If in state x there already is a particle at site i0, then τ1 = 0.) Independently
of x, we have shown that τ1 < T2 with probability �p3. Let τ2 be the first time a particle
exchanges energy with the stored energy at site i0. Then with probability m

1+m
(1 − e−1),

τ2 − τ1 � f −1
0 , where f0 is the minimum clock rate.

Let us call that first particle to interact with the stored energy at site i0 ‘particle 1’. Let χ

be the amount of energy particle 1 receives in this interaction, then χ � 1
4N

E(x). An argument
identical to that in Case 1a then tells us that with probability � 1

10 , particle 1 will exit the chain

in < T1 units of time after τ2, carrying with it an amount of energy >e−3mN2
χ .
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To summarize, we have shown under the condition of case 2 that there exists p4 > 0
(independent of N ) such that if T = T2 + f −1

0 + T1, then with probability � p4, an amount of
energy � 1

4N
e−3mN2

E is expelled before time T .
To complete the proof, we let T be as in the last paragraph. In each of the three cases

above, we have shown that �, the set of sample paths that follow the prescribed scenario, has
probability � p0 = min{ 1

10 , p2(1), p4}. For ω �∈ �, we use the estimate σω � 0 where σω is
total energy expelled (see the beginning of this subsection). For ω ∈ �, we observe that given
C0 > 0, σω � C0 can be arranged by taking Ē large enough, namely by requiring

e−3mN2
min

{
1

2

√
Ē,

1

16 · 80

√
Ē,

1

8N
Ē

}
� C0

and also that Ē is large enough for the argument in case 1b. The desired conclusion follows
from the relation between �−VE and σω (see the beginning of section 4.3). �

Similar ideas are used to prove the corresponding result for VM .

Lemma 4.6. Let T = T1 be as in section 4.2. Given C0 > 0, there exists a constant M̄ such
that whenever M(x) � M̄ , we have

�−VM(x; [0, T )) � 1

2
(1 − e−C0α)VM(x).

Proof. For each particle, we have shown in lemma 4.4(ii) that

P∗
x[τ > T ] � p1.

Let Ai be the event that particle i is still in the system at time T . Lemma 4.3 applied to
1A1 , . . . , 1AM

with 1 + δ = 4
5(1−p1)

(recall that p1 > 1
5 ) gives

P

[
M∑
i

1Ai
>

4

5
M

]
�
(

eδ

(1 + δ)(1+δ)

)(1−p1)M

.

A computation shows that for M � 4, the quantity on the right is � 1
2 . Letting M̄ =

max{4, 5C0}, one obtains that if M(x) � M̄ , then

Px[at least C0 particles are released to heat baths on [0, T )] � 1

2
,

and we finish as before. �

5. Contraction of Markov operators

The purpose of this section is to prove the contractivity of the Markov operator corresponding
to the time-T chain (for suitable T ) associated with our model. We do this by constructing
a Lyapunov function and verifying conditions (A1) and (A2) in section 3.2. The results of
this section will imply several of the assertions in our theorems for the time T -chain; they are
summarized in section 5.3.
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5.1. Lyapunov function and condition (A1)

Given an initial condition x and a sample path ω, we define �+VE(x, ω; [0, T )) to be the total
rise in VE along ω on [0, T ) due to energy inflow. Using analogous notation in section 4.3 and
reasoning analogously, we obtain

�+VE(x(ω)) =
∑
si

eα(E−
ω (si )−E(x))

(
eαE+

ω(si+) − eαE+
ω(si )

)

�
∑
si

(
eαE+

ω(s+
i ) − eαE+

ω(si )
)

= eαE+
ω(T ) − eαE(x) = VE(x)(eαηω − 1),

where ηω is the amount of energy injected into the system along ω on [0, T ). Here we have
used E−

ω (t) � E(x). The expected increase in VE due to energy inflow, �+VE(x; [0, T )),
thus satisfies

�+VE(x; [0, T )) � VE(x)(E[eαη] − 1)

where η is the amount of energy injected into the system.
Quantities involving VM are defined similarly. In our model, inflow of energy and particles

is controlled entirely by the heat baths and are independent of what goes on in the chain.

Lemma 5.1. For any α > 0 and any t > 0,

�+VM(x; [0, T )) � (e(eα−1)(ρL+ρR)t − 1)VM(x).

Proof. For fixed x and t > 0, we let η be the number of particles injected on the time interval
[0, t), lumping together particles injected from the left and right baths. It follows from the
additivity of Poisson random variables that η is a Poisson random variable with mean (ρR+ρL)t .
Thus,

�+VM(x; [0, T )) � VM(x)

( ∞∑
k=0

eαk (ρL + ρR)ktk

k!
e−(ρL+ρR)t − 1

)

= VM(x)(e(eα−1)(ρL+ρR)t − 1)

completing the proof. �

Lemma 5.2. Assume α < βL, βR. Then for any t > 0,

�+VE(x; [0, T )) � VE(x)
(

eρL t (1−αTL)−3/2+ρR t (1−αTR)−3/2−(ρL+ρR)t − 1
)

.

Proof. Proceeding as in the previous proof—except that here we need to add up the energy
carried into the chain by injected particles—we obtain

�+VE(x; [0, T ))

� VE(x)




 ∞∑

kL=0

P[ηL = kL] · E[eα
∑KL

i=0 xL
i ]




 ∞∑

kR=0

P[ηR = kR] · E[eα
∑KR

i=0 xR
i ]


− 1


 ,

where the quantities inside the two sets of brackets are contributions from the left and right
baths, respectively: ηL is the number of particles injected from the left bath on the time interval
[0, t), and xL

i , i = 1, 2, . . . , kL, are the energies of the injected particles. That is to say, ηL is a
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Poisson random variable with mean ρLt , while the xL
i are independent random variables with

law �( 3
2 , βL), that is, the distribution with probability density function

2β
3/2
L√
π

√
xe−βLx

(see section 2.2), and the xL
i are independent of ηL. Analogous statements hold for injections

from the right bath.
We need to show that the quantities inside the brackets are finite. As the sum of k

independent random variables with Gamma distribution �(a, b) has distribution �(ka, b), and
the moment generating function of �(a, b) is (1 − s

b
)−a for s < b, it follows that for α < βL,

E[eα
∑KL

i=0 xL
i ] =

(
1 − α

βL

)−3kL/2

.

Substituting this into the computation of (P tVE)+, we obtain that the quantity associated with

the left bath is equal to eρL t (1−αTL)
− 3

2 −ρL t , proving the lemma. �
The next result is a direct consequence of proposition 4.5 and lemmas 4.6, 5.1 and 5.2.

It gives, under suitable conditions, a Lyapunov function that satisfies condition (A1). Let
T = O(N2) be as in proposition 4.5, and fix such a T for the rest of the proof. For x ∈ Ω and
α > 0, define

V (x) = V (α)(x) = VE(x) + VM(x)

where, as before, VE(x) = eαE(x) and VM(x) = eαM(x).

Theorem 5.3. There exist γ, c > 0 such that the following holds for every � � T . For
α � α(�) := c�−1 and V = V (α), there exists K = K(�, α, γ ) > 1 such that

P �V (x) − V (x) � −γV (x) + K

for every x ∈ Ω.

Proof. Let A = min{p0,
1
2 } where p0 is as in proposition 4.5. Then by proposition 4.5 and

lemma 4.6, we have that for any C0 > 0 and any α > 0, there exist Ē, M̄ > 0 such that for
any t � T and any x, we have

�−VE(x; [0, t)) � A(1 − e−C0α) VE(x) if E(x) � max{Ē, M(x)/2};
�−VM(x; [0, t)) � A(1 − e−C0α) VM(x) if M(x) � M̄.

Here, C0 and α can be any positive number.
We claim next that there exists B > 0 such that for any t > 0, if both α and αt are

sufficiently small depending only on TL, TR, ρL and ρR, then the following hold for all x:

�+VE(x; [0, t)) � Bαt VE(x);
�+VM(x; [0, t)) � Bαt VM(x).

This follows from lemmas 5.1 and 5.2: Using the facts that for x � 1, ex − 1 ≈ x and
(1 − x)−

3
2 ≈ 1 + 3

2x, one sees that the bounds in lemmas 5.1 and 5.2 are no greater than a
constant times α(ρL + ρR)tVM(x) and α(ρLTL + ρRTR)tVE(x), respectively.

To prove the stated result, we let γ = 1
10A, and let B be as above. Then for

t = � � T , choose α so that (i) the above inequalities governing �+VE and �+VM hold
and (ii) B�α < 1

4A. This gives the relation α = O(�−1). We then let C0 be large enough
such that 1

2A(1 − e−C0α) − B�α > γ , and use this C0 to determine Ē and M̄ .
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Then, assuming E(x) � M(x)/2, we claim to have

P �V (x) − V (x) = [P �VE(x) − VE(x)] + [P �VM(x) − VM(x)]

= [�+VE(x; [0, �)) − �−VE(x; [0, �))]

+ [�+VM(x; [0, �)) − �−VM(x; [0, �))]

�
(
B�α − A(1 − e−C0α)

)
(VE(x) + VM(x)) + A(1 − e−C0α)(eαĒ + eαM̄)

� − γV (x) + A(1 − e−C0α)(eαĒ + eαM̄).

The first inequality above is the only line that requires justification. We use the estimate above
for �−VE(x; [0, t)) when it is valid, that is, when E(x) � Ē, and when E(x) < Ē, we use

−�−VE(x; [0, t)) � 0 � A(1 − e−C0α)(eαĒ − VE(x)).

The quantity �−VM(x; [0, t)) is treated similarly.
It remains to consider the case E(x) < M(x)/2. Here,

P �V (x) − V (x) � −γV (x) + 3
2A(1 − e−C0α)eαM̄ if M(x) < M̄,

and if M(x) � M̄ , then

P �V (x) − V (x) � B�α (VE(x) + VM(x)) − AC0αVM(x)

�
(
B�α − 1

2A(1 − e−C0α)
)

(VE(x) + VM(x)) � −γV (x).

This completes the proof with K = 3
2A(1 − e−C0α)(eαĒ + eαM̄). �

5.2. Verification of (A2)

Let N ⊂ Ω be the collection of states in which there are no particles in the chain. Recall
that Λ is the reference measure on Ω, and observe that Λ|N is simply Lebesgue measure on
(0, ∞)N . Assumption (A2) is implied directly by the following.

Lemma 5.4. Given any constants E0 and M0, denote

D = DE0,M0 = {x ∈ Ω|E(x) � E0, M(x) � M0}
and B = B[1,2] = {x ∈ N |1 � si � 2 for i = 1, 2, . . . , N}.

Then, for each t > 0, there exists δ > 0 depending on D, B and t (as well as other system
constants), such that for every x ∈ D,

P t(x, ·) � δΛ|B(·).

Proof. Fixing t > 0, we claim there exists δ > 0 for which the following hold. For arbitrary
(s∗

1 , . . . , s∗
N) and ds with 1 � s∗

i < s∗
i + ds � 2, let

A(ds) = {x ∈ N | s∗
i � si � s∗

i + ds}.
We will argue that

P t(x, A(ds)) � δ(ds)N

for every x ∈ D. The δ below is far from optimal, but it is sufficient for our purposes.
We consider a sequence of events described by the following.

– F1 = {on (0, t
2 ), no new particle enters, and all particles present at t = 0 exit the chain},

For j = 0, 1, . . . , N , let Ij be the time interval [ t
2 + j

2(N+1)
, t

2 + j+1
2(N+1)

).
– F2 = {on I0, exactly one particle enters from the left, carrying energy x ∈ (3N, 4N)},
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– F3 = {no particle enters on ∪N
j=1Ij },

– F4,i = {on Ii , every particle at site i exchanges energy once, then jumps to site i + 1},
– F5,i = {s ′

i ∈ [s∗
i , s∗

i + ds] following every energy exchange on Ii};
we further write F4 = F4,1 . . . F4,N .

Since the initial number of particles is � M0, and clock rates are bounded away from 0,
it is clear that there exists p > 0 independent of x ∈ D such that, regardless of what happens
in the energy exchanges, P[F1F2F3F4] � p.

To complete the proof, we need to show the existence of c > 0 (independent of x ∈ D,
(s∗

1 , . . . , s∗
N) and ds) for which the following holds. For each i, let Gi be the event that all goes

as prescribed up to time t
2 + i

2(N+1)
, and an energy exchange occurs on Ii . Then

P[F5,i |Gi] � cds.

Conditioned on Gi , and letting x(t) denote the energy of the unique particle in the system
at time t = t

2 + i
2(N+1)

, we have that x(t) ∈ (N, 4N + E0), where E0 is the upper bound on

initial energy. Since s ′
i = x(t)u2 where u ∈ (0, 1) is uniformly distributed (see section 2.2),

the desired result follows. We have used here the fact that both (N, 4N + E0) and [1, 2] are
bounded away from zero and from infinity, with 2 < N . �

5.3. A summary of the results thus far

Let T = O(N−2) be fixed as before (see section 5.1). For each � � T , we let ��
n be the

time-� chain of �t , that is, the discrete-time Markov chain whose transition probabilities are
P n�, n = 1, 2, . . .. Then letting

V (x) = eαE(x) + eαM(x)

where α is as in theorem 5.3, we have checked (A1) and (A2): specifically (A1) follows
from theorem 5.3 and (A2) from lemma 5.4. Thus, we have established that the results of
theorem 3.1 are valid for ��

n . This implies in particular the existence of a unique invariant
probability measure π� ∈ LV (Ω), and that

‖µP n� − π�‖V � cρn‖µ − πT ‖V for every µ ∈ LV (Ω). (5.1)

We have further established the following tail bounds for π� , namely that with α as above,
there exists C > 0 such that

π�({x|M(x) � n}) � Ce−αn and π�({x | E(x) � x}) � Ce−αx

for all n and x. This is an immediate consequence of our choice of V and the fact that
π� ∈ LV (Ω).

Remark. While the results above are valid for each � � T , we note that in our proof we have
used α � α(�) ∝ �−1. Thus, our Lyapunov function V = V (α) will vary with �, defining
measure spaces with deteriorating tail bounds and convergence rates as � → ∞.

6. Completing the proofs

To complete the proofs of theorems 1–4 as stated in section 3, the following tasks remain:
(1) to pass the results in section 5.3 to the continuous-time chain �t , obtaining in particular a
unique invariant measure π with π�t = π for all t > 0, and (2) to prove that π has a strictly
positive density with respect to Λ. We first tackle (2), assuming the existence of π .
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6.1. Absolute continuity of invariant measure

The aim of this subsection is to prove that:

Proposition 6.1. Every invariant probability measure π of the continuous-time chain �t is
absolutely continuous with respect to Λ with a strictly positive density.

For x ∈ Ω and t > 0, we may decompose P t(x, ·) into P t(x, ·) = ν⊥ + νabs where νabs

is absolutely continuous with respect to Λ and ν⊥ is singular with respect to Λ. Notice that,
unlike the situation with SDEs satisfying hypoelliptic conditions, ν⊥ �= 0 for every x and every
t , because there is always a positive probability that no action takes place within time t . That
is to say, the point mass δx is always a component of P t(x, ·) for every t > 0. (Another way
to put it: these processes are not strong Feller.)

Lemma 6.2. For every x ∈ Ω and every t > 0, νabs, the absolutely continuous component of
P t(x, ·), is nonzero and has a strictly positive density on all of Ω.

Proof. Given an initial condition x, and a target point

y = ((s∗
1 , {(y1

1)
∗, . . . , (y1

k1
)∗}), . . . , (s∗

N, {(y1
1)

∗, . . . , (yN
kN

)∗})} ∈ Ω

together with small numbers ds and dy > 0, one can show, using a scheme similar to that in
lemma 5.4, that

P t(x, A(ds, dy)) > δ(ds)N(dy)
∑

i ki .

Here, A(ds, dy) is the collection of states with ki particles at site i, with si ∈ [s∗
i , s∗

i + ds] and
y

j

i ∈ [(yj

i )∗, (yj

i )∗ + dy], and δ > 0 is allowed to depend on the number of particles and total
energy of x and y but not on ds or dy. This is a straightforward exercise for as long as no
other requirements are placed on δ. �

Lemma 6.2 says that as we apply the Markov operator, any measure will acquire an
absolutely continuous component. The next lemma guarantees that an absolutely continuous
component cannot revert back to singularity.

Lemma 6.3. For any finite Borel measure µ, if µ � Λ, then µP t � Λ for any t > 0.

Proof. The problem will boil down to showing that certain elementary moves carry the Λ-
measure class to itself. This is what we mean by an ‘elementary move’:

– a particle enters the chain from the left, respectively, right, bath
– the j th lowest energy particle at site i jumps left, respectively, right; no change if ki < j

– the j th lowest energy particle at site i exchanges energy with the site; no change if ki = 0

We fix t > 0, and for a sequence 
 = (m1, . . . , mn), where n ∈ Z+ and m1, . . . , mn are
elementary moves, we let E(
) denote the event that m1, . . . , mn occur on the time interval
[0, t) in the order specified, and these are the only elementary moves that occur. We also
let E(∅) and E(∞) denote the event that zero or infinitely many elementary moves occur on
[0, t). It is easy to check Px[E(∞)] = 0.

We introduce, for E = E(�) or E(∅), an operator PE which acts on the space of finite
Borel measures on Ω by

(µPE)(A) =
∫

PE(x, A)µ(dx) where PE(x, A) = P[(�t ∈ A|�0 = x)|E],

and observe the following:
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(1) Since

µP(·) =
∫ [(∑




Px[E(�)]PE(�)(x, ·)
)

+ Px[E(∅)]PE(∅)(x, ·)
]

µ(dx),

we have that for given µ � Λ, if µQ, Q = 
 or ∅, is the measure on Ω defined by

dµQ

dΛ
(x) = Px[E(Q)]

dµ

dΛ
(x),

then

µP = µ∅ +
∑

�

µ�PE(�). (6.1)

Thus, it suffices to show the absolute continuity of each of the countably many measures
on the right side of (6.1).

(2) For every � = (m1, . . . , mn), the operator PE(�) can be decomposed into

PE(�) = PE(mn) · · · PE(m2)PE(m1).

Since µ� is just another finite Borel measure � Λ, (1) and (2) above reduce the problem
to the following. Given µ � Λ and an elementary move m, show that µPE(m) � Λ.

This is a straightforward exercise. For example, let m be the move corresponding to the
second lowest-energy particle in site 1 exiting to the left bath. Let ξ = dµ

dλ
, and ξ̂ = dµPE(m)

dλ
.

Then

ξ̂ ((s1, {x1
1 , . . . , x

1
k1

}), . . .) =




ξ(· · ·) if k1 = 0,

ξ(· · ·) +
∫

ξ((s1, {x1
1 , y}), . . .) dy if k1 = 1,∫

ξ((s1, {x1
1 , y, x1

2 , . . . , x
1
k1

), . . .) dy if k1 � 2.

Here, (· · ·) means same as the argument of ξ̂ , and it is implied when writing {a, b, c, . . .} that
a < b < c < . . .. In the case of a particle jumping to an adjacent site, instead of writing
down the exact formula of ξ̂ (which will involves several cases), it is conceptually clearer to
view µPE(m) as the push-forward of µ by a mapping T : Ω → Ω, and to observe that T is
piecewise affine on a countable number of domains, each one of which is finite-dimensional.
As Λ restricted to subregions of Ω with M particles is (N +M)-dimensional Lebesgue measure,
our assertion follows from the fact that T preserves the Lebesgue measure class. For the case
of energy exchange, see the proof of proposition 2.2, which uses a similar idea. The case
involving the entrance of a new particle is left to the reader. �

Proof of proposition 6.1. Decompose π into π = π⊥ + πabs as before and assume, to
derive a contradiction, that π⊥ �= 0. For t > 0, πabsP

t � Λ by lemma 6.3, and π⊥P t

has an absolutely continuous component by lemma 6.2. Together these statements imply that
(πP t )abs(Ω) > πabs(Ω), contradicting the invariance of‘π . �
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6.2. Invariant measure for �t

We have shown that for every � � T (where T = O(N2) is fixed), there exists a unique
π� ∈ LV (Ω) for V = V (α), α � α(�), such that π�P � = π� (see section 5.3). We now argue
that all of these π� are in fact one and the same, and that it is invariant under P t for every
t > 0. A key ingredient of the proof the following ‘continuity at 0’ property. Let |ν| denote
the variational norm of ν.

Lemma 6.4. For fixed � � T ,

|π�P δ − π�| → 0 as δ → 0.

Proof. Given � and ε, we will show that for all sufficiently small δ > 0,

|(π�P δ)(A) − π�(A)| < ε for every Borel set A ⊂ Ω. (6.2)

First, there exist M̄, Ē (large) and δ0 > 0 (small) such that if U = {x | M(x) � M̄, E(x) � Ē}
then (i) π�(U) > 1− ε

4 , and (ii) starting from x ∈ U , the probability that no clock rings before
time δ0 is > 1 − ε

4 . Then, for every A ⊂ Ω and every δ ∈ (0, δ0),∫
P δ(x, A)π�(dx) =

∫
U∩A

+
∫

U−A

+
∫

Uc

= π�(U ∩ A) − a1 + a2 + a3

where

a1 =
∫

U∩A

(1 − P δ(x, A))π�(dx) � ε

4
π�(U ∩ A) � ε

4
,

a2 =
∫

U−A

P δ(x, A)πT (dx) � ε

4
π�(U − A) � ε

4
,

a3 =
∫

Uc

P δ(x, A)π�(dx) � π�(Uc) � ε

4
.

Further, π�(A)−π�(U ∩A) � π�(Uc) < ε/4, so |π�(A)−π�(U ∩A)| � ε/4. The assertion
in (6.2) follows. �

Corollary 6.5. Let π = πT . Then πP t = π for all t > 0, and π ∈ LV (Ω) for V = V (α(T )).

Proof. First we show that π� = π� for all �, � � T such that �/� �∈ Q. This
relationship between � and � implies, by the density of orbits in irrational rotations, the
existence of jn, kn ∈ Z+, jn, kn → ∞ as n → ∞, such that δn := kn� − jn� ↓ 0. Letting
α = min{α(�), α(�)} and V = V (α), we have, by (5.1),

‖π� − π�P kn�‖V → 0.

But since π� = π�P jn� , we also have

‖π� − π�P kn�‖V = ‖π� − π�P δn‖V � |π� − π�P δn |.
This, together with lemma 6.4, implies π� = π�. The case where �/� ∈ Q is trivial.

Having shown that π� = πT for all � � T , it follows immediately that for every t > 0,
πP t = πP T +t = π . �

Proofs of theorems 1 and 2. Corollary 6.5 gives the existence of an invariant probability
measure π for the continuous-time Markov chain �t . Its uniqueness (among all invariant
probability measures, not just measures in LV (Ω)) follows from proposition 6.1. This
proposition shows that every invariant probability measure has a strictly positive density with
respect to Λ, ruling out the existence of two distinct ergodic measures. Since π ∈ LV (Ω) for
V = V (α(T )) (corollary 6.5), it has the desired tail bounds with α = α(T ). �
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6.3. Exponential convergence

Here V = V (α(T )).

Proofs of theorem 3 and corollary 4. By lemmas 5.1 and 5.2, there exists B such that for
all t < T , P tV � BV , so µ ∈ LV (Ω) implies µP t ∈ LV (Ω). For arbitrary t > 0, the same
conclusion is reached by writing t = nT +� for n ∈ Z+ and � ∈ [0, T ), proving theorem 3(a).
To prove theorem 3(b), let µ1, µ2 ∈ LV (Ω) be given. Then, for t = nT + � as above, using
(5.1) we obtain

‖µ1P
t − µ2P

t‖V = ‖(µ1P
�)P nT − (µ2P

�)P nT ‖V

� cρn · ‖µ1P
� − µ2P

�‖V

� cρn · (B‖µ1 − µ2‖V ).

Corollary 4(a) is a special case of theorem 3(b), with µ1 = δx and µ2 = π . The right side
of the asserted inequality follows from

‖δx − π‖V �
∫

V (z)(δx + π)(dz) = V (x) + ‖π‖V � (‖π‖V + 1)V (x).

Finally, we prove corollary 4(b). From the definition of C
µ
ξ,ζ (t), we have

|Cµ
ξ,ζ (t)| =

∣∣∣∣
∫

ξ(x)

(
(P tζ )(x) −

∫
(P tζ )(z)µ(dz)

)
µ(dx)

∣∣∣∣
� ‖ξ‖

∫ (∫
|ζ | |δxP t − µP t |

)
µ(dx)

� ‖ξ‖ ‖ζ‖V

∫
‖δxP t − µP t‖V µ(dx)

� ‖ξ‖ ‖ζ‖V cρt

∫
‖δx − µ‖V µ(dx)

by theorem 3(b), and the integral above is �
∫
(V (x) + ‖µ‖V )µ(dx) = 2‖µ‖V . �
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Appendix: Proof of proposition 2.2

We begin with a calculation for a simplified (but relevant) situation.

Lemma 6.6. Consider the case of an isolated site, in which a single trapped particle interacts
with stored energy (this particle cannot exit and no other particle can enter). Assume that
mixing occurs at rate fm(x). Then, all measures with densities√

x

fm(x)

1√
s

e−β(s+x), any β > 0,

are invariant.

Proof. We fix an arbitrary pair (s̄, x̄) ∈ (0, ∞)2. For u ∈ (0, 1), let Fu : (0, ∞)2 → (0, ∞)2

denote the collision map from (2.3) corresponding to u, that is,

Fu(s, x) = ((xu2, s + x(1 − u2)).

633



Nonlinearity 27 (2014) 607 Y Li and L-S Young

A first observation is that (s̄, x̄) has an inverse image if, and only if, u2 � s̄/(s̄ + x̄). To see
this, let (s, x) be such that Fu(s, x) = (s̄, x̄). Then s̄ = xu2 must be � (s̄ + x̄)u2 (since
s + x = s̄ + x̄), implying the lower bound on u. To prove the lemma, it suffices to show

fm(x̄) ·
( √

x̄

fm(x̄)

1√
s̄

e−β(s̄+x̄)

)
=
∫ 1

√
s̄

s̄+x̄

fm(x) · 1

| det DFu(s, x)|
( √

x

fm(x)

1√
s

e−β(s+x)

)
du,

(6.3)

for the quantities on the left and right sides correspond respectively to the probabilities of
leaving the configuration (s̄, x̄) and arriving at this configuration in infinitesimal time. A
simple calculation gives the integrand as

1

u2

√
s̄

(s̄ + x̄)u2 − s̄
e−β(s̄+x̄).

Writing a2 = s̄
s̄+x̄

, the right side of (6.3) is equal to

ae−β(s̄+x̄)

∫ 1

a

1

u2
√

u2 − a2
du = ae−β(s̄+x̄) 1

a2

[√
1 −

(a

u

)2
]1

a

=
√

x̄

s̄
e−β(s̄+x̄). �

We now return to the setting of proposition 2.2. The arguments are parallel to those in the
‘random halves’ model in [4] but the quantities that appear are different because the interaction
is different.

Proof of proposition 2.2. Consider first the case of N = 1. Omitting the superscript in 	1,
we have Ω = 	 = ∪k	k . Fix arbitrary z̄ = (s∗, {x∗

1 , . . . , x∗
k }) ∈ Ω, and let

A := A(z̄) = {({x1, . . . , xk}, s) ∈ 	k | s∗ < s < s∗ + ε; x∗
i < xi < x∗

i + ε, i = 1, . . . , N}
where ε is very small. We will show that µ(A) = (µP h)(A) for arbitrarily small h > 0.

Let E1, E2 and E3 denote the following events:

i E1: Exactly one particle is injected into the site.
ii E2: Exactly one particle leaves the site.

iii E3: Exactly one particle interacts with the stored energy.

Let P(Ei, A) denote the probability that event Ei occurs on the time interval (0, h) leading to
a state in A, and let P̂ (Ei, A) denote the probability that Ei occurs in (0, h) starting from a
state in A. It suffices to show that

3∑
i=1

P(Ei, A) −
3∑

i=1

P̂ (Ei, A) = o(h).

Since the rate of energy exchange is proportional to f , the argument in lemma 6.6 balances
exactly P(E3, A) and P̂ (E3, A). To balance the remaining terms, let σk and ck be as in the
Proposition, and let pk = µ(	k). Then

P(E1, A) = 2hρpk−1ck−1ε
k

k∑
i=1

(
σk−1(ž[i])

∫ x∗
i +ε

x∗
i

2β3/2

√
π

√
xe−βx dx

)
+ o(h, εk+1)

where ž[i] is the point in 	k−1 obtained from z̄ by removing x∗
i from the list of particle energies

in z̄. The value of the integral, which is the probability that the entering particle has energy in
[x∗

i , x∗
i + ε), is combined with σk−1(ž[i]) to give

P(E1, A) = 2hρ · pk−1ck−1σk(z̄)ε
k+1

(
2β3/2

√
π

k∑
i=1

f (x∗
i )

)
+ o(h, εk+1).
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Likewise, we obtain

P(E2, A) = hpk+1ck+1σk(z̄)ε
k+1

√
π

2β3/2
+ o(h, εk+1);

P̂ (E1, A) = 2hpkckσk(z̄)ε
k+1ρ + o(h, εk+1);

P̂ (E2, A) = hpkckσk(z̄)ε
k+1

(
k∑

i=1

f (x∗
i )

)
+ o(h, εk+1).

Writing

X :=
∫ ∞

0

√
x

f (x)
e−βx dx and Is :=

∫ ∞

0

1√
s

e−βs ds,

and recalling that

ck

k!
XkIs = 1 and pk = e−λ λk

k!
where λ = 4√

π
β3/2Xρ,

we obtain that modulo terms of size o(h, εk+1),

P(E1, A) = 2hρ · k

λ
pk · X

k
ck · σk(z̄)ε

k+1 · 2β3/2

√
π

k∑
i=1

f (x∗
i ) = P̂ (E2, A),

P (E2, A) = h · λ

k + 1
pk · k + 1

X
ck · σk(z̄)ε

k+1 ·
√

π

2β3/2
= P̂ (E1, A).

Moving on to the case of arbitrary N , we pick a point

ẑ = (
(ŝ1, {x̂1

1 , . . . , x̂
1
k1

}), (ŝ2, {x̂2
1 , . . . , x̂2

k2
}), . . . , (ŝN , {x̂N

1 , . . . , x̂N
kN

})) ∈ Ω,

let A be an ε-box at ẑ as before, and consider events of the type Ej,j±1, meaning a particle
jumps from site j to site j ± 1 on the time interval (0, h). We claim that P(En+1,n, A),
the probability that En+1,n occurs resulting in a state in A, is balanced by P̂ (En,n+1, A), the
probability that En,n+1 occurs starting from a state in A, both being equal to

h

2
·

N∏
i=1

pki
cki

εki+1 ·
(

kn∑
i=1

f (x̂n
i )

)
+ o(h, ε

∑N
i=1(ki+1)).

The computations are similar to those in the N = 1 case. �
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