Instructions

• **Turn off cell phones and watch alarms!** Put away cell phones, iPods, etc.

• There are six (6) questions.

• Do all work in this exam booklet. You may continue work to the backs of pages and the blank page at the end, but if you do so indicate where.

• Do not use any other paper except this exam booklet and the one-page “cheat sheet” that you prepared. (Do *not* hand in your cheat sheet.)

• Organize your work in an unambiguous order. Show all necessary steps.

• **Answers given without supporting work may receive 0 credit!**

• If you use your calculator to do numerical calculations, be sure to show the setup leading to what you are calculating.

• Be prepared to show your UMass ID card when you **hand in your exam booklet to your own instructor or TA as you exit the room.**

<table>
<thead>
<tr>
<th>QUESTION</th>
<th>PER CENT</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
The printed exam will have 1 question per 1–2 pages with space for work.

1. (2 × 8 = 16%) The parts of this question are not directly related!

 (a) If \(f(1) = 12 \), if the derivative \(f' \) is continuous, and if \(\int_1^4 f'(x) \, dx = 17 \), then what is the value \(f(4) \)?

 (b) Express the derivative \(g'(x) \), for \(0 < x < \pi/2 \), as simply as possible if:
 \[
 g(x) = \int_{1/2}^{\sin x} \sqrt{1 - y^2} \, dy
 \]

2. (2 × 8% = 16%)

 (a) Calculate the area of the bounded region \(R \) enclosed by the curves
 \[
 y = x^3 + 4, \quad y = 4x^2 - 4x + 4.
 \]

 (b) The same region \(R \) as in (a)—enclosed by
 \[
 y = x^3 + 4, \quad y = 4x^2 - 4x + 4
 \]
 —is rotated around the \(x \)-axis. Express the volume of the resulting solid as an integral but do not actually evaluate that integral. And do not attempt to “simplify” the function inside the integral.

3. (3 × 6 = 18%) Use techniques of symbolic integration to evaluate:

 (a) \(\int x \, e^{-x} \, dx \)

 (b) \(\int \frac{x}{\sqrt{x^2 + \frac{9}{16}}} \, dx \)

 (c) \(\int \frac{x^2}{\sqrt{1 + x^2}} \, dx \)

4. A spiral has polar equation \(r = e^{-2\theta} \) for \(0 \leq \theta < \infty \).

 (a) (6%) Write parametric equations for this spiral.

 (b) (10%) Find the length of the entire spiral for \(0 \leq \theta < \infty \).
 \(\text{(Hint: This is easier to do if you work directly with the arc length formula for polar coordinates—and not the more general parametric formula.)} \)

5. (2 × 8 = 16%) Determine whether the series converges absolutely, converges conditionally only, or else diverges—and why.

 (a) \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{3^n + \ln n} \)
(b) \[\sum_{n=1}^{\infty} (-1)^n \frac{3^n}{n^2 \cdot 2^n} \]

6. (a) (6%) Starting with the Maclaurin series expansion of \(e^x \), express the function \(e^{-x^2} \) as the sum of a power series. Use summation (\(\sum \)) notation.

(b) (6%) Use (a) to express \(\int_0^{0.4} \frac{e^{-x^2} - 1}{x} \, dx \) as the sum of a series of numbers. Use \(\sum \) notation or give at least the first five terms of the series.

(c) (6%) What is the least number of terms of that numerical series you would need so as to approximate that integral with error magnitude less than \(10^{-8} \)?

[When answering this question, do not actually make the approximation, and do not evaluate the integral from (b)!!]