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Abstract. We establish formulae for the Iwasawa invariants of Mazur–Tate

elements of cuspidal eigenforms, generalizing known results in weight 2. Our
first theorem deals with forms of “medium” weight, and our second deals with

forms of small slope. We give examples illustrating the strange behavior which

can occur in the high weight, high slope case.

1. Introduction

Fix an odd prime p, and let f denote a cuspidal eigenform of weight k ≥ 2
and level Γ := Γ0(N) with p - N . Throughout this introduction, we assume for
simplicity that f has rational Fourier coefficients. Let ρf : GQ → GL2(Fp) denote
the associated residual Galois representation which we assume to be irreducible. If
f is a p-ordinary form, then the p-adic L-function Lp(f) is an Iwasawa function,
and one can associate to f (analytic) Iwasawa invariants µ(f) = µ(Lp(f)) and
λ(f) = λ(Lp(f)).

If f is p-non-ordinary, then the situation is quite different as Lp(f) is no longer an
Iwasawa function, and one does not have associated µ- and λ-invariants. However,
when f has weight 2, constructions of Kurihara and Perrin-Riou produce pairs of
µ- and λ-invariants denoted by µ±(f) and λ±(f) (see also [15] when ap(f) = 0).
These invariants are defined by working with the Mazur–Tate elements

θn(f) ∈ Zp[Gn]

attached to f ; here Gn = Gal(Qn/Q) where Qn is the nth layer of the cyclotomic
Zp-extension of Q. These elements interpolate the algebraic part of special values
of the L-series of f ; in fact, Lp(f) can be reconstructed as a limit of the θn(f).

To define the Iwasawa invariants in the non-ordinary weight 2 case, one shows
that the sequences {µ(θ2n(f))} and {µ(θ2n+1(f))} stabilize as n → ∞; the limit
of these sequences are the invariants µ+(f) and µ−(f). For the λ-invariants, the
sequence {λ(θn(f))} is unbounded, but grows in a regular manner: the invariants
λ±(f) have the property that (for sufficiently large n)

λ(θn(f)) = qn +

{
λ+(f) if 2 | n
λ−(f) if 2 - n,

where

qn =

{
pn−1 − pn−2 + · · ·+ p− 1 if 2 | n
pn−1 − pn−2 + · · ·+ p2 − p if 2 - n.
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In [8, 5, 9], the behavior of µ- and λ-invariants under congruences was studied
in the ordinary case for arbitrary weights and in the non-ordinary case in weight 2.
For instance, in the ordinary case, it was shown that if the µ-invariant vanishes for
one form, then it vanishes for all congruent forms. In particular, the vanishing of
µ only depends upon the residual representation ρ = ρf ; we write µ(ρ) = 0 if this
vanishing occurs. Completely analogous results hold in the weight 2 non-ordinary
case.

The λ-invariant can change under congruences, but this change is expressible in
terms of explicit local factors. In fact, when µ(ρ) = 0, there exists some global
constant λ(ρ) such that the λ-invariant of any form with residual representation ρ
is given by λ(ρ) plus some non-negative local contributions at places dividing the
level of the form.

An analogous theory exists on the algebraic side for ordinary forms and weight 2
non-ordinary forms. These invariants are built out of Selmer groups, and enjoy the
congruence properties described above. Furthermore, the Mazur–Tate elements
should control the size and structure of the corresponding Selmer groups. For
instance, in the non-ordinary case, the main conjecture predicts that

(1) dimFp Selp(f/Qn)[p] = λ(θn(f))

when µ±(f) = 0 (see [9]). Here Selp(f/Qn) is the p-adic Selmer group attached to
f over the field Qn. Moreover, Kurihara [11, Conjecture 0.3] conjectures that the
Fitting ideals of these Selmer groups are generated by Mazur–Tate elements.

Whether or not the equality in (1) extends to higher weight non-ordinary forms is
unknown. Little is known about the size and structure of Selmer groups in this case.
In this paper, we instead focus on the right hand side of (1), and via congruences
in the spirit of [8, 5], we attempt to describe the Iwasawa invariants of Mazur–Tate
elements for non-ordinary forms which admit a congruence to some weight 2 form.

1.1. Theorem for medium weight forms. We offer the following theorem which
describes the Iwasawa invariants for “medium weight” modular forms (compare to
Corollary 5.3 in the text of the paper). We note that the form g which appears
below is p-ordinary if and only if ρf

∣∣
GQp

is reducible (see section 4.5).

Theorem 1. Let f be an eigenform in Sk(Γ) which is p-non-ordinary, and such
that

(i) ρf is irreducible of Serre weight 2,
(ii) 2 < k < p2 + 1,
(iii) ρf

∣∣
GQp

is not decomposable.

Then there exists an eigenform g ∈ S2(Γ) with a`(f) ≡ a`(g) (mod p) for all primes
` 6= p such that if ρf

∣∣
GQp

is reducible (resp. irreducible), then

(1) µ(θn(f)) = 0 for n� 0 ⇐⇒ µ(g) = 0 (resp. µ±(g) = 0);

(2) if the equivalent conditions of (1) hold, then

λ(θn(f)) = pn − pn−1 +

λ(g) if ρf
∣∣
GQp

is reducible,

qn−1 + λ-εn(g) if ρf
∣∣
GQp

is irreducible,

for n� 0; here εn equals the sign of (−1)n.
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Assuming that ρg is globally irreducible, it is conjectured that µ(g) = 0 when g is
ordinary, and µ±(g) = 0 when g is non-ordinary (see [7, 13]). Thus, the equivalent
conditions of part (1) in Theorem 1 conjecturally hold. Further, by combining
Theorem 1 with the results of [5, 9], one can express λ(θn(f)) in terms λ(ρ) and
local terms at primes dividing N .

One can prove with our methods the existence of such a form g (although with
non-trivial nebentype) for ρf of even Serre weight ≤ p+1. (This bound comes from
our lack of knowledge of ρf |GQp

for larger Serre weights. Certainly a more thorough
understanding of this representation will be needed to understand the Iwasawa
theory of forms of large Serre weight.) However, the required bound on the weight
k is strictly less than p2+1, depending on the Serre weight. Since one currently lacks
results on Iwasawa invariants of non-ordinary weight 2 forms with nebentype, we
did not pursue this case. Numerical investigations suggest that numerous behaviors
arise; this problem is certainly worthy of additional investigation.

We note that if either of the latter two hypotheses of Theorem 1 are removed,
then there exist forms which do not satisfy the conclusions of this theorem. In fact,
there are examples of modular forms with weight as small as p2 + 1 for which the
µ-invariant of θn(f) is positive for arbitrarily large n. In these examples, there is
an obvious non-trivial lower bound on µ which we now explain.

1.2. Lower bound for µ. We can associate to f its (plus) modular symbol

ϕf = ϕ+
f ∈ H

1
c (Γ, Vk−2(Qp))+ ∼= HomΓ

(
Div0(P1(Q)), Vk−2(Qp)

)+
;

here Vk−2(Qp) is the space of homogeneous polynomials of degree k−2 in two vari-
ables X,Y over Qp. We normalize this symbol so that it takes values in Vk−2(Zp),
but not pVk−2(Zp). We then define

µmin(f) = µ+
min(f) = min

D∈∆0
ordp

(
ϕf (D)

∣∣∣
(X,Y )=(0,1)

)
= min
D∈∆0

ordp
(
coefficient of Y k−2 in ϕf (D)

)
.

Let Gn = Gal(Q(µpn)/Q). The nth level Mazur–Tate element in Zp[Gn] is given
by

ϑn(f) =
∑

a∈(Z/pnZ)×

ca · σa

with
ca = coefficient of Y k−2 in ϕf ({∞} − {a/pn})

where σa corresponds to a under the standard isomorphism Gn ∼= (Z/pnZ)×.
The element θn(f) is defined as the projection of ϑn+1(f) under the natural map
Zp[Gn+1]→ Zp[Gn]. It follows immediately that

µmin(θn(f)) ≥ µmin(f).

1.3. Theorem for low slope forms. The following theorem applies to modular
forms of arbitrary weight, but with small slope (compare to Corollary 6.2). (Note
that this is a non-standard usage of the term slope as we are considering the valu-
ation of the eigenvalue of Tp as opposed to Up.)

Theorem 2. Let f be an eigenform in Sk(Γ) such that
(i) ρf is irreducible of Serre weight 2,
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(ii) 0 < ordp(ap) < p− 1,
(iii) ρf

∣∣
GQp

is not decomposable.

Then
µmin(f) ≤ ordp(ap).

Further, there exists an eigenform g ∈ S2(Γ) with a`(f) ≡ a`(g) (mod p) for all
primes ` 6= p such that if ρf

∣∣
GQp

is reducible (resp. irreducible), then

(1) µ(θn(f)) = µmin(f) for n� 0 ⇐⇒ µ(g) = 0 (resp. µ±(g) = 0);

(2) if the equivalent conditions of (1) hold and n� 0, then

λ(θn(f)) = pn − pn−1 +

λ(g) if ρf
∣∣
GQp

is reducible,

qn−1 + λ-εn(g) if ρf
∣∣
GQp

is irreducible.

Note that the conclusions of Theorem 2 are the same as the conclusions of The-
orem 1 except that the µ-invariants tend to µmin(f) rather than to 0.

Condition (ii) in Theorem 2 is necessary as there exist forms f of slope p−1 which
do not satisfy conclusion (2) of the theorem. In fact, the values λ(θn(f)) − qn+1

grow without bound for these forms. We will discuss these exceptional forms after
sketching the proofs of Theorems 1 and 2.

1.4. Sketch of proof of Theorem 1. First we consider the proof of Theorem 1
in the case when k = p+ 1. The map

Vp−1(Zp)→ Fp
P (X,Y ) 7→ P (0, 1) (mod p)

induces a map
α : H1

c (Γ, Vp−1(Zp))→ H1
c (Γ0,Fp)

where Γ0 = Γ0(Np). (Note that we have first composed with restriction to level
Γ0.) The map α is equivariant for the full Hecke-algebra, where at p we let the
Hecke-algebra act on the source by Tp and on the target by Up.

By results of Ash and Stevens [1, Theorem 3.4a], we have that α(ϕf ) 6= 0. The
system of Hecke-eigenvalues of α(ϕf ) then arises as the reduction of the system of
Hecke-eigenvalues of some eigenform h ∈ S2(Γ0) (see [1, Proposition 2.5a]). This
form h is necessarily non-ordinary, and since h has weight 2, it is necessarily p-old.
Let g be the associated form of level Γ, and let ϕg denote the reduction mod p of
ϕg, the (plus) modular symbol attached to g.

A direct computation shows that ϕg
∣∣ ( p 0

0 1

)
is a Hecke-eigensymbol for the full

Hecke-algebra with the same system of Hecke-eigenvalues as α(ϕf ). (The analogous
statement for ϕg is false as this is an eigensymbol for Tp and not for Up.) By mod
p multiplicity one, we then have

α(ϕf ) = ϕg
∣∣ ( p 0

0 1

)
.

Note that we can insist upon an equality here as ϕg is only well-defined up to
scaling by a unit. This equality of modular symbols implies the following relation
of Mazur–Tate elements:

θn(f) ≡ cornn−1(θn−1(g)) (mod p)
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where cornn−1 : Fp[Gn−1]→ Fp[Gn] is the corestriction map. Since

µ(cornn−1(θ)) = µ(θ) and λ(cornn−1(θ)) = pn − pn−1 + λ(θ),

Theorem 1 follows when k = p+ 1.
To illustrate how the proof proceeds for the remaining weights in the range

p + 1 < k < p2 + 1, we consider the case when k = 2p. If we can show that
α(ϕf ) 6= 0, then the above proof goes through verbatim. So assume that ϕf is in
the kernel of α. Then results of Ash and Stevens [1, Theorem 3.4c] imply that there
is an eigenform h ∈ Sp−1(Γ) such that ρh⊗ω ∼= ρf ; here ω is the mod p cyclotomic
character. Since the weight of h is less than p + 1, Fontaine–Lafaille theory gives
an explicit description of ρh

∣∣
GQp

. However, as long as ρf
∣∣
GQp

is indecomposable,
this description contradicts the fact that ρf ∼= ρh ⊗ ω has Serre weight 2.

We illustrate this argument once more when k = 3p − 1 to show the general
picture. In this case, if α(ϕf ) = 0, then there exists an eigenform h ∈ S2p−2(Γ)
such that ρh ⊗ ω = ρf . Since the weight of h is out of the Fontaine–Lafaille range,
we cannot immediately determine the structure of ρh

∣∣
GQp

. Instead, we consider

the modular symbol ϕh ∈ H1
c (Γ, V2p−4(Zp)). If α(ϕh) 6= 0, then as before, h is

congruent to a weight 2 form, and we can describe the structure of ρh
∣∣
GQp

. On the

other hand, if α(ϕh) = 0, then h is congruent to some eigenform h′ ∈ Sp−3(Γ) such
that ρh′ ⊗ ω ∼= ρh. As the weight of h′ is small, we can determine the structure of
ρh′
∣∣
GQp

. In either case, this description implies that f cannot have Serre weight 2.
For the remaining weights, one proceeds similarly, inductively decreasing the

weight of the form being considered. These arguments work up until weight p2 + 1
when in fact there can be an eigensymbol with Serre weight 2 in the kernel of α.

1.5. Sketch of proof of Theorem 2. For the proof of Theorem 2, we consider
the following Γ0-stable filtration on Vg(Zp):

Filr(Vg) =


g∑
j=0

bjX
jY g−j ∈ Vg(Zp) : pr−j | bj for 0 ≤ j ≤ r − 1

 .

One computes that if ϕf takes values in j-th step of this filtration, then ordp(ap) is
at least j. In particular, if r = ordp(ap) + 1, then ϕf cannot take of all its values in
Filr(Vk−2). The Jordan-Holder factors of Vk−2(Zp)/Filr(Vk−2) are all isomorphic
to Fp with γ =

(
a b
c d

)
∈ Γ0 acting by multiplication by ai det(γ)j for some i and j.

The image of ϕf in H1
c (Γ0, Vk−2(Zp)/Filr(Vk−2)) is non-zero, and thus must

contribute to the cohomology of one of these Jordan-Holder factors. In particular,
there exists a congruent eigenform h of weight 2 on Γ0(N) ∩ Γ1(p). Again by
computing the possibilities for ρh

∣∣
GQp

, one can determine the exact Jordan-Holder
factor to which ϕf contributes as long as r satisfies the bound in the hypothesis
(ii) of Theorem 2.

As a result of this computation, one sees that the function

∆0 → Fp

D 7→
ϕf (D)

∣∣∣
(X,Y )=(0,1)

pµmin(f)
(mod p)
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is a modular symbol of level Γ0. One then proceeds as in the proof of Theorem 1 to
construct a congruent weight 2 form, and then deduce the appropriate congruence
of Mazur–Tate elements.

1.6. An odd example. We close this introduction with one strange example. For
p = 3, there is an eigenform f in S18(Γ0(17),Q3) which is an eigenform of slope 5
whose residual representation is isomorphic to the 3-torsion in X0(17). (Note that
X0(17)[3] is locally irreducible at 3 as X0(17) is supersingular at 3.) The form f
does not satisfy the hypotheses of Theorems 1 or 2 as its weight and slope are too
big. For this form, we can show that µmin(f) = µ(θn(f)) = 4 for all n ≥ 0, and

λ(θn(f)) = pn − pn−2 + qn−2

for n ≥ 2. This behavior of the λ-invariants is different from the patterns in
Theorems 1 and 2 where the λ-invariants equal qn+1 = pn − pn−1 + qn−1 up to
a bounded constant. As explained in section 7, this different behavior can be
explained in terms of the failure of multiplicity one at level Npr with r ≥ 2.

1.7. Outline. The outline of the paper is as follows: we begin by reviewing the
definition of Mazur–Tate elements and their relation to p-adic L-functions. As our
focus will be on the Mazur–Tate elements, we then discuss finite-level Iwasawa
invariants, recalling known results in the ordinary case (section 3) and the weight
2 non-ordinary case (section 4). In section 5 (resp. section 6) we prove Theorem 1
(resp. Theorem 2) on Iwasawa invariants of Mazur–Tate elements for non-ordinary
modular forms of medium weight (resp. low slope). In section 7, we explain in
detail an example of this odd behavior of λ-invariants for a form of high weight and
slope.

Acknowledgements: We owe a debt to Matthew Emerton for numerous enlight-
ening conversations on this topic. We heartily thank Kevin Buzzard for several
suggestions which led to the proof of Theorem 2.

Notation: Throughout the paper we fix an odd prime p. Let Zp denote the ring
of integers of Qp, and for x ∈ Zp, let x denote the image of x in Fp. For a finite
extension O of Zp, we write $ for a uniformizer of O, and F for its residue field.
We fix an embedding Q ↪→ Qp. For an integer n, we write εn for the sign of (−1)n.

2. Mazur–Tate elements of modular forms

Let f be a cuspidal eigenform of weight k on a congruence subgroup Γ = Γ0(N).
Our goal in this section is to define the p-adic Mazur–Tate elements ϑn(f) attached
to f . These are elements of the group ring Zp[Gn] for all n ≥ 1; here

Gn = Gal(Q(µpn)/Q) ∼= (Z/pnZ)×

σa ↔ a

where σa(ζ) = ζa for ζ ∈ µpn . The utility of these elements is that they allow one to
recover normalized special values of twists of the L-function of f ; see Proposition 2.3
for a precise statement.
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2.1. Mazur–Tate elements. Let R be a commutative ring, and set Vg(R) =
Symg(R2) which we view as the space of homogeneous polynomials of degree g
with coefficients in R in two variables X and Y . We endow Vg(R) with a right
action of GL2(R) by

(P |γ)(X,Y ) = P ((X,Y )γ∗) = P (dX − cY,−bX + aY )

for P ∈ Vg(R) and γ ∈ GL2(R).
Let Γ ⊆ SL2(Z) denote a congruence subgroup. Recall the canonical isomor-

phism of Hecke-modules (see [1, Proposition 4.2])

H1
c (Γ, Vg(R)) ∼= HomΓ

(
Div0(P1(Q)), Vg(R)

)
where the target of the map equals the collection of additive maps{

ϕ : Div0(P1(Q))→ Vg(R) : ϕ(γD)|γ = ϕ(D) for all γ ∈ Γ
}
.

As this isomorphism is canonical, we will implicitly identify these two spaces from
now on; we refer to them as spaces of modular symbols.

For a modular symbol ϕ ∈ H1
c (Γ, Vg(R)), we define the associated Mazur–Tate

element of level n ≥ 1 by

(2) ϑn(ϕ) =
∑

a∈(Z/pnZ)×

ϕ ({∞} − {a/pn})
∣∣∣
(X,Y )=(0,1)

· σa ∈ R[Gn].

When R is a Zp-algebra, we may decompose the Mazur–Tate elements ϑn(ϕ) as
follows. Write

Gn+1
∼= Gn × (Z/pZ)×

with Gn cyclic of order pn. Let ω : (Z/pZ)× → Z×p denote the usual embedding of
the (p− 1)st roots of unity in Zp. For each i, 0 ≤ i ≤ p− 2, we obtain an induced
map ωi : R[Gn+1]→ R[Gn], and we define θn,i(ϕ) = ωi(ϑn+1(ϕ)). We simply write
θn(ϕ) for θn,0(ϕ).

2.2. Modular forms. One can associate to each eigenform f in Sk(Γ,C) a modular
symbol ξf in H1

c (Γ, Vk−2(C)) such that

ξf ({r} − {s}) = 2πi
∫ r

s

f(z)(zX + Y )k−2dz

for all r, s ∈ P1(Q); here we write {r} for the divisor associated to r ∈ Q. The
symbol ξf is a Hecke-eigensymbol with the same Hecke-eigenvalues as f .

The matrix ι :=
(−1 0

0 1

)
acts as an involution on these spaces of modular symbols,

and thus ξf can be uniquely written as ξ+
f + ξ−f with ξ±f in the ±1-eigenspace of

ι. By a theorem of Shimura [19], there exists complex numbers Ω±f such that ξ±f
takes values in Vk−2(Kf )Ω±f where Kf is the field of Fourier coefficients of f . We
can thus view ϕ±f := ξ±f /Ω

±
f as taking values in Vk−2(Qp) via our fixed embedding

Q ↪→ Qp. Set ϕf = ϕ+
f + ϕ−f , which of course depends upon the choices of Ω+

f and
Ω−f .

Throughout this paper it will be crucial that we have normalized these choices
of periods appropriately. For any ϕ ∈ H1

c (Γ, Vk−2(Qp)), define

||ϕ|| := max
D∈∆0

||ϕ(D)||
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where for P ∈ Vk−2(Qp), ||P || is given by the maximum of the absolute values of
the coefficients of P . Let Of denote the ring of integers of the completion of the
image of Kf in Qp.

Definition 2.1. We say that Ω+
f and Ω−f are cohomological periods for f (with

respect to our fixed embedding Q ↪→ Qp), if ||ϕ+
f || = ||ϕ

−
f || = 1; that is, if each of

ϕ+
f and ϕ−f takes values in Vk−2(Of ), and each takes on at least one value with at

least one coefficient in O×f . Such periods clearly always exist for each f and are
well-defined up to scaling by elements α ∈ Kf such that the image of α in Qp is a
p-adic unit.

We now write ϑn(f) for the Mazur–Tate element ϑn(ϕf ) computed with respect
to cohomological periods. As before, we obtain Mazur–Tate elements

θn,i(f) ∈ Of [Gn]

for each n ≥ 1 and i, 0 ≤ i ≤ p− 2. We simply write θn(f) for θn,0(f).

Remark 2.2. We note that our choice of periods forces these Mazur–Tate elements
to have integral coefficients. This should be contrasted with the case of elliptic
curves where the choice of the Néron period does not a priori guarantee integrality.

The following proposition describes the interpolation property of Mazur–Tate
elements for primitive characters.

Proposition 2.3. If χ is a primitive Dirichlet character of conductor pn > 1, then

χ(ϑn(f)) = τ(χ) · L(f, χ, 1)
Ωεf

where εf equals the sign of χ(−1).

Proof. This proposition follows from [12, (8.6)]. �

Remark 2.4. We note that the classical Stickelberger element

ϑn =
1
pn

∑
a∈(Z/pnZ)×

a · σ−1
a ∈ Q[Gn]

has a similar interpolation property: for χ a primitive character on Gn,

χ(ϑn) = −L(χ, 0).

2.3. Three-term relation. Let πnn−1 : O[Gn] → O[Gn−1] be the natural projec-
tion, and let cornn−1 : O[Gn−1]→ O[Gn] denote the corestriction map given by

cornn−1(σ) =
∑
τ 7→σ
τ∈Gn

τ

for σ ∈ Gn−1.
We then have the following three-term relation among various Mazur–Tate ele-

ments.

Proposition 2.5. If p - N , we have

(3) πn+1
n (θn+1,i(f)) = apθn,i(f)− pk−2 cornn−1(θn−1,i(f)).

for n ≥ 1 and any i.

Proof. This proposition follows from [12, (4.2)] and a straightforward computation.
�
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2.4. Some lemmas. The following computations will be useful later in the paper.

Lemma 2.6. For ϕ ∈ H1
c (Γ, Vg(O)) and n ≥ 1, we have

θn,i(ϕ
∣∣ ( p 0

0 1

)
) = pg · cornn−1 (θn−1,i(ϕ)) .

Proof. We have

ϑn(ϕ
∣∣ ( p 0

0 1

)
) =

∑
a∈Gn

(
ϕ
∣∣ ( p 0

0 1

))
({∞} − {a/pn})

∣∣∣
(X,Y )=(0,1)

· σa

=
∑
a∈Gn

ϕ
(
{∞} − {a/pn−1}

) ∣∣∣
(X,Y )=(0,p)

· σa

= pg ·
∑
a∈Gn

ϕ
(
{∞} − {a/pn−1}

) ∣∣∣
(X,Y )=(0,1)

· σa

= pg · cornn−1(ϑn−1(ϕ)).

Projecting to O[Gn] then gives the lemma. �

Lemma 2.7. If f is a newform on Γ0(N) of weight k, then

ϕf
∣∣ ( 0 −1

N 0

)
= ±N k

2−1ϕf .

Proof. First note that as f is a newform, wN (f) = ±f , and thus

N−k/2z−kf(−1/Nz) = ±f(z).

Computing, we have(
ξf
∣∣ ( 0 −1

N 0

))
({r} − {s})
= ξf ({−1/Nr} − {−1/Ns})

∣∣ ( 0 −1
N 0

)
= 2πi

∫ −1/Nr

−1/Ns

f(z)(−NzY +X)k−2

=
2πi
N

∫ r

s

f(−1/Nz)(Y/z +X)k−2z−2dz (z 7→ −1/Nz)

= ±Nk/2−12πi
∫ r

s

f(z)(Y + zX)k−2dz

= ±Nk/2−1ξf ({r} − {s}),
and the lemma follows. �

3. The p-ordinary case

In this section, we first introduce Iwasawa invariants in finite-level group alge-
bras, and then analyze the µ- and λ-invariants of Mazur–Tate elements of p-ordinary
forms.

3.1. Iwasawa invariants in finite-level group algebras. Fix a finite integrally
closed extension O of Zp and let Λ := lim←−O[Gn] denote the Iwasawa algebra. Given
L ∈ Λ, we may define Iwasawa invariants of L as follows. Fix an isomorphism
Λ ∼= O[[T ]] and write L =

∑∞
j=0 ajT

j ; we then define

µ(L) = min
j

ordp(aj)

λ(L) = min{j : ordp(aj) = µ(L)}.
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(This definition is independent of the choice of isomorphism Λ ∼= O[[T ]].) Here we
normalize ordp so that ordp(p) = 1. Note that under this normalization, if O is a
ramified extension of Zp, then µ(L) need not be in Z.

In fact, Iwasawa invariants can also be defined in the finite-level group algebras
O[Gn]. Indeed, for θ ∈ O[Gn], if write θ =

∑
σ∈Gn cσσ, we then define

µ(θ) = min
σ∈Gn

ordp(cσ).

To define λ-invariants, let $ be a uniformizer of O, and set θ′ = $−aθ with a
chosen so that µ(θ′) = 0. Let F be the residue field of O, and let θ′ denote the
(non-zero) image of θ′ under the natural map O[Gn]→ F[Gn]. All ideals of F[Gn]
are of the form Ijn with In the augmentation ideal; we then define

λ(θ) = ordIn θ′ = max{j : θ′ ∈ Ijn}.

The following lemmas summarize some basic properties of these µ and λ-invariants.
For more details, see [14, Section 4].

Lemma 3.1. Fix L ∈ Λ and let Ln denote the image of L in O[Gn]. Then for
n� 0, we have µ(L) = µ(Ln) and λ(L) = λ(Ln).

Lemma 3.2. For θ ∈ O[Gn−1], we have
(1) µ(cornn−1(θ)) = µ(θ),
(2) λ(cornn−1(θ)) = pn − pn−1 + λ(θ).

Lemma 3.3. Fix θ ∈ O[Gn].
(1) If µ(πnn−1(θ)) = 0, then µ(θ) = 0.
(2) If µ(θ) = 0, then λ(πnn−1(θ)) = λ(θ).

3.2. p-adic L-functions for p-ordinary forms. The Mazur–Tate elements θn,i(f)
can be used to construct the p-adic L-function of f in the p-ordinary case. As this
construction motivates much of what we do here, we briefly digress to describe it.

We first fix some notation for the remainder of this paper. Fix an integer N
relatively prime to p and set Γ = Γ0(N). Also set Γ0 = Γ0(Np) and Γ1 = Γ0(N) ∩
Γ1(p).

Let f be a weight k eigenform on Γ which is ordinary at p. Let α denote the
unique unit root of x2 − apx+ pk−1, and let fα denote the p-ordinary stabilization
of f to Γ0. The three-term relation of Proposition 2.5 only has two terms when p
divides the level, and so the Mazur–Tate elements θn,i(fα) attached to fα satisfy

πnn−1(θn,i(fα)) = α · θn−1,i(fα).

If we set

ψn,i(fα) =
1
αn

θn,i(fα),

then {ψn,i(fα)} is a norm-coherent sequence, and thus an element of Λ. This
element is exactly Lp(f, ωi), the p-adic L-function of f , twisted by ωi, and computed
with respect to the periods Ω±fα .

3.3. Iwasawa invariants in the p-ordinary case. Let f continue to be a p-
ordinary eigenform on Γ. Set µ(f, ωi) = µ(Lp(f, ωi)) and λ(f, ωi) = λ(Lp(f, ωi)).
From the results of the last section and from Lemma 3.1, we have that

(4) µ(θn,i(fα)) = µ(f, ωi) and λ(θn,i(fα)) = λ(f, ωi)
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for n � 0. Thus, the Iwasawa invariants of these “p-stabilized” Mazur–Tate ele-
ments are extremely well-behaved in the ordinary case.

One would hope to deduce similar information about the Iwasawa invariants of
the θn,i(f). Unfortunately, they are not always as well-behaved as their p-stabilized
counterparts as the following example illustrates.

Example 3.4. Let f =
∑
n anq

n denote the newform of weight 2 on Γ0(11) cor-
responding to the elliptic curve E = X0(11). We take p = 5. If ϕf denotes the
reduction of the modular symbol attached to f modulo 5, we have

(5) ϕ+
f = ϕ+

f

∣∣ ( 5 0
0 1 ) .

One verifies this relation by noting that ϕ+
f is (up to a non-zero scalar) the reduction

of the Eisenstein boundary symbol defined by

ϕeis({r/s}) =

{
0 if gcd(s, 11) = 1
1 otherwise

where gcd(r, s) = 1. Since ϕeis satisfies (5) so does ϕ+
f .

From repeated applications of Lemma 2.6 we now obtain

θn(f) ≡ cornn−1(θn−1(f)) ≡ · · · ≡ corn0 (θ0(f)) (mod 5).

Moreover, a direct computation shows that θ0(f) is a unit and thus

µ(θn(f)) = 0 and λ(θn(f)) = pn − 1

for all n ≥ 0. Hence, the λ-invariants in this case are unbounded. Here the
deduction about λ-invariants comes from Lemma 3.2. We note that this is the
maximal possible λ-invariant for any non-zero element of O[Gn].

There are several additional oddities in this example. First, the Iwasawa invari-
ants of the θn,i(fα) must behave nicely, and in fact, assuming the main conjecture,
we have

µ(θn(fα)) = 1 and λ(θn(fα)) = 0

for all n ≥ 0. In the process of p-stabilizing f , one considers the difference ϕf −
1
αϕf

∣∣ ( 5 0
0 1 ). However, since a5 = 1, we have that α ≡ 1 (mod 5), and thus by (5)

this difference is divisible by 5. In particular, this means that the cohomological
periods Ω±f and Ω±fα differ by a multiple of 5, and we can choose them so that

Ω±fα = 5Ω±f .

From this, one might expect the µ-invariants of the θn(fα) to be lower than the
µ-invariants of the θn(f). However, numerically (for small n) one sees that

θn(f) ≡ 1
α

cornn−1(θn−1(f)) (mod 52)

so that

θn(fα) =
1
5

(
θn(f)− 1

α
cornn−1(θn−1(f))

)
is divisible by 5.

Lastly, we mention that the Néron period of the elliptic curve E in this case
agrees with Ω+

fα
up to a 5-unit.
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The oddities of the above example arise as the residual representation

ρf : GQ → GL2(Fp)
is globally reducible and µ(Lp(f)) is positive. However, when we are not in this
case, we verify now that the Iwasawa invariants of the θn,i(f) are well-behaved.

We first check that cohomological periods are unchanged under p-stabilization
so long as ρf is irreducible. Recall that for a multiple M of N and a divisor r of
M/N there is a natural degeneracy map

BM/N,r : H1
c (Γ0(N),Fp)→ H1

c (Γ0(M),Fp)
ϕ 7→ ϕ

∣∣ ( r 0
0 1 ) .

In particular, we define a map

Bp : H1
c (Γ,Fp)2 → H1

c (Γ0,Fp)
by

Bp(ψ1, ψ2) 7→ Bp,1(ψ1) +Bp,p(ψ2).

Theorem 3.5 (Ihara’s lemma). The kernel of

Bp : H1
c (Γ,Fp)2 → H1

c (Γ0,Fp)
is Eisenstein.

Proof. See [17]. �

Lemma 3.6. Let f be a p-ordinary newform of weight k and level Γ. Let α denote
the unit root of x2 − apx+ pk−1, and let fα denote the p-stabilization of f to level
Γ0. If ρf is globally irreducible and Ω±f are a pair of cohomological periods for f ,
then Ω±f are also a pair of cohomological periods for fα.

Proof. Since fα(z) = f(z)−βf(pz), where β is the non-unit root of x2−apx+pk−1,
a direct computation shows that

ξ±fα = ξ±f −
1
α
ξ±f
∣∣ ( p 0

0 1

)
and thus

ξ+
fα

Ω+
f

+
ξ−fα
Ω−f

= ϕf −
1
α
ϕf
∣∣ ( p 0

0 1

)
.

To establish the lemma we need to show that the reduction of the above symbol is
non-zero.

For k > 2, suppose instead that ϕf = 1
α ·ϕf

∣∣ ( p 0
0 1

)
. The only non-zero coefficients

in the values of ϕf
∣∣ ( p 0

0 1

)
occur in the Xk−2 coefficients, and thus the same is true

for ϕf . But, by Lemma 2.7, the vanishing of the coefficients of Y k−2 implies the
vanishing of the coefficients of Xk−2. Thus, ϕf = 0 which is a contradiction.

For k = 2, consider the obviously injective map

j : H1
c (Γ,Fp)→ H1

c (Γ,Fp)2

ϕ 7→
(
ϕ,− 1

α
· ϕ
)
.

As ρf is irreducible, by Ihara’s lemma, (Bp ◦ j)(ϕf ) 6= 0, and thus,

ϕf −
1
α
· ϕf

∣∣ ( p 0
0 1

)
6= 0
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as desired. �

We are now in a position to understand the Iwasawa invariants of θn,i(f) for f
p-ordinary with ρf irreducible.

Proposition 3.7. Assume that µ(Lp(f, ωi)) = 0 and that ρf is irreducible. Then
for n� 0, we have

µ(θn,i(f)) = 0 and λ(θn,i(f)) = λ(Lp(f, ωi)).

Proof. By Lemma 3.6,

ϕfα = ϕf −
1
α
ϕf
∣∣ ( p 0

0 1

)
,

and hence,

(6) θn,i(fα) = θn,i(f)− 1
α

cornn−1(θn−1,i(f)).

Since we are assuming that µ(θn,i(fα)) = 0 for n� 0, by (6) there exist sufficiently
large n for which µ(θn,i(f)) = 0.

If k > 2, the argument proceeds as follows: the three-term relation of Proposi-
tion 2.5 implies that if µ(θn,i(f)) = 0 for one n, then µ(θm,i(f)) = 0 for all m > n
as desired. For the λ-invariants, by Lemma 3.2,

λ(cornn−1(θn−1,i(f))) ≥ pn − pn−1,

and thus for n large enough,

λ(θn,i(fα)) < λ(cornn−1(θn−1,i(f))).

By (6) and (4), we then have

λ(θn,i(f)) = λ(θn,i(fα)) = λ(Lp(f, ωi))

as desired.
For the case k = 2, one must argue more carefully because the three-term relation

does not guarantee the vanishing of µ(θn,i(f)) for all n if one knows the vanishing
for a single n. From (6) we do know that there exists sufficiently large n such that
µ(θn,i(f)) = 0. For such a sufficiently large n, (6) implies that

λ(θn,i(f)) = λ(θn,i(fα))

as before. Hence,
λ(θn,i(f)) 6= λ(cornn−1(θn−1(f)))

which implies that the reduction of these two elements are not equal. In partic-
ular, by (3) of Proposition 2.5, µ(πn+1

n (θn+1(f))) = 0, and thus by Lemma 3.3,
µ(θn+1(f)) = 0 as desired. Thus inductively, µ(θn,i(f)) vanishes for all sufficiently
large n. Finally, the statement about λ-invariants follows just as in the k > 2
case. �

4. The non-ordinary case

In the non-ordinary case, the polynomial x2−apx+pk−1 has no unit root. Thus,
the construction of p-adic L-functions described in section 3.2 does not yield integral
power series. Indeed, if α is either root of this quadratic, then dividing by powers
of α introduces p-adically unbounded denominators. In the non-ordinary case, we
therefore focus our attention on the elements θn,i(f), rather than on passing to a
limit to construct an unbounded p-adic L-function.
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4.1. Known results in weight 2. For modular forms of weight 2, the Iwasawa
invariants of the associated Mazur–Tate elements were studied in detail by Kurihara
[11] and Perrin-Riou [13]. We summarize their results in the following theorem.

Theorem 4.1. Let i be an integer with 0 ≤ i ≤ p− 2.

(1) There exist constants µ±(f, ωi) ∈ Z≥0 such that for n� 0,

µ(θ2n,i(f)) = µ+(f, ωi) and µ(θ2n+1,i(f)) = µ−(f, ωi).

(2) If µ+(f, ωi) = µ−(f, ωi), then there exist constants λ±(f, ωi) ∈ Z≥0 such
that for n� 0,

λ(θn,i(f)) = qn +

{
λ+(f, ωi) i even
λ−(f, ωi) i odd

where

qn =

{
pn−1 − pn−2 + · · ·+ p− 1 if n even
pn−1 − pn−2 + · · ·+ p2 − p if n odd.

Remark 4.2.

(1) Perrin-Riou conjectured [13, 6.1.1] that µ+(f, ωi) = µ−(f, ωi) = 0 (see also
[15, Conjecture 6.3]). This is an analogue of Greenberg’s conjecture on the
vanishing of µ in the ordinary case. Indeed, Greenberg conjectures that µ
vanishes whenever ρf is irreducible; if f has weight 2 and is p-non-ordinary,
then ρf is always irreducible.

(2) In [9], the assumption that µ+(f, ωi) = µ−(f, ωi) is removed, but the re-
sulting formula for λ is slightly different in some cases when µ+(f, ωi) 6=
µ−(f, ωi). However, since this case is conjectured to never occur, and in
this paper we will only use these formulas when µ±(f, ωi) = 0, we will not
go further into this complication.

(3) Unlike the ordinary case, the λ-invariants of these non-ordinary Mazur–
Tate elements always grow without bound because of the presence of the
qn term which is O(pn−1).

Proof of Theorem 4.1. In [13], it is proven that any sequence of elements θn ∈
O[Gn] which satisfy the three-term relation of Proposition 2.5 satisfy the conclu-
sions of this theorem. To give the spirit of these arguments, we give a proof here
in the case when µ(θn,i(f)) = 0 for n� 0.

Since ap is not a unit, the three-term relation implies that

(7) πn+1
n (θn+1,i(f)) ≡ cornn−1(θn−1,i(f)) (mod $).

Thus for n large enough we have

λ(θn+1,i(f)) = λ(πn+1
n (θn+1,i(f))) (by Lemma 3.3)

= λ(cornn−1(θn−1,i(f))) (by (7))

= pn − pn−1 + λ(θn−1,i(f)) (by Lemma 3.2).

Proceeding inductively then yields the theorem. �
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4.2. Differences in weights greater than 2. To compare with the case of weight
2, we note that when f is of any weight k > 2, then the three-term relation takes
the form

πn+1
n (θn+1,i(f)) = apθn,i(f)− pk−2 cornn−1(θn−1,i(f)).

The factor of pk−2 in the third term prevents the arguments of the previous section
from going through. Indeed, the right hand side of the above equation vanishes
mod $, and one cannot make general deductions about the Iwasawa invariants of
such sequences unlike the case when k = 2. Instead, the strategy of this paper is to
make a systematic study of congruences between Mazur–Tate elements in weight k
and in weight 2, and then to make deductions about Iwasawa invariants by invoking
Theorem 4.1.

4.3. Lower bound for µ. We note that there is an obvious lower bound for µ-
invariants of Mazur–Tate elements in weights greater than 2. For ϕ ∈ H1

c (Γ, Vk−2(O)),
set

µmin(ϕ) = min
D∈∆0

ordp

(
ϕ(D)

∣∣∣
(X,Y )=(0,1)

)
;

thus µmin(ϕ) is the minimum valuation of the coefficients of Y k−2 in the values of
ϕ. We write µ±min(f) for µmin(ϕ±f ).

Proposition 4.3. We have that
(1) µ±min(f) <∞,
(2) µ(θn,i(f)) ≥ µεimin(f).

Proof. For the first part, if µ±min(f) = ∞, then θn(f) vanishes for every n. By
Proposition 2.3, we then have that L(f, χ, 1) = 0 for every character χ of conductor
a power of p. But this contradicts a non-vanishing theorem of Rohrlich [18].

The second part is immediate as θn,i(f) is constructed out of the coefficients of
Y k−2 of certain values of ϕεif . �

Recall that ϕf is normalized so that all of its values have coefficients which are
integral and at least one which is a unit. Thus, when k = 2, by definition µ±min(f) is
always 0. However, when k > 2, it is possible that the coefficient of Y k−2 in every
value of ϕf is a non-unit, and that the required unit coefficient occurs in another
monomial; in this case µ±min(f) would be positive.

4.4. A map from weight k to weight 2. In this section we discuss a map from
weight k modular symbols to weight 2 modular symbols over Fp introduced by Ash
and Stevens in [1]. Set

S0(p) :=
{(

a b
c d

)
∈M2(Z) : ad− bc 6= 0, p | c, p - a

}
,

g = k − 2, and V g = Vg(F).

Lemma 4.4. For g > 0 and g ≡ 0 (mod p− 1), the map

V g −→ F
P (X,Y ) 7→ P (0, 1)

is S0(p)-equivariant, and thus induces a Hecke-equivariant map

α : H1
c (Γ, V g) −→ H1

c (Γ0,F).
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Remark 4.5. By Hecke-equivariant we mean the standard concept away from p,
and at p, we mean that α intertwines the action of Tp on the source with Up on the
target.

Proof. This lemma follows from a straightforward computation. We note that the
Hecke-equivariance at p follows from the fact that for P ∈ V g and g > 0,(

P
∣∣ ( p 0

0 1

)) ∣∣∣
(X,Y )=(0,1)

= 0.

�

The following simple lemma is the key to our approach of comparing Mazur–Tate
elements of weight k and weight 2.

Lemma 4.6. For ϕ ∈ H1
c (Γ, Vk−2(O)),

ϑn(α(ϕ)) = ϑn(ϕ) = ϑn(ϕ) in F[Gn],

where ϕ is the reduction of ϕ modulo $.

Proof. The first equality is true as these Mazur–Tate elements depend only on the
coefficients of Y k−2 in the values of ϕ, and the map α preserves these coefficients.
The second equality is clear. �

The following lemma gives the analogue for modular symbols of the θ-operator
for mod p modular forms. In what follows, if M is a S0(p)-module, then M(1) is
the determinant twist of M ; for a Hecke-module M , the Hecke-operator Tn acts on
M(1) by nTn.

Lemma 4.7. The map

V g−p−1(1) −→ V g

P (X,Y ) 7→ (XpY −XY p) · P (X,Y )

is S0(p)-equivariant, and thus induces a Hecke-equivariant map

θ : H1
c (Γ, V g−p−1)(1) −→ H1

c (Γ0, V g).

Proof. This is a straightforward computation. �

Lastly, we note that the kernel of α is given by precisely the symbols with positive
µmin.

Lemma 4.8. We have µmin(ϕ) > 0 ⇐⇒ α(ϕ) = 0.

Proof. We have α(ϕ) = 0 if and only if all of the coefficients of Y k−2 occurring in
values of ϕ are divisible by $, which is equivalent to µmin(ϕ) > 0. �

4.5. Review of mod p representations of GQp . For use in the following sections,
we recall the possibilities for the local residual representation of a modular form of
small weight.

Let ρp : GQp → GL2(Fp) be an arbitrary continuous residual representation of
the absolute Galois group of Qp. If ρp is irreducible, then ρp

∣∣
Ip

is tamely ramified;
here Ip denotes the inertia subgroup of GQp . Moreover, we have

ρp
∣∣
Ip
∼= ωt2 ⊕ ω

pt
2
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where ω2 is a fundamental character of level 2 and 1 ≤ t ≤ p2 − 1 with p + 1 - t.
The integer t uniquely determines ρp

∣∣
Ip

and we write I(t) for this representation.
We note that I(t) ∼= I(pt).

If ρp is reducible, then

ρp
∣∣
Ip
∼=
(
ωa ∗
0 ωb

)
where ω is the mod p cyclotomic character.

Theorem 4.9. Let f be an eigenform on Γ of weight k with ρf irreducible.

(1) If f is p-ordinary, then ρf
∣∣
GQp

is reducible and ρf
∣∣
Ip
∼=
(
ωk−1 ∗

0 1

)
.

(2) If f is p-non-ordinary and 2 ≤ k ≤ p + 1, then ρf
∣∣
GQp

is irreducible and

ρf
∣∣
Ip
∼= I(k − 1).

Proof. See [4, Remark 1.3] for a thorough discussion of references for these results.
�

The following lemma will be useful later in the paper.

Lemma 4.10. If f is an eigenform in S2(Γ1, ω
j ,Qp) with ρf irreducible and 0 ≤

j ≤ p− 2, then

ρf
∣∣
Ip
∼=


I(j + 1) if ρf

∣∣
GQp

is irreducible,(
ωj+1 ∗

0 1

)
or

(
ω ∗
0 ωj

)
if ρf

∣∣
GQp

is reducible.

Proof. Consider the modular symbol ϕf ∈ H1
c (Γ1,F)(ωj). By [1, Theorem 3.4(a)]1,

the system of eigenvalues of ϕf occurs either in H1
c (Γ, V j) or H1

c (Γ, V p−1−j)(j).
By [1, Proposition 2.5], there then exists either an eigenform g ∈ Sj+2(Γ,Qp) with
ρf
∼= ρg or an eigenform g ∈ Sp+1−j(Γ,Qp) with ρf

∼= ρg ⊗ ωj .
In the first case, by Theorem 4.9, ρf

∣∣
Ip

is equal to either I(j + 1) or
(
ωj+1 ∗

0 1

)
,

and, in the second case, ρg
∣∣
Ip

is equal to either I(p− j) or
(
ωp−j ∗

0 1

)
. In the latter

case,

ρf
∣∣
Ip
∼= I(p− j)⊗ ωj ∼= I(p− j + j(p+ 1)) ∼= I(pj + p) ∼= I(j + 1)

or
ρf
∣∣
Ip
∼=
(
ωp−j ∗

0 1

)
⊗ ωj = ( ω ∗0 ωj ) .

�

5. The non-ordinary case for medium weights

In this section, we will prove a theorem about the Iwasawa invariants of Mazur–
Tate elements in weights k such that 2 < k < p2+1. For f ∈ Sk(Γ,Qp) a normalized
eigenform, recall that O := Of denotes the ring of integers of the finite extension
of Qp generated by the Fourier coefficients of f , and F := Ff denotes the residue
field of O.

1We note that in [1] the cohomology groups considered are not taken with compact support.
However, the difference between H1 and H1

c is Eisenstein, and since we are assuming our forms
have globally irreducible Galois representations, this difference does not affect our arguments.
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5.1. Statement of theorem.

Theorem 5.1. Let f be an eigenform in Sk(Γ,Qp) which is p-non-ordinary, and
such that

(i) ρf is irreducible,

(ii) 2 < k < p2 + 1,
(iii) k(ρf ) = 2 and ρf

∣∣
GQp

is not decomposable.

Then
(1) µ+

min(f) = µ−min(f) = 0, and
(2) there exists an eigenform g ∈ S2(Γ) with a`(f) = a`(g) for all primes ` 6= p,

and a choice of cohomological periods Ωf ,Ωg such that

ϑn(f) = cornn−1

(
ϑn−1(g)

)
in F[Gn]

for all n ≥ 1.

Remark 5.2.
(1) In the notation of the above theorem, we have that g is ordinary at p if

and only if ρf
∣∣
GQp

is reducible. Indeed, ρf ∼= ρg, and since g has weight 2,

Theorem 4.9 implies that g is ordinary at p if and only if ρg
∣∣
GQp

is reducible.

(2) Hypothesis (iii) is equivalent to assuming that ρf
∣∣
Ip

is isomorphic to either
I(1) or ( ω ∗0 1 ) with ∗ neither 0 nor très-ramifiée.

(3) Theorem 5.1 can fail for weights as low as p2 + 1. For example, there is a
newform f ∈ S10(Γ0(17)) which is non-ordinary at p = 3 and congruent to
the unique normalized newform g ∈ S2(Γ0(17)). The form g is non-ordinary
at 3, and thus ρf

∣∣
GQp

∼= ρg
∣∣
GQp

is irreducible by Theorem 4.9. In particular,

hypotheses (i) and (iii) are satisfied; however, for this form, one computes
that µ+

min(f) = 1. (We note that determining µ±min(f) for a particular form
f is a finite computation.)

Possibly such counter-examples are common for following reason: let
g ∈ S2(Γ,Qp) denote any eigenform which satisfies hypotheses (i) and (iii).
Consider θp−1(ϕg) which is an eigensymbol in H1

c (Γ, V p2−1). By [1, Propo-
sition 2.5], there exists an eigenform f ∈ Sp2+1(Γ,Qp) whose system of
Hecke-eigenvalues reduces to those of θp−1(ϕg). Thus, by Fermat’s little
theorem,

a`(f) = `p−1a`(g) = a`(g)
for all ` 6= p. Moreover, ap(f) = ap(g) since both are 0. Thus, ϕf and
θp−1(ϕg) have the same system of Hecke-eigenvalues for the full Hecke-
algebra. A strong enough mod p multiplicity one theorem (which is not
currently known, and may not be always be true) would then imply equality
of these two symbols up to a constant. Thus, ϕf is in the image of θ, and
by Lemma 4.8, we would then have that µ±min(f) > 0.

(4) The condition that ρf
∣∣
GQp

is not decomposable is necessary. For example,

there is a newform f ∈ S10(Γ0(21)) which is non-ordinary at 5 and congru-
ent to the unique normalized newform g ∈ S2(Γ0(21)). In this example, ρf
is irreducible, ρf

∣∣
GQp

is decomposable, and µ±min(f) > 0.
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Possibly such counter-examples are again common for a similar reason
as in the previous remark. Take g ∈ S2(Γ,Qp) with ρg irreducible and
ρg
∣∣
GQp

decomposable. By Gross’ tameness criterion [10], there exists a form

h ∈ Sp−1(Γ,Qp) such that ρh⊗ω ∼= ρg. The associated eigensymbol ϕh is in
H1
c (Γ, Vp−3(Zp)), and thus θ(ϕh) is in H1

c (Γ, V2p−2(Zp)). By [1, Proposition
2.5], there exists f ∈ S2p(Γ,Qp) whose system of Hecke-eigenvalues reduces
to those of θ(ϕh). In particular, ρf ∼= ρh ⊗ ω ∼= ρg, and thus f satisfies
hypotheses (i), k(ρf ) = 2, and ρf

∣∣
GQp

decomposable.

Note that θ(ϕh) and ϕf have the same system of Hecke-eigenvalues.
Thus, as before, a strong enough mod p multiplicity one result would give
equality of these symbols up to a constant. In particular, we would obtain
that ϕf is in the image of θ, and by Lemma 4.8, µ±min(f) > 0.

(5) The question of determining the structure of ρf
∣∣
GQp

remains a difficult one.
Partial results exist when the weight k is not too large. For instance, if
k = p+1 and f is non-ordinary, then by a result of Edixhoven [6], ρf

∣∣
GQp

is

automatically irreducible and isomorphic to I(1). More recently, Berger [3]
showed that if k = 2p, then ρf

∣∣
GQp

is irreducible if and only if ordp(ap) 6= 1.
Moreover,

ρf
∣∣
Ip

=


I(1) if 0 < ordp(ap) < 1
I(2p− 1) if ordp(ap) > 1
( ω ∗0 1 ) or ( 1 ∗

0 ω ) if ordp(ap) = 1

Unfortunately, even in this small weight, we do not know how to determine
which representation occurs in the last of these three cases solely from the
value of ordp(ap), and, in particular, we cannot determine the value of
k(ρf ).

In the following corollary we maintain the hypotheses and notation of Theorem
5.1.

Corollary 5.3. If ρf
∣∣
GQp

is reducible (resp. irreducible), then

(1) µ(θn,i(f)) = 0 for n� 0 ⇐⇒ µ(g, ωi) = 0 (resp. µ±(g, ωi) = 0);

(2) if the equivalent conditions of (1) hold, then

λ(θn,i(f)) = pn − pn−1 +

λ(g, ωi) if ρf
∣∣
GQp

is reducible,

qn−1 + λ-εn(g, ωi) if ρf
∣∣
GQp

is irreducible

for all n� 0 and all i.

Proof. We first note that g is ordinary if and only if ρf
∣∣
GQp

is reducible (see Remark

5.2.1). The corollary then follows from Theorem 5.1, Theorem 4.1, and Lemma
3.2. �

5.2. A key lemma. The main tool in proving Theorem 5.1 is the map α of section
4.4. If α(ϕf ) 6= 0, then one can produce a congruence to a weight 2 form, and
begin to compare their Mazur–Tate elements. In this section, we establish the
non-vanishing of α(ϕf ) for the forms f we are considering.
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Lemma 5.4. If f satisfies the hypotheses of Theorem 5.1, then α(ϕ±f ) 6= 0.

Proof. First note that hypotheses (ii) and (iii) of Theorem 5.1 imply that k ≡ 2
(mod p − 1). The case k = 2 is vacuous, and the case k = p + 1 follows from [1,
Theorem 3.4(a)]. For k ≥ 2p, by [1, Theorem 3.4(c)], it suffices to show that ϕ±f
cannot lie in the image of the theta operator

θ : H1
c (Γ, V k−p−3(1))→ H1

c (Γ, V k−2).

We will prove this by showing that no eigensymbol in the image of θ has residual
representation isomorphic to ρf after restriction to Ip.

Assume first that ρf |Ip is irreducible and thus isomorphic to I(1). For any
weight m ≥ 2, let Lirr(m) denote the set of t ∈ Z/(p2 − 1)Z such that there exists
an eigenform g on Γ of weight m with ρg|Ip ∼= I(t). (Lirr(m) should really be
regarded as a subset of the quotient of Z/(p2 − 1)Z by the relation that t ∼ pt for
all t.) Let Lirr

θ (m) denote the subset of Lirr(m) of t which occur for forms g in the
image of θ. We aim to show that 1, p /∈ Lirr

θ (m) for m < p2 + 1.
By [1, Theorem 3.4] and Lemma 4.10, we have

Lirr
θ (m) = ∅ for m ≤ p+ 1;

Lirr
θ (m) ⊆

{
t+ p+ 1 ; t ∈ Lirr(m− p− 1)

}
for m > p+ 1;

Lirr(m) ⊆ Lirr
θ (m) ∪ {m′ + 1}

where m′ denotes the remainder when m− 2 is divided by p− 1. It now follows by
a straightforward induction that for k < p2 + 1, k ≡ 2 (mod p− 1), one has

Lirr
θ (k) =

{
j(p− 1) + 1 ; 2 ≤ j ≤ k − 2

p− 1
, j 6= p+ 3

2

}
.

(Note that the induction involves all even k, not just those which are congruent to
2 modulo p− 1.) In particular, neither 1 nor p lies in Lirr

θ (k) for such k; it follows
that ϕ±f does not lie in the image of θ, as desired.

When ρf |Ip is reducible it is necessarily isomorphic to ( ω ∗0 1 ) with ∗ non-zero. Let
Lred(m) ⊆ Z/(p−1)Z denote the set of all t such that

(
ωt ∗
0 ∗
)

(with ∗ non-zero) can
occur as the restriction to Ip of the residual representation of some form of weight
k for Γ which has a globally irreducible residual representation. As before, we have

Lred
θ (m) = ∅ for m ≤ p+ 1;

Lred
θ (m) ⊆

{
t+ 1 ; t ∈ Lred

θ (m− p− 1)
}

for m > p+ 1;

Lred(m) ⊆ Lred
θ (m) ∪ {m− 1}.

Once again, a straightforward induction establishes that for k ≤ p2+3
2 , k ≡ 2

(mod p− 1) we have

Lred
θ (k) ⊆

{
−j ; 0 ≤ j ≤ k − 2

p− 1
− 2
}

while for p2+3
2 < k < p2 + 1, k ≡ 2 (mod p− 1) we have

Lred
θ (k) ⊆

{
−j ; 0 ≤ j ≤ k − 2

p− 1
− 3
}
.

In particular, 1 does not lie in Lred
θ (k) for such k, so that ϕ±f does lie in the image

of θ. �
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5.3. Proof of Theorem 5.1. Let ϕf ∈ H1
c (Γ, Vk−2(O)) denote the modular sym-

bol attached to f , and let ϕf denote its non-zero image in H1
c (Γ, V k−2). By Lemma

5.4, α(ϕ±f ) is non-zero. Thus, by Lemma 4.8, µ±min(f) = 0 which establishes the
first part of the theorem.

By Lemma 5.4, α(ϕf ) is a (non-zero) eigensymbol in H1
c (Γ0,F) with the same

Hecke-eigenvalues as ϕf for all primes ` (even ` = p). By [1, Proposition 2.5], there
exists an eigenform h ∈ S2(Γ0) whose Hecke-eigenvalues reduce to the eigenvalues
of ϕf . Since ϕf is p-non-ordinary, the same is true of h. However, this implies that
h must be old at p; indeed, any form of weight 2 which is p-new is automatically
p-ordinary. Let g ∈ S2(Γ) denote the corresponding eigenform which is new at p,
but has all same Hecke-eigenvalues at primes away from p; that is, h is in the span
of g(z) and g(pz).

Let ϕg in H1
c (Γ,F) denote the reduction of the modular symbol attached to

g. One might except a congruence between ϕg and α(ϕf ). However, the former
symbol has level Γ while the latter has level Γ0. If we view ϕg in H1

c (Γ0,F), then
it is no longer an eigensymbol at p. Instead, we consider the symbol ϕg

∣∣ ( p 0
0 1

)
in

H1
c (Γ0,F) which is also an eigensymbol at all primes away from p, and moreover,(

ϕg
∣∣ ( p 0

0 1

)) ∣∣Up =
p−1∑
a=0

(
ϕg
∣∣ ( p 0

0 1

)) ∣∣ ( 1 a
0 p

)
=

p−1∑
a=0

ϕg
∣∣ ( p pa

0 p

)
=

p−1∑
a=0

ϕg
∣∣ ( 1 a

0 1 )

=
p−1∑
a=0

ϕg = p · ϕg = 0.

Thus, ϕg
∣∣ ( p 0

0 1

)
is a Hecke-eigensymbol for the full Hecke-algebra. As the same is

true of α(ϕf ), by mod p multiplicity one (see [16, Theorem 2]), we have

α(ϕ±f ) = c± · ϕ±g
∣∣ ( p 0

0 1

)
with c± 6= 0. Moreover, by changing Ω±f by a p-unit, we can take c± equal to 1.
Then, by Lemmas 4.6 and 2.6,

ϑn(f) = ϑn(α(ϕf )) = ϑn(ϕg
∣∣ ( p 0

0 1

)
) = cornn−1

(
ϑn−1(ϕg)

)
completing the proof of theorem.

6. Results in small slope

In this section, we will prove a theorem along the lines of Theorem 5.1, but
instead of assuming a bound on the weight of f , we assume on bound on its slope.
Interestingly, the proof uses a congruence argument even though the µ-invariants
that appear need not be zero.

6.1. Statement of theorem.

Theorem 6.1. Let f be an eigenform in Sk(Γ,Qp) such that
(i) ρf is irreducible,

(ii) 0 < ordp(ap) < p− 1,
(iii) k(ρf ) = 2 and ρf

∣∣
GQp

is not decomposable.
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Then
(1) µ±min(f) ≤ ordp(ap) holds for both choices of sign;

(2) there exists an eigenform g ∈ S2(Γ) with a`(f) = a`(g) for all primes ` 6= p,
and a choice of cohomological periods Ωf ,Ωg ∈ C such that

$−aϑn,i(f) = cornn−1

(
ϑn−1,i(g)

)
in F[Gn]

for all n ≥ 1 and all i; here a ∈ Z≥0 is such that ordp($a) = µεimin(f).

We maintain the hypotheses and notation of Theorem 6.1 in the following corol-
lary.

Corollary 6.2. If ρf
∣∣
GQp

is reducible (resp. irreducible), then

(1) µ(θn,i(f)) = µεimin(f) for n� 0 ⇐⇒ µ(g, ωi) = 0 (resp. µ±(g, ωi) = 0).

(2) if the equivalent conditions of (1) hold, then

λ(θn(f)) = pn − pn−1 +

λ(g, ωi) if ρf
∣∣
GQp

is reducible,

qn−1 + λ-εn(g, ωi) if ρf
∣∣
GQp

is irreducible

for n� 0 and all i.

Remark 6.3.
(1) By results of Buzzard and Gee [4], if k ≡ 2 (mod p− 1) and ordp(ap) < 1,

then ρf
∣∣
Ip
∼= I(1) and thus hypotheses (i) and (iii) are automatic.

(2) Hypothesis (ii) is necessary as we have found forms of slope p − 1 whose
λ-invariants do not follow the pattern described by Corollary 6.2. In these
examples, the λ-invariants satisfy

λ(θn(f)) = pn − pn−2 +

λ(g) if ρf
∣∣
GQp

is reducible,

qn−2 + λεn(g) if ρf
∣∣
GQp

is irreducible,

for n � 0 where g is some congruent form in weight 2. This phenomenon
will be further explored in section 7.

6.2. Filtration lemmas. Let O be the ring of integers in a finite extension of Qp,
and consider the filtration on Vg(O) given by

Filr(Vg) = Filr(Vg(O)) =


g∑
j=0

bjX
jY g−j ∈ Vg(O) : pr−j | bj for 0 ≤ j ≤ r − 1

 .

Recall that the semi-group S0(p) appearing in the next lemma was introduced
in section 4.4.

Lemma 6.4. We have:
(1) Filr(Vg) is stable under the action of S0(p).
(2) If P ∈ Filr(Vg), then P

∣∣ ( 1 a
0 p

)
∈ prVg(O).

Proof. For
(
a b
c d

)
∈ S0(p), we have

XjY g−j
∣∣ ( a b

c d

)
= (dX − cY )j(−bX + aY )g−j .
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Expanding the above expression and using the fact that p | c and p - a, one sees
that the coefficient of XsY g−s is divisible by pj−s for s ≤ j. The first part of the
lemma follows from this observation.

For the second part, we have that

pr−jXjY g−j
∣∣ ( 1 a

0 p

)
= pr−j(pX)j(−aX + Y )g−j ∈ prVg(O)

which proves the lemma. �

Lemma 6.5. If ϕ ∈ H1
c (Γ, Vg(O)) is a Tp-eigensymbol which takes values in

Filr(Vg) and ||ϕ|| = 1, then the slope of ϕ is greater than or equal to r.

Proof. Write ϕ
∣∣Tp = λ · ϕ, and choose D ∈ ∆0 such that ||ϕ(D)|| = 1. We then

have

(8) λ · ϕ(D) = (ϕ
∣∣Tp)(D) =

p−1∑
a=0

ϕ
((

1 a
0 p

)
D
) ∣∣ ( 1 a

0 p

)
+ ϕ

((
p 0
0 1

)
D
) ∣∣ ( p 0

0 1

)
.

By Lemma 6.4, all of the terms on the right-hand side are divisible by pr except
for possibly the last.

To deal with the final term write ϕ
((

p 0
0 1

)
D
)

=
∑g
j=0 ajX

jY g−j . By Lemma
2.7, we have that

g∑
j=0

ajX
jY g−j

∣∣∣ ( 0 −1
N 0

)
=

g∑
j=0

aj(−NY )jXg−j =
g∑
j=0

(−1)jNag−jXjY g−j

is also a value of ϕ, and thus is in Filr(Vg). In particular, for 0 ≤ j ≤ r, we have
pr−j | Nag−j , and hence pr−j | ag−j as gcd(N, p) = 1. Finally,

ϕ
((

p 0
0 1

)
D
) ∣∣∣ ( p 0

0 1

)
=

g∑
j=0

ajX
jY g−j

∣∣∣ ( p 0
0 1

)
=

g∑
j=0

ajp
g−jXjY g−j

is in prVg, and thus λ · ϕ(D) ∈ prVg. As ||ϕ(D)|| = 1, we deduce that ordp(λ) ≥ r
as desired. �

In what follows, we will need to make use of a finer filtration on Vg(O). Note that
as an abelian group, Filr(Vg)/Filr+1(Vg) is simply (O/pO)r+1. Thus, we introduce
the following subfiltration of Filr(Vg); for s ≤ r we set

Filr,s(Vg) =


g∑
j=0

bjX
jY g−j ∈ Filr(Vg) : pr−j+1 | bj for r + 1− s ≤ j ≤ r

 .

Note that

Filr(Vg) = Filr,0(Vg) ) Filr,1(Vg) ) · · · ) Filr,r(Vg) ) Filr,r+1(Vg) = Filr+1(Vg).

In the following lemma,
(
O/pO(aj)

)
(r) denotes the S0(p)-module O/pO on

which γ =
(
a b
c d

)
acts by multiplication by det(γ)r · aj .

Lemma 6.6.
(1) Filr,s(Vg) is stable under the action of S0(p).
(2) For 0 ≤ s ≤ r,

Filr,s(Vg)/Filr,s+1(Vg) ∼=
(
O/pO(ag−2r+2s)

)
(r − s)

as S0(p)-modules. Moreover, this quotient is generated by the image of the
monomial psXr−sY g−r+s.
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Proof. The first part follows just as in Lemma 6.4. For the second part, directly
from the definitions, we have that Filr,s(Vg)/Filr,s+1(Vg) is isomorphic to O/pO
and is generated by the image of psXr−sY g−r+s. For the S0(p)-action, we have

psXr−sY g−r+s
∣∣ ( a b

c d

)
≡ ps(dX)r−s(−bX + aY )g−r+s (mod Filr,s+1(Vg))

≡ dr−sag−r+s · psXr−sY g−r+s (mod Filr,s+1(Vg)).

Thus,

Filr,s(Vg)/Filr,s+1(Vg) ∼= O/pO(dr−sag−r+s)
∼= O/pO((ad)r−sag−2r+2s) ∼=

(
O/pO

(
ag−2r+2s

))
(r − s)

as desired. �

The following is a slight refinement of Lemma 6.5, and will be useful in the proof
of Theorem 6.1.

Lemma 6.7. Let ϕ ∈ H1
c (Γ, Vg(O)) be a Tp-eigensymbol which takes values in

Filr,r(Vg) and such that r ≤ µmin(ϕ) < r + 1. If ||ϕ|| = 1, then the slope of ϕ is
greater than or equal to µmin(ϕ).

Proof. The proof follows just as in Lemma 6.5. �

6.3. Proof of Theorem 6.1. To ease notation, set F a = Fila(Vk−2(O)), F a,b =
Fila,b(Vk−2(O)), and ϕ = ϕ±f . Let r ≥ 0 denote the largest integer such that ϕ
takes values in F r, and let s ≥ 0 denote the largest integer such that ϕ takes values
in F r,s. Note that by definition s ≤ r since F r,r+1 = F r+1.

By Lemma 6.5, we have r ≤ ordp(ap), and thus hypothesis (ii) gives

(9) s ≤ r < p− 1.

Our first goal is to show that r = s.
Since ϕ does not take all of its values in F r,s+1, its image in H1

c (Γ0, F
r,s/F r,s+1)

is non-zero. Thus, by Lemma 6.6, ϕ gives rise to a non-zero eigensymbol in

H1
c (Γ0,O/pO(ap−1−2r+2s))(r − s);

here, we are using that k ≡ 2 (mod p − 1). Finally, if this symbol takes values in
$tO but not in $t+1O, projecting modulo $t+1 and dividing by $t gives rise to
a non-zero eigensymbol

ηf ∈ H1
c (Γ0,F(ap−1−2r+2s))(r − s).

Then, by [1, Proposition 2.5 and Lemma 2.6], there exists an eigenform g in
S2(Γ1, ω

−2r+2s) such that ρf ∼= ρg ⊗ ωr−s.
By Lemma 4.10, we then have one of the following three possibilities:

(10) ρg
∣∣
Ip

= I((−2r + 2s)′ + 1),
(
ω−2r+2s+1 ∗

0 1

)
, or

(
ω ∗
0 ω−2r+2s

)
where, for an integer x, we set x′ equal to the unique integer j with 0 ≤ j ≤ p− 2
and j ≡ x (mod p− 1). In the locally reducible case, we then have

(11) ρf
∣∣
Ip

=
(
ω−r+s+1 ∗

0 ωr−s

)
or
(
ωr−s+1 ∗

0 ω−r+s

)
.

Hypothesis (iii) implies that ρf
∣∣
Ip
∼= ( ω ∗0 1 ) with ∗ non-zero, and thus s ≡ r (mod p−

1). The bound in (9) then gives s = r as desired.
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If ρf
∣∣
GQp

is irreducible, we have

ρf
∣∣
GQp

=

{
I(p+ (p− 1)(r − s)) if r − s ≤ p−1

2 ,

I(2p− 1 + (p− 1)(r − s)) if r − s > p−1
2 .

By hypothesis (iii), we then have

ρf
∣∣
GQp

∼= I(1) ∼= I(p+ (p− 1)(r − s)) or I(2p− 1 + (p− 1)(r − s)).

In the first case,

p+ (p− 1)(r − s) ≡ 1 or p (mod p2 − 1).

Thus,
r − s ≡ p or 0 (mod p+ 1)

which forces s = r. A similar analysis in the second case shows that no such r and
s exist. Hence, in all possible cases, r = s and ϕf takes values in F r,r.

By Lemma 6.6, prY k−2 generates F r,r/F r,r+1, and thus the image of ϕ in

H1
c (Γ0, F

r,r/F r,r+1) ∼= H1
c (Γ0,O/pO)

is given by

D 7→
(

1
pr
ϕ(D)

∣∣
(X,Y )=(0,1)

)
(mod p).

This implies that ηf is given by

D 7→
(

1
$tpr

ϕ(D)
∣∣
(X,Y )=(0,1)

)
(mod $).

By construction, ordp($tpr) = µ±min(f); thus, if we let a be the integer such that
ordp($a) = µ±min(f), scaling by a unit then yields the eigensymbol

D 7→ 1
$a

ϕ(D)
∣∣
(X,Y )=(0,1)

∈ F

in H1
c (Γ0,F) whose system of Hecke-eigenvalues is the reduction of the system of

eigenvalues attached to f .
The argument now proceeds as in Theorem 5.1 to show that

$−aθn,i(f) = cornn−1(θn−1,i(g)) in F[Gn]

as desired.
Lastly, the inequality µ±min(f) ≤ ordp(ap) follows from Lemma 6.7.

7. A strange example

In this section, we describe a strange behavior of Iwasawa invariants of forms
which do not satisfy the hypotheses of Theorems 5.1 and 6.1.

Take p = 3, and consider the space of cuspforms S18(Γ0(11),Qp). In this space,
there are exactly 2 (Galois conjugacy classes of) eigenforms of slope 2 whose residual
representations are isomorphic to the 3-torsion on X0(11). Let f1 and f2 denote
representatives from the each of these classes. Note that the associated residual
representation is locally reducible at 3 as X0(11) is ordinary at 3. Neither Theorem
5.1 nor Theorem 6.1 apply directly to these forms as the weight k = 18 is greater
than p2, and the slope 2 is not less than p− 1.
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Let Oj denote the ring of integers of the field generated by the coefficients of fj ,
and let $j denote a uniformizer. A computer computation shows that µ+

min(fj) = 2
for j = 1, 2, and so we consider the map

V16(Oj) −→ Oj/p2$jOj
P (X,Y ) 7→ P (0, 1) (mod p2$j).

As this map is Γ0(p3)-equivariant, it induces a Hecke-equivariant map

α : H1
c (Γ, V16(Oj)) −→ H1

c (Γ0(p3N),Oj/p2$jOj).

By construction, α(ϕ+
fj

) is non-zero and takes values in p2Oj/p2$jO ∼= F3. If
we view α(ϕ+

fj
) in H1

c (Γ0(p3N),F3), then it is an eigensymbol whose system of
Hecke-eigenvalues is the reduction of the system attached to fj .

A computer computation then shows that the subspace of H1
c (Γ0(p3N),F3)+

with this system of Hecke-eigenvalues is 3-dimensional and generated by

ϕ+
g

∣∣ ( p 0
0 1

)
, ϕ+

g

∣∣ ( p2 0
0 1

)
, and ϕ+

g

∣∣ ( p3 0
0 1

)
where g is the unique normalized eigenform in S2(Γ0(11)). (Note that mod p
multiplicity one is failing for trivial reasons!) Thus, we have

α(ϕ+
fj

) = aj,1 · ϕ+
g

∣∣ ( p 0
0 1

)
+ aj,2 · ϕ+

g

∣∣ ( p2 0
0 1

)
+ aj,3 · ϕ+

g

∣∣ ( p3 0
0 1

)
,

and, in particular,

(12)
θn(fj)
p2

= aj,1 ·cornn−1(θn−1(g))+aj,2 ·cornn−2(θn−2(g))+aj,3 ·cornn−3(θn−3(g)).

These equations should allow us to determine the Iwasawa invariants of fj in terms
of the invariants of the p-ordinary form g; in this case, one computes that µ(g) =
λ(g) = 0.

A key difference now emerges between f1 and f2; namely, a computer computa-
tion shows that

a1,1 6= 0 while a2,1 = 0.

This vanishing is significant because for j = 1, the first term on the right hand side
of (12) dominates in calculating λ, and we have

λ(θn(f1)) = pn − pn−1 + λ(g) = pn − pn−1.

For j = 2, the second term in (12) dominates and we have

λ(θn(f2)) = pn − pn−2 + λ(g) = pn − pn−2.

Thus, there is a “second-order” difference in the rate of growth of the λ-invariants
of f1 and f2.

Similar examples exist in the locally irreducible case. For instance, for p = 3,
there is an eigenform f in S18(Γ0(17),Qp) whose residual representation is iso-
morphic to the 3-torsion in X0(17) (which is locally irreducible at 3 as X0(17) is
supersingular at 3), whose slope is 5, and for which we have

λ(θn(f)) = pn − pn−2 + qn−2

as opposed to the λ-invariants qn+1 = pn − pn−1 + qn−1 which occur in Theorems
5.1 and 6.1.
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