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1. Introduction

The notion of cobordism is simple; two manifolds M and N are said to be cobordant if their disjoint union is
the boundary of some other manifold. Given the extreme difficulty of the classification of manifolds it would seem
very unlikely that much progress could be made in classifying manifolds up to cobordism. However, René Thom, in
his remarkable, if unreadable, 1954 paper Quelques propriétés globales des variétés differentiables [22], gave the full
solution to this problem for unoriented manifolds, as well as many powerful insights into the methods for solving it
in the cases of manifolds with additional structure. It was largely for this work that Thom was awarded the Fields
medal in 1958. The key step was the reduction of the cobordism problem to a homotopy problem, although the
homotopy problem is still far from trivial. This was later generalized by Lev Pontrjagin, and this result is now known
as the Thom-Pontrjagin theorem.

The first part of this paper will work towards the proof of the generalized Thom-Pontrjagin theorem. We will
begin by abstracting the usual notion of cobordism on manifolds. Personally distasteful as this may be, it will be
useful to have an abstract definition phrased in the language of category theory. We will then return to the specific
situation of manifolds. The notion of a (B, f) structure on a manifold will be introduced, primarily as a means of
unifying the many different special structures (orientations, complex structures, spin structures, etc.) which can be
put on a manifold. The class of (B, f) manifolds can be made in a natural way into a cobordism category, and in
this way we will define the cobordism groups Ω(B, f). Once these ideas are all established, we will turn towards the
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statement and proof of the Thom-Pontrjagin theorem. The proof is fairly involved and makes heavy use of differential
topology. We have made no attempt to develop these ideas here; for the necessary material, consult [6], [7] or [21,
Appendix 2].

The second part of the paper will focus on the solution of the cobordism problem in the case of unoriented
manifolds; that is, the determination of the unoriented cobordism groups. The Thom-Pontrjagin theorem reduces
this to a homotopy problem, but the solution of that is still difficult. We will have to review several topics before we can
give the solution. We will first recall some standard material on Hopf algebras, partitions and symmetric polynomials.
Next, we will review the axiomatic definition of the Steenrod algebra, as well as a few of its other properties. Using
this we will define the Stiefel-Whitney classes of a vector bundle, and then the Stiefel-Whitney numbers and s-
numbers associated with them. We will then compute these numbers for certain submanifolds of projective spaces.
With all of this in hand, we will finally turn towards the solution of the unoriented cobordism problem. This will
first involve some additional cohomology computations, before we prove Thom’s structure theorems.

The third part of the paper will work towards a partial solution of the cobordism problem in the case of oriented
manifolds. This will require the introduction of several additional characteristic cohomology classes of vector bundles.
We will begin by defining the Euler class of an oriented real vector bundle. Using the Euler class, we can then define
the Chern classes of a complex vector bundle. These in turn lead quite naturally to the Pontrjagin classes of a
real vector bundle. Using these Pontrjagin classes, we will determine the cohomology of the Thom space TBSOr.
Combining this with some results of Serre, we will obtain an approximation for the oriented cobordism groups, as well
as explicit generators for the rational oriented cobordism ring. As an application, we will then prove the Hirzebruch
signature theorem, which is a special case of the Atiyah-Singer index theorem.

Part 1. The Thom-Pontrjagin Theorem

2. Cobordism Categories

Our motivation in providing the general definition of a cobordism category is the classical situation of compact
differentiable manifolds. Let D be the category with compact smooth manifolds (not necessarily connected, but with
locally constant dimension) with boundary as objects and smooth maps preserving boundaries as maps. (Unless
otherwise stated all manifolds in this paper will be manifolds with boundary.) D has finite sums given by disjoint
union, and a boundary operator ∂ operating on manifolds by returning their boundary and on maps by restriction
to the boundary. We now formalize this situation.

Definition 1. A cobordism category (C, ∂, ı) is a triple satisfying:

(1) C is a category having finite sums and an initial object ∅.
(2) ∂ : C → C is an additive functor with ∂∂M = ∅ for any object M of C, and ∂∅ = ∅.
(3) ı : ∂ → id is a natural transformation of additive functors, with id the identity functor.
(4) C has a small subcategory C0 (that is, C0 is actually a set) such that each element of C is isomorphic to an

element of C0.

In the case of compact differentiable manifolds, we take ∅ to be the empty manifold and ı to be given by the
inclusion of ∂M in M . The existence of a small subcategory D0 follows from the Whitney embedding theorem,
stating that every manifold is isomorphic to a submanifold of R∞. ([7, Chapter 1, Theorem 3.5])

Of course, there are many other examples of cobordism problems. For a list of 27 distinct instances of cobordism
problems, see [21, Chapter 4].

The fundamental definition of cobordism is the following equivalence relation.

Definition 2. In a cobordism category (C, ∂, ı), two objects M and N are said to be cobordant, M ≡ N , if there
exist objects U, V of C for which

M + ∂U ∼= N + ∂V.

We now establish the basic properties of the relation of cobordism.

Proposition 2.1. Let M,N,M ′, N ′ be objects of C.

(1) ≡ is an equivalence relation on C, and the equivalence classes form a set.
(2) If M ≡ N , then ∂M ∼= ∂N .
(3) For all M , ∂M ≡ ∅.
(4) If M ≡M ′, N ≡ N ′, then M +N ≡M ′ +N ′.
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Proof. (1) Reflexivity and symmetry follow from the corresponding properties of isomorphism. For transitivity,
suppose that M ≡ N and N ≡ P . Then there exist objects U, V,W,X of C with M + ∂U ∼= N + ∂V and
N + ∂W ∼= P + ∂X. Then

M + ∂(U +W ) ∼= M + ∂U + ∂W
∼= N + ∂V + ∂W
∼= P + ∂V + ∂X

∼= P + ∂(V +X)

so M ≡ P . The fact that the equivalence classes form a set follows from the existence of the small subcategory
C0. (In fact, this is precisely the reason for that assumption.)

(2) If M ≡ N , then there exist objects U, V of C with M + ∂U ∼= N + ∂V . Then

∂M ∼= ∂M + ∅
∼= ∂M + ∂∂U

∼= ∂(M + ∂U)
∼= ∂(N + ∂V )
∼= ∂N + ∂∂V

∼= ∂N + ∅
∼= ∂N.

(3) ∂M + ∂∅ ∼= ∅+ ∂M since ∂∅ = ∅, so ∂M ≡ ∅.
(4) We have M + ∂U ∼= M ′ + ∂U ′, N + ∂V ∼= N ′ + ∂V ′ for some objects U,U ′, V, V ′ of C. Then we have

M +N + ∂(U + V ) ∼= M ′ +N ′ + ∂(U ′ + V ′), so M +N ≡M ′ +N ′.
�

It should be noted that this is not the same as Thom’s original definition of cobordism, which was that two
manifolds M and N without boundary are cobordant if there exists a manifold T (with boundary) such that M+N ∼=
∂T. (See [22].) However, it is not hard to see that the two definitions are equivalent.

Proposition 2.2. Definition 2 agrees with Thom’s definition for manifolds without boundary.

Proof. Suppose M and N are cobordant in our sense. Then there exist manifolds U and V with M + ∂U ∼= N + ∂V .
Let T1 = M × I +U , T2 = N × I + V . Then ∂T1 = M +M + ∂U and ∂T2 = N +N + ∂V . Since M + ∂U ∼= N + ∂V
we can glue T1 and T2 along that common boundary to form a manifold T with ∂T ∼= M +N .

Now suppose we have T with ∂T ∼= M +N . Then

M + ∂T ∼= M +M +N

∼= N + ∂(M × I)

so M ≡ N . �

We now proceed towards the definition of the cobordism semigroup.

Definition 3. We say an object M of C is closed if ∂M ∼= ∅. We say M bounds if M ≡ ∅.
The similarity of the above definitions to the standard definitions in homology are intentional. We will now verify

that these definitions satisfy the familiar properties of chains.

Proposition 2.3. Let M and N be objects of C.

(1) Suppose M ≡ N . Then M is closed if and only if N is closed, and M bounds if and only if N bounds.
(2) If M and N are both closed, then M +N is closed. If M and N both bound, then M +N bounds.
(3) If M bounds, then M is closed.

Proof. (1) The statement about closed objects is immediate from the second part of Proposition 2.1, and the
statement about bounding objects follows from the fact that ≡ is an equivalence relation.
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(2) If M and N are both closed, then ∂M ∼= ∅ and ∂N ∼= ∅. Thus

∂(M +N) ∼= ∂M + ∂N

∼= ∅+ ∅
∼= ∅

so M +N is closed. Similarly, if M and N bound, then M ≡ ∅ and N ≡ ∅, so M +N ≡ ∅.
(3) If M bounds then M ≡ ∅. Thus, by part 2 of Proposition 2.1, ∂M ∼= ∂∅ ∼= ∅. So M is closed.

�

Combining Propositions 2.1 and 2.3 we obtain the following.
Proposition 2.4. The set of equivalence classes of C under ≡ has a commutative, associative operation induced by
the addition in C. The class of ∅ provides an identity element for this operation.

This allows us to make the following definition.
Definition 4. The cobordism semigroup Ω(C, ∂, ı) is the set of equivalence classes of closed objects of C with the
operation induced by addition in C.

Notice that Ω(C, ∂, ı) is simply the quotient of the closed objects by the bounding objects, exactly as in homology
theory.

The unoriented cobordism semigroup Ω(D, ∂, ı) is usually written N.
The fundamental problem of cobordism theory, then, is the determination of this semigroup for specific values of

(C, ∂, ı). Of course, it is not at all clear how to carry out this calculation. We will focus on that question for the
remainder of this paper.

3. (B, f) Manifolds

In order to solve the cobordism problem we will have to endow our manifolds with additional structure, following
[10]. First we set notation. Let Gr(Rn+r) be the Grassmann manifold of r-planes in Rn+r. Let γr(Rn+r) be
the canonical r-plane bundle over Gr(Rn+r), consisting of pairs of r-planes and points in that r-plane. Using the
standard inclusion Rn+r ↪→ R

n+r+1, we obtain inclusions Gr(Rn+r) ↪→ Gr(Rn+r+1) and γr(Rn+r) ↪→ γr(Rn+r+1).
Using these maps, we define the infinite Grassmannian of r-planes

BOr = lim
n→∞

Gr(Rn+r)

and its canonical r-plane bundle
γr = lim

n→∞
γr(Rn+r).

Recall that BOr is the universal classifying space for r-plane bundles over paracompact spaces. (See [14, Section 5].)
Throughout this paper we will identify vector bundles with their classifying maps. We will denote the total space of
a vector bundle ξ by E(ξ), and sometimes will use this to stand for the vector bundle as well. We will also denote
the base space by B(ξ), and the projection by π : E(ξ) → B(ξ). Finally, E(ξ)0 will be used for the subset of E(ξ)
of non-zero vectors.
Definition 5. Let fr : Br → BOr be a fibration. Let ξ : M → BOr be an r-plane bundle over M . We define a
(Br, fr) structure on ξ to be an equivalence class of liftings ξ̃ : M → Br. (That is, ξ = fr ◦ ξ̃.) We say that two such
lifts ξ̃1 and ξ̃2 are equivalent if they are homotopic; that is, if there is a map H : M × I → Br with H|M×0 = ξ̃1,
H|M×1 = ξ̃2 and frH(m, t) = ξ(m) for all m and t.

We will pass this definition to manifolds by means of the normal bundle. Let us recall its construction. Suppose
we have an embedding i : Mn ↪→ R

n+r of an n-dimensional manifold Mn. (More generally we can consider an
immersion of M into any manifold.) The normal bundle ν(i) of this embedding is defined to be the quotient of the
pullback i∗τ(Rn+r) of the tangent bundle τ(Rn+r) by the tangent bundle τ(M). We can identify the fiber of ν(i)
over a point m ∈M with the set of vectors in Rn+r orthogonal to M at m. The classifying map for ν(i) is obtained
as follows : We define a bundle map

n : E(ν(i))→ γr(Rn+r)
by sending a pair (m,x) of a point m and a vector x in the fiber E(ν(i))m over m to the pair (E(ν(i))m, x) in
γr(Rn+r). Composing with the inclusion of γr(Rn+r) in γr, and then taking the induced map on base spaces, yields
the classifying map ν(i) : M → BOr.
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Of course, this does not yet give us a well-defined notion of a (Br, fr) structure on M , since the normal bundle is
dependent on the embedding. However, the following lemma will be enough to allow us to make our definition.
Lemma 3.1. If r is sufficiently large, depending only on M , then there is a bijective correspondence between the
(Br, fr) structures on the normal bundle of any two embeddings i1, i2 : Mn ↪→ R

n+r. (That is, there is a bijective
correspondence between lifts of the normal bundles ν(i1) and ν(i2).)

Proof. For r sufficiently large any two embeddings i1, i2 are regularly homotopic, say by a homotopy H : M × I →
R
n+r. Further, if H ′ is another such homotopy, then there is a homotopy K : M × I × I → R

n+r of H and H ′ with
K|M×0×s = i1 and K|M×1×s = i2 for all s.

The sequence of normal bundles
H|∗M×tτ(Rn+r)/τ(M)

then gives a homotopy of ν(i1) and ν(i2). Similarly, K induces a homotopy between the two homotopies defined
by H and H ′. In this way we get a well-defined equivalence of the two normal bundles. Our desired bijection now
follows immediately from the homotopy lifting theorem. �

Now, let (B, f) be a sequence of fibrations fr : Br → BOr together with maps gr : Br → Br+1 such that the
diagram

Br
gr−−−−→ Br+1

fr

y yfr+1

BOr
jr−−−−→ BOr+1

commutes, where jr : BOr → BOr+1 is the inclusion induced by the standard inclusions Gr(Rn+r) ↪→ Gr+1(Rn+r+1)
extending an r-plane by direct sum with the copy of R in the final coordinate. Suppose we have a (Br, fr) structure
ν̃(i) : Mn → Br on the normal bundle ν(i) of an embedding i : M → R

n+r. This induces a (Br+1, fr+1) structure
on the normal bundle ν(i′) of the embedding i′ = i× 0 : M → R

n+r+1 by ν̃(i′) = grν̃(i), since

fr+1ν̃(i′) = fr+1grν̃(i)

= jrfrν̃(i)

= jrν(i)

= ν(i′)

by commutativity and the choices of the various inclusions.
Definition 6. A (B, f) structure on a manifold M is an equivalence class of compatible (under the above con-
struction) (Br, fr) structures on the normal bundles of inclusions of M , where equivalence is given by agreement for
sufficiently large r subject to the bijection of Lemma 3.1. (This guarantees that the notion of (B, f) structure is
independent of the embedding of M in Euclidean space.)

(B, f) structures are fairly difficult to get a handle on. We will attempt to illuminate them at least a bit by means
of two examples, which will in fact be the examples we will consider later.

(1) Take Br = BOr and fr to be the identity map. Then every manifold will have a unique (BO, 1) structure.
Thus the class of (BO, 1) manifolds is simply the class of all unoriented manifolds.

(2) Let BSOr be the classifying space for oriented r-plane bundles. It is a double cover of BOr, corresponding
to the two possible orientations of an r-plane. Take Br = BSOr and fr to be the map which ignores the
orientation. Then every oriented manifold has a unique (BSO, f) structure, the choice of lifting being given
by the orientation, so that the class of (BSO, f) manifolds is the same as the class of oriented manifolds.

The second example in particular suggests that perhaps the best way to think of (B, f) structures are as general-
izations of orientations. In fact, when we are proving facts about (B, f) manifolds we will be dragging the (B, f)
structures along exactly as we would drag orientations along, having to pause every few moments to make sure that
we have the correct structure.

More generally, any class of manifolds with a classifying space can be defined through (B, f) structures. For
example, the class of complex manifolds is simply the class of manifolds with (BU, f) structures, and the class of spin
manifolds is simply the class of manifolds with (B, f) structures where Br is the classifying space for spin manifolds.
(It is a a two-connective covering space of BSOr.) See [21, Chapter 4].

In order to make use of this in cobordism, we must show how to use a (B, f) structure on a manifold to induce a
(B, f) structure on its boundary. More generally, let Mm ↪→ Wn be any embedding with trivial normal bundle ν.
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Pick an embedding i : M ↪→ R
m+r. Since ν is trivial we can extend i to an embedding j0 : U ↪→ R

n+r = R
m+r×Rn−m

of some neighborhood U ⊆ W of M with U meeting Rm+r orthogonally along M . We can then extend this to an
embedding j : W ↪→ R

n+r. Since W meets Rm+r orthogonally along M , the normal planes of a point m of M in
R
m+r will simply be the restriction to Rm+r of the normal planes at m considered as a point in W . Thus we have

ν(j)|M = ν(i), and therefore if ν̃(j) is a (B, f) structure on W , ν̃(j)|M will be a (B, f) structure on M .
This is particularly useful in three special cases.
(1) If M → W is an isomorphism, then the normal bundle is zero dimensional and thus trivial. So a (B, f)

structure on W induces one on M .
(2) If M ↪→M +W is an inclusion of a direct summand, then the normal bundle is again zero dimensional and

thus trivial. So a (B, f) structure on a manifold induces one on its direct summands.
(3) If ∂W ↪→ W is the inclusion of the boundary, then the normal bundle is trivial by the choice of either an

outer or an inner trivialization. We will always choose the inner trivialization, and in this way a (B, f)
structure on a manifold induces one on its boundary.

4. (B, f) Cobordism

If we take all manifolds with (B, f) structures, we obtain a special kind of cobordism category which will be very
useful in determining cobordism semigroups.
Definition 7. Let C be the category whose objects are compact (B, f) manifolds (that is, manifolds with a specified
(B, f) structure) and whose maps are the smooth, boundary preserving inclusions with trivial normal bundle inducing
compatible (B, f) structures. Let ∂ : C → C be the boundary functor, inducing (B, f) structures by the inner
trivialization. Let ı : ∂ → I be the inclusion of the boundary with inner trivialization. Then (C, ∂, ı) is a cobordism
category, called the cobordism category of (B, f) manifolds. We will denote by Ω(B, f) the cobordism semigroup
Ω(C, ∂, ı). We can then write

Ω(B, f) =
∞⊕
n=0

Ωn(B, f)

where Ωn(B, f) is the subsemigroup of equivalence classes of n dimensional manifolds.
At a first glance it may appear that the cobordism category of (BO, 1) manifolds is not the same as the cobordism

category of unoriented manifolds (D, ∂, ı), since we have thrown away many of the maps in the category. However,
since the only maps which are relevant in the formation of the cobordism semigroup are isomorphisms, inclusions of
direct summands and inclusions of boundaries, we do get a canonical isomorphism

Ω(BO, 1) ∼= N.

In fact, for (B, f) cobordism categories, Ω(B, f) is not merely a semigroup.
Proposition 4.1. Ω(B, f) is an abelian group.

Proof. Take a (B, f) manifold Mn ∈ Ω(B, f) and choose an embedding i : M ↪→ R
n+r with a lifting ν̃(i) : M → Br

inducing the correct (B, f) structure on M . Now let j : M × I ↪→ R
n+r+1 be the obvious embedding. Then if

π : M × I → M is the projection onto M , we will have ν(j) = ν(i)π. Now, since frν̃(i)π = ν(i)π = ν(j), we get a
(B, f) structure ν̃(j) : M × I → Br given by ν̃(j) = ν̃(i)π. We see then that the induced (B, f) structure on M × 0
is the same as that on M , so that M ∼= M × 0 as (B, f) manifolds. So, if we let M ′ = M × 1 with the inner induced
(B, f) structure, we have that M +M ′ ∼= ∂(M × I) ≡ ∅, and thus M +M ′ ≡ ∅. Thus M has an inverse, namely M ′,
and Ω(B, f) is an abelian group. �

We now need to prepare for the statement of the generalized Thom-Pontrjagin theorem. We first recall the notion
of the Thom space of a vector bundle. Let ξ : M → BOr be a vector bundle with a Riemannian metric induced
in the usual way from γr. We define the Thom space of ξ, Tξ, to be the total space E(ξ) with all vectors of E(ξ)
of length greater than or equal to 1 identified to a point. (Alternatively, we can identify Tξ with the one-point
compactification of E(ξ).) We write t0(ξ) for this point, or just t0 if the vector bundle is clear in context. We will
write TBOr for the Thom space Tγr and TBr for the Thom space Tf∗r γ

r.
Suppose we have a vector bundle η on a space N and a continuous map g : M → N . If we let ξ = g∗η, then we

see that g induces a map Tg : (Tξ, t0(ξ))→ (Tη, t0(η)).
Let us now apply this construction to the (B, f) commutative diagram. Recall that we have a map jr : BOr ↪→

BOr+1. By our definition of jr we see that j∗r (γr+1) = γr ⊕ ε1 where ε1 is the trivial bundle on BOr. If we consider
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the Thom space of this bundle, we see that the effect of adding the ε1 will be to form the reduced suspension ΣTγr.
In this way we get a map

Tjr : ΣTγr → Tγr+1.

Now, we have a map g∗rf
∗
r+1γ

r+1 → f∗r+1γ
r+1 induced by gr. But by commutativity, g∗rf

∗
r+1γ

r+1 = f∗r j
∗
rγ

r+1.
Thus, we have a map

f∗r j
∗
rγ

r+1 → f∗r+1γ
r+1.

This yields a map
Tgr : Tf∗r j

∗
rγ

r+1 → Tf∗r+1γ
r+1.

But, by definition Tf∗r+1γ
r+1 = TBr+1, and by our above observations

Tf∗r j
∗
rγ

r+1 = Tf∗r (γr ⊕ ε1)

= T (f∗r γ
r ⊕ f∗r ε1)

= ΣTf∗r γ
r

= ΣTBr.

So, in fact,
Tgr : ΣTBr → TBr+1.

Combining all of these Thom maps, we obtain from our original commutative diagram a new commutative diagram

ΣTBr
Tgr−−−−→ TBr+1

ΣTfr

y yTfr+1

ΣTBOr
Tjr−−−−→ TBOr+1.

Now, since
Σ# : πn+r(TBr, t0)→ πn+r+1(ΣTBr, t0)

and
Tgr# : πn+r+1(ΣTBr, t0)→ πn+r+1(TBr+1, t0)

we obtain a map
Tgr# ◦ Σ# : πn+r(TBr, t0)→ πn+r+1(TBr+1, t0).

This allows us to define the stable homotopy group

lim
r→∞

πn+r(TBr, t0).

Having done all of this preliminary work, we are finally in a position to state the generalized Thom-Pontrjagin
Theorem.
Theorem 4.2 (The Thom-Pontrjagin Theorem). Ωn(B, f), the cobordism group of n-dimensional (B, f) manifolds,
is isomorphic to the stable homotopy group limr→∞ πn+r(TBr, t0).

This truly remarkable theorem transforms the cobordism problem into a homotopy problem. The proof is rather
involved and will be the topic of the next section.

5. The Proof of the Thom-Pontrjagin Theorem

Let Mn be a (B, f) manifold. Let i : M ↪→ R
n+r be an embedding, ν = ν(i) : M → BOr the normal bundle,

N = E(ν) the total space of ν and π : N → M the projection. Choose a lifting ν̃ : M → Br giving the correct
(B, f) structure. We will first construct a map from Ωn(B, f) to limr→∞ πn+r(TBr, t0). The final map is not too
complicated, but we will go carefully through its construction to insure that the (B, f) structures are well behaved.

Considering N as a submanifold of Rn+r × Rn+r (via the inclusion i), we have the exponential map

exp : Rn+r × Rn+r → R
n+r

given by exp(i(m), x) = i(m) + x. Clearly exp is differentiable and exp |i(M)×0 = i. Thus, since exp is just the usual
exponential map, exp |Nε will be an embedding for some sufficiently small ε > 0, where Nε is the subset of N of
vectors of length less than or equal to ε.
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Now, define c0 : Rn+r → Nε/∂Nε by sending the interior of Nε to itself, and Rn+r − intNε to the point ∂Nε, and
extend to

c : Sn+r → Nε/∂Nε

by sending ∞ ∈ Sn+r to ∂Nε as well. Let
ε−1 : Nε/∂Nε → TN

be multiplication by 1/ε; then
ε−1 ◦ c : Sn+r → TN.

Note that ε−1 ◦ c sends intNε diffeomorphically to TN − t0.
Next, let jrn : γr(Rn+r) → γr be the standard inclusion and n : N → γr(Rn+r) the map (m,x) 7→ (Nm, x) of

Section 3. Then we have a map
(jrn ◦ n)× (ν̃ ◦ π) : N → γr ×Br.

Note that this is injective since n : N → γr(Rn+r) is. Since (here p : γr → BOr is the projection)

fr(ν̃π(m,x)) = ν(m)

= pjrn(Nm, x)

= p(jrnn(m,x))

it actually has image inside of f∗r γ
r. Thus we have a bundle map

(jrn ◦ n)× (ν̃ ◦ π) : N → f∗r γ
r

inducing a map
T
(
(jrn ◦ n)× (ν̃ ◦ π)

)
: TN → Tf∗r γ

r = TBr.

So, finally, define
θi,ν̃,ε(M) : (Sn+r,∞)→ (TBr, t0)

to be the composition
T
(
(jrn ◦ n)× (ν̃ ◦ π)

)
◦ ε−1 ◦ c.

Essentially this map embeds intNε into TBr − t0, and sends the rest of Sn+r into t0.
Now, clearly decreasing ε gives a homotopic map θ. Similarly, an equivalent choice of ν̃ will give a homotopic map

θ, by the definition of equivalence of lifting. In this way we have a well-defined

θi(M) ∈ πn+r(TBr, t0).

Lemma 5.1. Let ι : Rn+r → R
n+r+1 be the usual inclusion. Then the inclusion ι ◦ i : M ↪→ R

n+r+1 gives rise to
the map Tgr ◦ Σθi; that is,

θιi = Tgr ◦ Σθi.

Proof. Since all of our extensions were done in the same way, we have the following identities for the data for ιi,
where lrn : γr(Rn+r)→ γr+1(Rn+r+1), η : N → E(ν(ιi)) and sn+r : Sn+r → Sn+r+1 are obtained in the same way :
ν̃(ιi) = grν̃, ε−1

ιi cιisn+r = Tη ◦ ε−1c, π = πιiη, nιiη = lrnn. Thus,

θιisn+r = T
(
(jr+1
n nιi)× (ν̃(ιi)πιi)

)
ε−1
ιi cιisn+r

= T
(
(jr+1
n nιi)× (ν̃(ιi)πιi)

)
Tη ◦ ε−1c

= T
(
(jr+1
n nιiη)× (ν̃(ιi)πιiη)

)
ε−1c

= T
(
(jr+1
n lrnn)× (grν̃π)

)
ε−1c

= T
(
(jrnn)× (grν̃π)

)
ε−1c

= Tgrθi.

Therefore we see that θιi = Tgr ◦ Σθi. �

Lemma 5.1 shows that θi(M) can actually be thought of as an element of limr→∞ πn+r(TBr, t0).
Lemma 5.2. Let i′ : M + ∂W ↪→ R

n+r be an embedding. Then if r is sufficiently large (depending only on M), θi
and θi′ are homotopic.
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Proof. The idea here is to get a (B, f) embedding of M × I +W in Rn+r × I agreeing with i on M × 0 and with i′

on M × 1 + ∂W . We can then use this embedding to construct the desired homotopy.
Let ν̃(i′) : M + ∂W → Br be a lift of ν(i′) compatible with the (B, f) structure on M . For r sufficiently large we

can choose a regular homotopy H0 : M × I → R
n+r of i and i′|M ; that is, H0|M×0 = i and H0|M×1 = i′|M . We can

then easily modify H0 to a regular homotopy

H : M × I → R
n+r

of i and i′|M with H|M×t = i for t near 0 and H|M×t = i′|M for t near 1.
Now, by the collaring neighborhood theorem we can find a map

K : W → R
n+r × (0, 1]

with K|∂W = i′|∂W × 1 (that is, the last coordinate of K is always 1 on ∂W , and here K agrees with i′) and which
is an embedding on a tubular neighborhood of ∂W .

Consider the map
(H × πI) +K : M × I +W → R

n+r × I
where πI : M ×I → I is the projection. By our choices of H and K this will be an embedding on some neighborhood
of the boundary M × 0 +M × 1 + ∂W. Thus we may find a homotopic embedding

F : M × I +W ↪→ R
n+r × I

agreeing with (H × πI) +K on that neighborhood. So F |M×0 = i and F |M×1+∂W = i′. We must check that F gives
the correct (B, f) structure on M × 0 and M × 1 + ∂W . We have a normal map ν(F |M×I) : M × I → BOr for the
embedding

F |M×I : M × I ↪→ R
n+r × I;

choose a lifting ν̃(F |M×I). Since H is constant near 0 and 1, so is F |M×I and thus so is ν(F |M×I). Thus we can
actually choose ν̃(F |M×I) to agree with ν̃(i) at 0 and ν̃(i′) at 1.

Further, since the (B, f) structure on ∂W is induced by that of W , we can choose a lifting of the normal map of
F |W agreeing with ν̃(i′|∂W ). Combining these we see that F induces the correct structures and thus is a (B, f) map.

So we have a (B, f) embedding of M × I + W in Rn+r × I. If we apply our θ construction to this (not to the
manifold M × I +W , but rather just running the construction ignoring the factor of I, we obtain a map

θ̄ : Sn+r × I → TBr

which clearly satisfies θ̄|Sn+r×0 = θi and θ̄|Sn+r×1 = θi′ . This is the desired homotopy. �

Applying Lemma 5.1 repeatedly to our initial embedding i to get r sufficiently large, and then applying Lemma 5.2
with W = ∅, we see that θi(M) is independent of the embedding i, at least as an element of limr→∞ πn+r(TBr, t0).

Further, suppose M and M ′ are cobordant. Then there exist (B, f) manifolds U and U ′ with M+∂U ∼= M ′+∂U ′.
Applying Lemma 5.2,

θ(M) ∼ θ(M + ∂U) ∼ θ(M ′ + ∂U ′) ∼ θ(M ′).
Thus the homotopy class of θ is constant on cobordism classes. Thus, finally, we have a well-defined map

Θ : Ωn(B, f)→ lim
r→∞

πn+r(TBr, t0).

Roughly, Θ sends a manifold M to a map Sn+r → TBr embedding its normal bundle around the zero-section in
TBr.
Proposition 5.3. Θ is a homomorphism.

Proof. Choose [M1], [M2] ∈ Ωn(B, f) and choose embeddings i1 : M1 → R
n+r, i2 : M2 → R

n+r which send M1 and
M2 into different half-planes. Then choose the normal neighborhoods N i

ε of Mi small enough so that they also lie in
these half-planes. We then see that Θ(M1 +M2) is simply given by the composition

Sn+r −−−−→ Sn+r ∨ Sn+r Θ(M1)∨Θ(M2)−−−−−−−−−−→ TBr

where ∨ is the wedge product and the first map is collapsing the equator to a point, yielding the two copies of Sn+r.
However, this is also the definition of the sum of homotopy classes Θ(M1) + Θ(M2). So Θ is a homomorphism of
abelian groups. �

Proposition 5.4. Θ is surjective.
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Proof. Choose a representative θ : (Sn+r, p)→ (TBr, t0) of a class of limr→∞ πn+r(TBr, t0). The idea here is simple;
we have Tfr ◦θ : (Sn+r, p)→ (TBOr, t0), and we have a Grassmann manifold BOr embedded as the the zero section
of TBOr. We would like to take (Tfr ◦ θ)−1(BOr) for Θ−1(θ). Unfortunately, this need not even be a manifold, and
a bit of work will be required to remedy this.

So, we have
Tfr ◦ θ : (Sn+r, p)→ (TBOr, t0).

Since TBOr has {Tγr(Rr+s)} as an open cover, and since Tfr ◦ θ(Sn+r) is compact, we must have Tfr ◦ θ(Sn+r) ⊆
Tγr(Rr+s) for some s. We now deform Tfr ◦ θ to a map h0 satisfying four conditions.

(1) h0 is differentiable on the preimage of some neighborhood of Gr(Rr+s).
(2) h0 is transverse regular on Gr(Rr+s).
(3) Setting M = h−1

0 (Gr(Rr+s)) (M is a manifold by (1) and (2)) there is some tubular neighborhood N of M
(so N is isomorphic to the normal bundle of M) such that h0|N is a bundle map.

(4) There is a closed set Z, containing t0 in its interior, for which Tfr ◦ θ = h0 on h−1
0 (Z).

(See [21, Appendix 2, p. 24].) Note that (1) and (2) use the fact that TBOr − t0 is a manifold. In fact, since h0|M
classifies the normal bundle of M , we can further deform it to a map

h : (Sn+r, p)→ (TBOr, t0)

satisfying the above properties and such that

h|M = ν : M → Gr(Rr+s) ↪→ BOr

and h is simply the usual translation of vectors in some tubular neighborhood of M .
Now, Tfr : TBr → TBOr is a fibration away from t0, and t0 /∈ Tfr ◦ θ(Sn+r − h−1(intZ)), so by the covering

homotopy theorem we can find a homotopy

H0 : (Sn+r − h−1(intZ))× I → TBr

of θ on Sn+r − h−1(intZ) covering Tfr ◦ θ. That is, we have H0 = θ at 0 and Tfr ◦H = h for all t ∈ I. By (4) we
may take H0 to be pointwise fixed on the boundary of Z. Thus, we may extend H0 to a homotopy

H : (Sn+r, p)× I → (TBr, t0)

by sending all of h−1(Z) to that point p. Set θ1 = H|Sn+r×1.
We have θ−1

1 (Br) = h−1(BOr) = h−1(Gr(Rr+s)) = M . In fact, θ1|M gives a lift of the normal map h|M since
Tfr ◦H|Sn+r×1 = h and we chose h to agree with the normal map of M . This then makes M into a (B, f) manifold.

Now, take Θ(M) with this (B, f) structure. Since we chose h to be just translation near M , tracing through the
definition of Θ(M) we see than we can find Nε such that θ1|Nε = Θ(M)|Nε . Since TBr −Br can be deformed to t0,
we can further homotope θ1 all the way to Θ(M). So θ ∼ θ1 ∼ Θ(M), and Θ is surjective. �

Proposition 5.5. Θ is injective.

Proof. Let M be a (B, f) manifold with Θ(M) = 0. Then there is an r such that Θ(M) : (Sn+r, p) → (TBr, t0) is
homotopic to the constant map θ0 : Sn+r → t0 by a homotopy

H : Sn+r × I → TBr.

Choose H so that H|Sn+r×t = Θ(M) for t ≤ δ. As above, by compactness Tfr ◦H(Sn+r × I) ⊆ Tγr(Rr+s) for some
s. Again, as above, we can deform Tfr ◦H to a map

K : Sn+r × I → TBOr

which is smooth near Gr(Rr+s), transverse regular on Gr(Rr+s) and such that K = Tfr ◦H on Nε × [0, δ], for some
δ > 0. By transversity, W = H−1(Gr(Rr+s)) is a submanifold of Rn+r×I. In fact, since K|Sn+r×1 = Tfr ◦H|Sn+r×1

is the constant map at t0 we see that ∂W ⊆ Rn+r × 0. Since K = Tfr ◦H on Nε × [0, δ], we see that ∂W = M .
Thus, we have only to find a (B, f) structure on W compatible with that on M . To do this, further homotope K

to get K|W to be the normal map. Now, applying the covering homotopy theorem to the homotopy from Tfr ◦H to
K, we obtain a homotopy from H to a map

θ : Sn+r × I → TBr
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with θ|Sn+r×t = Θ(M) for small t and θ|Sn+r×1 = θ0. Further, θ|W is a lifting of the normal map K|W . This gives
W a (B, f) structure which does indeed induce the correct (B, f) structure on M = ∂W . Thus, M ≡ 0 in Ωn(B, f),
so Θ is injective. �

This completes the proof of the generalized Thom-Pontrjagin theorem.

Part 2. The Unoriented Cobordism Ring

6. Hopf Algebras

Having proven the generalized Thom-Pontrjagin theorem, we will now turn our attention towards solving some of
the specific cobordism problems. We will begin with the simplest case, that of unoriented cobordism. The homotopy
problem in this case is still quite difficult, however, and we will require a number of tools of algebraic topology in
order to solve it. We will spend the next six sections reviewing the necessary material. We begin with some simple
results on Hopf algebras. For a much more complete treatment, see [13].

We first recall the definition of a coalgebra.
Definition 8. Let M be a graded module over a field k. We will call M a k-coalgebra if it possesses a coproduct

ψ : M →M ⊗M
(a map of graded modules) together with a counit

ε : M → k

satisfying two conditions.
(1) ψ is coassociative; that is, the diagram

M
ψ−−−−→ M ⊗M

ψ

y yψ⊗id

M ⊗M id⊗ψ−−−−→ M ⊗M ⊗M
is commutative.

(2) The two compositions
k ⊗M

##GGGGGGGGG

M
ψ // M ⊗M

ε⊗id
99ssssssssss

id⊗ε %%KKKKKKKKKK M

M ⊗ k

;;wwwwwwwww

are both the identity map.
We say that M is connected if ε0 : M0 → k is an isomorphism.

We first prove a simple property of coproducts for connected coalgebras.
Lemma 6.1. If M is a connected coalgebra, then for all m ∈M ,

ψ(m) = m⊗ 1 + 1⊗m+
∑

degm′,m′′ 6=n

m′ ⊗m′′

where the sum is over elements not contained in M0 ⊗Mn or Mn ⊗M0.

Proof. Let n be the degree of m. If we trace m through the sequence of maps

M
ψ−−−−→ M ⊗M ε⊗1−−−−→ k ⊗M −−−−→ M

and use condition (2) in the definition of coalgebras we get

(1)
∑

ε(m′)m′′ = m

where
ψ(m) =

∑
m′ ⊗m′′.
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Since M is connected, M0 ⊗Mn is isomorphic to Mn, so we can combine all of the terms∑
degm′′=n

m′ ⊗m′′

into a single tensor m′0 ⊗m′′0 . But since M is a graded module, (1) still holds if we restrict to m′′ of degree n. Thus
ε(m′o)m

′′
0 = m, so

m′0 ⊗m′′0 = 1⊗m.
Using the other sequence of maps, we find that the element of Mn ⊗M0 in ψ(m) is m ⊗ 1, which completes the
proof. �

In some cases M will be both a k-algebra and a k-coagebra.
Definition 9. Let A be a graded k-module which is both a k-algebra and a k-coalgebra. We say that A is a Hopf
algebra if the coproduct ψ is a homomorphism of graded k-algebras. We say that A is connected if it is connected as
a coalgebra.

The main result we need concerns faithful modules over Hopf algebras.
Proposition 6.2. Let A be a connected Hopf algebra over k. Let M be a connected coalgebra over k which is a left
A-module and such that its coproduct ∆ is a map of A-modules. Let ν : A → M be defined by ν(a) = a · 1, where 1
is the image of 1 ∈ k in M0. Then if ν is injective, M is a free left module over A.

Proof. Let A+ be the submodule of A of elements of positive degree. Define N = M/A+M . Let π : M → N be the
quotient map, and choose any k-splitting f : N → M . (That is, πf = 1N , and f is a homomorphism of k-vector
spaces.) Define

ϕ : A⊗N →M

by ϕ(a⊗ n) = af(n). Then ϕ is an A-module homomorphism. We will prove that it is an isomorphism.
We prove surjectivity by induction on the degree of m ∈M . For the degree zero case,

ϕ : (A⊗N)0 = A0 ⊗N0 →M0

is simply the identity map on k by connectivity, so it is certainly surjective. Now suppose that we know that ϕ is
surjective for all degrees < degm. We calculate

π
(
m− ϕ(1⊗ π(m))

)
= π

(
m− fπ(m)

)
= π(m)− πfπ(m)

= π(m)− π(m)
= 0.

Therefore we can write
m− ϕ

(
1⊗ π(m)

)
=
∑

aimi

where ai ∈ A+ and mi ∈ M . Then all the mi have degree less than degm. Thus, by the induction hypothesis, we
can find xi ∈ A⊗N with ϕ(xi) = mi. So then

m = ϕ
(

1⊗ π(m) +
∑

aixi

)
,

which proves surjectivity.
Now, consider the sequence of maps

A⊗N 1⊗f−−−−→ A⊗M −−−−→ M
∆−−−−→ M ⊗M 1⊗π−−−−→ M ⊗N

where we give M ⊗M an A-module structure by a(m1 ⊗m2) =
∑
a′m1 ⊗ a′′m2 where ψ(a) =

∑
a′ ⊗ a′′. It is clear

that 1⊗ f and ∆ are both A-module maps. In fact, 1⊗ π is as well, for

(1⊗ π)
(
a(m1 ⊗m2)

)
= (1⊗ π)

(∑
a′m1 ⊗ a′′m2

)
=
∑

a′m1 ⊗ π(a′′m2)

= am1 ⊗ π(m2)

using Lemma 6.1 and the fact that π annihilates A+M . But this is simply a
(
m1 ⊗ π(m2)

)
in A⊗N , so 1⊗ π is an

A-module map.
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Now, tracing through the maps, a ⊗ n maps to a · 1 ⊗ n plus elements of different bidegrees. Thus, since ν is
injective, the above composition is injective. But ϕ is the composition of the first two maps in it, and thus it is also
injective.

Therefore, M ∼= A⊗N , so M is a free A-module. �

7. Partitions and Symmetric Functions

Definition 10. A partition I of a positive integer n is an unordered sequence (i1, . . . , ik) of positive integers with
sum n. I is said to be dyadic if each iα has the form 2sα − 1 for some integer sα. I is said to be non-dyadic if none
of the iα have that form.

We denote by p(n) the total number of partitions of n, and by pd(n) and pnd(n) the number of dyadic and
non-dyadic partitions, respectively.

If I = (i1, . . . , ik) and J = (j1, . . . , jl) are partitions of n and m respectively, then the juxtaposition IJ =
(i1, . . . , ik, j1, . . . , jl) is a partition of n + m. A partition I ′ of n is said to be a refinement of I if we can write
I ′ = I1 · · · Ik with each Iα a partition of iα.
Lemma 7.1. For all positive integers n,

n∑
i=0

pd(i)pnd(n− i) = p(n).

Further, if f(n) is any function satisfying
n∑
i=0

pd(i)f(n− i) = p(n)

then f = pnd.

Proof. This is a standard combinatorics argument. If I is a partition of n, then it can be written uniquely in the
form IdInd where Id is dyadic and Ind is non-dyadic. Conversely, for all i, 0 ≤ i ≤ n, if Id is a dyadic partition of i,
and Ind is a non-dyadic partition of n− i, we obtain a partition IdInd of n. There are pd(i)pnd(n− i) different ways
of making this construction for each i, since by the first argument each pair of a dyadic partition and a non-dyadic
partition gives rise to a different partition of n. Summing over i gives the desired result. The second statement is an
easy induction. �

We will now briefly investigate symmetric functions. Recall that the ring Sn of symmetric functions in n variables
is the graded subring of Z[t1, . . . , tn] of polynomials which are fixed by every permutation of the variables. It is a
standard theorem of algebra that the elementary symmetric functions σ1, . . . , σn form a polynomial basis for Sn, so
that

Sn = Z[σ1, . . . , σn]
with σi of degree i. (See [9, Section 4.6].) Thus, a free basis of the degree m elements Smn of Sn is given by

{σI = σi1 · · ·σik | I = (i1, . . . , ik) a partition of m}.
We will now construct another useful basis for Smn . If I = (i1, . . . , ik) is a partition of m of length at most n, then

we can form the symmetric function ∑
tI =

∑
ti11 t

i2
2 · · · t

ik
k

where the
∑

indicates that we take the smallest symmetric function containing the monomial tI . That is, we include
every monomial that can be formed with exponents exactly forming I. It is not hard to show that the set{∑

tI | I a partition of m of length at most n
}

is then a basis for Smn .
Now, let I be any partition of m. Choose n ≥ m. Then as we have already observed the elementary symmetric

functions σ1, . . . , σm of t1, . . . , tn are algebraically independent. Thus, there is a unique polynomial sI ∈ Z[t1, . . . , tn]
satisfying

sI(σ1, . . . , σm) =
∑

tI .

It is not hard to see that sI is independent of the choice of n, and that the identity remains valid even for n < m,
substituting 0 for σi with i > n.
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Returning to the case where n ≥ m, we see that the p(m) polynomials sI are linearly independent, and therefore
that they form a basis for Smn . We list the first twelve such polynomials.

s() = 1
s(1)(σ1) = σ1

s(2)(σ1, σ2) = σ2
1 − 2σ2

s(1,1)(σ1, σ2) = σ2

s(3)(σ1, σ2, σ3) = σ3
1 − 3σ1σ2 + 3σ3

s(1,2)(σ1, σ2, σ3) = σ1σ2 − 3σ3

s(1,1,1)(σ1, σ2, σ3) = σ3

s(4)(σ1, σ2, σ3, σ4) = σ4
1 − 4σ2

1σ2 + 2σ2
2 + 4σ1σ3 − 4σ4

s(1,3)(σ1, σ2, σ3, σ4) = σ2
1σ2 − 2σ2

2 − σ1σ3 + 4σ4

s(2,2)(σ1, σ2, σ3, σ4) = σ2
2 − 2σ1σ3 + 2σ4

s(1,1,2)(σ1, σ2, σ3, σ4) = σ1σ3 − 4σ4

s(1,1,1,1)(σ1, σ2, σ3, σ4) = σ4

8. The Steenrod Algebra

We will now recall the main properties of the Steenrod algebra A2. For a complete treatment, see [20].
A2 is a graded Z2-algebra, generated (but not freely) by elements Sqi of degree i, i ≥ 0, with Sq0 = 1. The only

relations satisfied by the generators are the Adem relations

Sqa Sqb =
[a/2]∑
i=0

(
b− i− 1
a− 2i

)
Sqa+b−i Sqi

for a < 2b. It follows from this that A2 has a vector space basis of elements of the form

Sqi1 Sqi2 · · ·Sqin

with iα ≥ 2iα+1 for all α. In fact, the dimension of the vector space An2 of homogeneous elements of degree n is a
familiar quantity.
Lemma 8.1. The number of partitions I = (i1, . . . , ik) of n with iα ≥ 2iα+1 for all α is pd(n), the number of dyadic
partitions of n.

Proof. Let I = (i1, . . . , ik) be a partition of n with iα ≥ 2iα+1 for all α. Let I ′ be the partition containing iα− 2iα+1

copies of the integer 2α − 1. Then I ′ is certainly dyadic, and it is a partition of
k∑

α=1

(iα − 2iα+1)(2α − 1) =
k∑

α=1

2αiα − 2α+1iα+1 − iα + 2iα+1

=
k∑

α=1

iα

= n.

The inverse construction is now clear, giving us a bijective correspondence between the two types of partitions and
establishing the lemma. �

Thus, dimZ2 An2 = pd(n).
The Steenrod algebra is closely related to the cohomology of spaces with coefficients in Z2. Precisely, for any pair

(X,A) we get a natural pairing
A2 ⊗H∗(X,A;Z2)→ H∗(X,A;Z2)

such that
Sqi : Hn(X,A;Z2)→ Hn+i(X,A;Z2)

is an additive homomorphism for all n and all i. In general the precise action of Sqi is difficult to compute. However,
we do have

Sq0 x = x for all x;
Sqi x = x ∪ x if x has degree i;
Sqi x = 0 if x has degree < i.
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Finally, we have the following formula for Sqi of a cup product:

Sqi(x ∪ y) =
∑

i1+i2=i

Sqi1 x ∪ Sqi2 y.

We can define a coproduct on the Steenrod algebra

ψ : A2 → A2 ⊗ A2

by ψ(Sqi) =
∑
i1+i2=i Sqi1 ⊗Sqi2 . We can also define a counit

ε : A2 → Z2

by ε(Sq0) = 1 and ε(Sqi) = 0 for i ≥ 1. It is not difficult to show that this gives A2 the structure of a connected
Hopf algebra over Z2.

The Steenrod algebra, like all cohomology operations, is closely related to Eilenberg-MacLane spaces. Recall that
the Eilenberg-MacLane space K(G,n) is a CW -complex with

πi(K(G,n)) =

{
G, if i = n;
0, otherwise.

It can be shown that the Eilenberg-MacLane space K(G,n) exists and is unique up to homotopy for all positive
integers n and groups G. (G must be abelian if n ≥ 2, of course. See [19, Section 8.1].)

We will need to know the cohomology of K(Z2, n). It is immediate from the Hurewicz theorem ([19, Section 7.5,
Theorem 5]) that

Hi(K(Z2, n);Z2) = Hi(K(Z2, n);Z) = 0

for 0 < i < n. It follows from a theorem of Serre ([24, Theorem 8.2]) that

Hn+i(K(Z2, n);Z2) ∼= Hn+i(K(Z2, n);Z) ∼= Ai2

for i < n.
Eilenberg-MacLane spaces also have an important mapping property: for any space X, any group G and any

positive integer n there is a natural bijection between the cohomology group Hn(X;G) and homotopy classes of
maps from X to K(G,n). In the case G = Z2, we can describe this correspondence more precisely as follows: Let
x ∈ Hn(X;Z2) correspond to a map f : X → K(Z2, n). Then f induces maps f∗ : Hi(K(Z2, n);Z2) → Hi(X;Z2).
For n ≤ i < 2n, we have Hi(X;Z2);Z2) ∼= Ai−n2 , and in this case f∗ is given by evaluation on x; that is, a ∈ Ai−n2

∼=
Hi(K(Z2, n);Z2) maps to ax ∈ Hi(X;Z2).

9. Stiefel-Whitney Classes

In this section we will introduce the theory of characteristic cohomology classes with coefficients in Z2. For an
excellent treatment of this topic, see [14, Sections 4-8].

We will construct the Stiefel-Whitney classes of a vector bundle ξ over a base space B by means of the Steenrod
algebra. First, we recall the Thom isomorphism theorem.
Theorem 9.1 (Unoriented Thom Isomorphism Theorem). Let ξ be an n-dimensional vector bundle over a base space
B with projection map π : E = E(ξ) → B. Let E0 be the complement of the zero section in E. Then there exists a
unique cohomology class uξ ∈ Hn(E,E0;Z2) (called the Thom class) such that

uξ|(F,F0) 6= 0

for all fibers F = π−1(b). Furthermore, for all i the map x 7→ x ∪ uξ defines an isomorphism

Hi(E;Z2)→ Hi+n(E,E0;Z2).

See [14, Section 10] for a proof.
Definition 11. The Thom isomorphism

ϕ : Hi(B;Z2)→ Hi+n(E,E0;Z2)

is defined by ϕ(x) = π∗x∪uξ. (π∗ is an isomorphism since the zero section embeds B as a deformation retract of E.)
Using the Steenrod squares and the Thom isomorphism, we can now define the Stiefel-Whitney classes.
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Definition 12. Let ξ be an n-plane bundle over B. The ith Stiefel-Whitney class wi(ξ) ∈ Hi(B;Z2) is defined by

wi(ξ) = ϕ−1 Sqi ϕ(1).

That is, wi(ξ) satisfies
π∗wi(ξ) ∪ uξ = Sqi(uξ).

Using the properties of Steenrod squares, it is not difficult to verify the five defining properties of Stiefel-Whitney
classes.

(1) w0(ξ) = 1 and wi(ξ) = 0 for i > n.

Proof. Since Sq0 is the identity, it is clear that w0(ξ) = 1. If i > n, then Sqi(uξ) = 0, so wi(ξ) = 0. �

(2) (Naturality) If f : B(ξ)→ B(η) is covered by a bundle map from ξ to η, then

wi(ξ) = f∗wi(η).

Proof. Let f : ξ → η be the bundle map. Then f maps E(ξ)0 into E(η)0, and thus induces a map g :
(E(ξ), E(ξ)0) → (E(η), E(η)0). Also, from the definition of the Thom class it is clear that f∗(uη) = uξ.
Thus, the Thom isomorphisms ϕξ and ϕη satisfy

g∗ ◦ ϕη = ϕξ ◦ f∗.
Combining this with the naturality of Steenrod squares, we see that f∗wi(η) = wi(ξ). �

(3) If ξ and ξ′ are vector bundles, then

wi(ξ × ξ′) =
∑

i1+i2=i

wi1(ξ)× wi2(ξ′).

Proof. Let ξ′′ = ξ× ξ′. We have uξ ×uξ′ ∈ Hn(E(ξ)×E(ξ′), E(ξ)×E(ξ′)0 ∪E(ξ)0×E(ξ′)). But that union
is simply E(ξ′′)0, so uξ × uξ′ ∈ Hn(E(ξ′′), E(ξ′′)0) and we see easily that it is the Thom class of ξ′′. From
this we see that the Thom isomorphism of ξ′′, ϕ′′, is simply given by ϕ× ϕ′. Now, we compute

ϕ′′
(
wi(ξ′′)

)
= Sqi(u′′ξ )

= Sqi(uξ × uξ′)

=
∑

i1+i2=i

Sqi1(uξ)× Sqi2(uξ′)

=
∑

i1+i2=i

ϕ
(
wi1(ξ)

)
× ϕ′

(
wi2(ξ′)

)
=

∑
i1+i2=i

ϕ′′
(
wi1(ξ)× wi2(ξ′)

)
.

Applying (ϕ′′)−1 to both sides gives the desired equality. �

(4) (The Whitney product formula) If ξ and ξ′ are vector bundles over the same base space, then

wi(ξ ⊕ ξ′) =
∑

i1+i2=i

wi1(ξ) ∪ wi2(ξ′).

Proof. This follows immediately from the previous formula by pulling back under the diagonal embedding
and using naturality. �

(5) w1

(
γ1(R2)

)
is non-zero.

Proof. This will follow immediately from Proposition 10.1. �

We define the total Stiefel-Whitney class w(ξ) ∈ H∗(B;Z2) by

w(ξ) = 1 + w1(ξ) + . . .+ wn(ξ).

The Whitney product formula then says precisely

w(ξ ⊕ ξ′) = w(ξ)w(ξ′).

Another useful application of Stiefel-Whitney classes is the Gysin sequence.
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Proposition 9.2 (The Unoriented Gysin Sequence). Let ξ be an n-plane bundle with projection π : E → B. Let
π0 : E0 → B be the restriction of π to E0. Then there is a long exact sequence

· · · −−−−→ Hi(B;Z2)
∪wn(ξ)−−−−−→ Hi+n(B;Z2)

π∗0−−−−→ Hi+n(E0;Z2) −−−−→ · · ·

Proof. We have the long exact cohomology sequence

· · · −−−−→ Hi(E,E0;Z2) −−−−→ Hi(E;Z2) −−−−→ Hi(E0;Z2) −−−−→ · · ·

of the pair (E,E0). Now, cup product with the Thom class uξ gives us an isomorphism from Hi−n(E;Z2) to
Hi(E,E0;Z2). This gives us an exact sequence

· · · −−−−→ Hi−n(E;Z2)
g−−−−→ Hi(E;Z2) −−−−→ Hi(E0;Z2) −−−−→ · · ·

where g(x) = (x ∪ uξ)|E = x ∪ uξ|E . Now, we also have an isomorphism π∗ : Hi(B;Z2) → Hi(E;Z2). Substituting
this in as well, we get a long exact sequence

· · · −−−−→ Hi−n(B;Z2) −−−−→ Hi(B;Z2) −−−−→ Hi(E0;Z2) −−−−→ · · ·

where the maps are easily seen to be as asserted, using the fact that π∗wn(ξ) = uξ|E . �

We wish to have a way to compare the Stiefel-Whitney classes of different manifolds. Of course, this is not
immediately possible since they are elements of different cohomology groups. We can remedy this by ‘evaluating’
the Stiefel-Whitney classes, as we now explain.

Let Mn be a compact manifold of dimension n. Recall that M has a unique fundamental homology class µM ∈
Hn(M ;Z2) characterized by ρx(µM ) 6= 0 for all m ∈M , where

ρx : Hn(M ;Z2)→ Hn(M,M −m;Z2)

is the natural map. (See [14, Appendix A].) Equivalently, µM is non-trivial on each connected component. Given
any cohomology class x ∈ Hn(M ;Z2), we can then form the Kronecker index

〈x, µM 〉 ∈ Z2.

We now apply this construction to Stiefel-Whitney classes. Let ξ be a vector bundle over M . Let I = (i1, . . . , ik)
be a partition of n. Define

wI(ξ) = wi1(ξ) · · ·wik(ξ) ∈ Hn(M ;Z2).

We now define the Stiefel-Whitney number WI [ξ] by

WI [ξ] = 〈wI(ξ), µM 〉 ∈ Z2.

We will say that two vector bundles over manifolds M and N of dimension n have the same Stiefel-Whitney numbers
if they agree for all partitions I of n.

Recall that we had another way of creating elements of degree n. Given any partition I of n, we have the
polynomial sI satisfying

sI(σ1, . . . , σn) =
∑

tI .

Thus,
sI
(
w(ξ)

)
= sI

(
w1(ξ), . . . , wn(ξ)

)
∈ Hn(M ;Z2),

so we can form the s-number
SI [w(ξ)] =

〈
sI
(
w1(ξ), . . . , wn(ξ)

)
, µM

〉
∈ Z2.

If I is not a partition of n, we will define SI [w(ξ)] = 0.
The utility of s-numbers comes from the following proposition.

Proposition 9.3. Let ξ and ξ′ be vector bundles over M . Then for any partition I,

sI
(
w(ξ ⊕ ξ′)

)
=

∑
I1I2=I

sI1
(
w(ξ)

)
sI2
(
w(ξ′)

)
.

Also, if η is a vector bundle over another manifold N , then

SI [w(ξ × η)] =
∑

I1I2=I

SI1 [w(ξ)]SI2 [w(η)].
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Proof. Consider the polynomial ring Z[t1, . . . , t2n], where n is the larger of the fiber dimensions of ξ and ξ′. Let σ′i and
σ′′i be the elementary symmetric functions of t1, . . . , tn and tn+1, . . . , t2n respectively. Letting σi be the elementary
symmetric functions of t1, . . . , t2n, we see that

σi =
∑

i1+i2=i

σ′i1σ
′′
i2 .

Now, pick a partition I = (i1, . . . , ik) of some integer r. Then

sI(σ1, . . . , σr) =
∑

ti11 · · · t
ik
k

where the sum is over all monomials of that form. Let I1 be the partition formed by the exponents of t1, . . . , tn and let
I2 be the partition formed by the exponents of tn+1, . . . , t2n. It is clear that the sum of all monomials corresponding
to I1 and I2 will be

sI1(σ′1, . . . , σ
′
r)sI2(σ′′1 , . . . , σ

′′
r ).

Summing over all decompositions of I now yields

sI(σ1, . . . , σr) =
∑

I1I2=I

sI1(σ′1, . . . , σ
′
r)sI2(σ′′1 , . . . , σ

′′
r ).

Now, the product formula for Stiefel-Whitney classes completes the proof since w(ξ⊕ ξ′), w(ξ) and w(ξ′) satisfy the
same identity

wi(ξ ⊕ ξ′) =
∑

i1+i2=i

wi1(ξ)wi2(ξ′)

and the elementary symmetric functions are algebraically independent.
For the second statement, simply use the fact that the fundamental homology class µM×N is just µM × µN and

that ξ × η = π∗1ξ ⊕ π∗2η, where π1 and π2 are the projections. �

As an easy corollary, we have:
Corollary 9.4. Let ξ and ξ′ be vector bundles over M . Then for all r

s(r)

(
w(ξ ⊕ ξ′)

)
= s(r)

(
w(ξ)

)
+ s(r)

(
w(ξ′)

)
.

Proof. We simply apply Proposition 9.3 with I = (r). I can then only be expressed as a juxtaposition in the two
trivial ways, which immediately yields the result. �

10. The Cohomology of Grassmann Manifolds

As an application of Stiefel-Whitney classes and the Gysin sequence, we will now compute the cohomology rings
of various Grassmann manifolds. These computations will also be important in our later results.
Proposition 10.1. Let RPn = G1(Rn+1) be real projective n-space. Then,

H∗(RPn;Z2) ∼= Z2[x]/(xn+1)

where x = w1

(
γ1(Rn+1)

)
. Further,

H∗(BO1;Z2) ∼= Z2[x]

where x = w1(γ1).

Proof. Let E be the total space of γ1(Rn+1). Then E0 is the set of all pairs (l, v), where l is a line through the origin
in Rn+1 and v is a non-zero point in l. So E0 can be identified with Rn+1 − 0. Thus, the Gysin sequence

· · · −−−−→ Hi(RPn;Z2) ∪x−−−−→ Hi+1(RPn;Z2) −−−−→ Hi+1(E0;Z2) −−−−→ · · ·
reduces to

0 −−−−→ Hi(RPn;Z2) ∪x−−−−→ Hi+1(RPn;Z2) −−−−→ 0

for 0 ≤ i ≤ n − 1. Since clearly H0(RPn;Z2) ∼= Z2, we have that Hi(RPn;Z2) ∼= Z2 with generator xi, for i ≤ n.
This shows that H∗(RPn;Z2) is as asserted, since Hi(RPn;Z2) = 0 for i > n. The second assertion follows by
passing to the limit as n goes to infinity. �
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In order to calculate the cohomology of BOr for larger r, we will first need another isomorphism. Let E0 be the
space of non-zero vectors of γr. We define a map f : E0 → BOr−1 as follows : For a pair (P, v) ∈ E0 of a plane P
and a non-zero vector v in P , let f(P, v) be the orthogonal complement of v in P . This is an (r − 1)-plane through
the origin, so f is well-defined.
Lemma 10.2. For any ring R, the map

f∗ : Hi(BOr−1;R)→ Hi(E0;R)

is an isomorphism for all i.

Proof. Restrict f to a map fN : E(γr(RN )) → Gr−1(RN ) for some large N . Then for any Q ∈ Gr−1(RN ), we see
that f−1

N (Q) is the set of all pairs (Q+ vR, v) where v is orthogonal to Q. So we can identify fN with a projection
map

E(ξ)0 → Gr−1(RN )

where ξ is the vector bundle over Gr−1(RN ) whose fiber over an (r− 1)-plane Q is the orthogonal (N − r+ 1)-plane.
In fact, this bundle can easily be given an orientation (by the orientation of v relative to Q+vR), so that the oriented
Gysin sequence shows that fN induces cohomology isomorphisms in dimensions ≤ 2(N − r). (See Section 14 and
Proposition 14.2. The oriented Gysin sequence is similar to the Gysin sequence we have already seen, except that it
allows R-coefficients.) Taking the direct limit as N goes to infinity now yields the result. �

In fact, in the proof of the next theorem we will only need the Z2 case of the above result, where we could get
away with the unoriented Gysin sequence. However, we will need this isomorphism with Zp coefficients in the process
of computing the unoriented cobordism groups.
Proposition 10.3. H∗(BOr;Z2) is the free polynomial algebra on the Stiefel-Whitney classes wi = wi(γr). That is,

H∗(BOr;Z2) ∼= Z2[w1, . . . , wr].

Proof. We first show that the wi are algebraically independent. Let ξ = γ1 × · · · × γ1 be the Cartesian product of
r copies of γ1. Then ξ is an r-plane bundle over (BO1)r, so there is a classifying map g : (BO1)r → BOr covered
by a bundle map ξ → γr. Set w′i = wi(ξ). Now, suppose we have a polynomial q with q(w1, . . . , wr) = 0. Then
q(w′1, . . . , w

′
r) = g∗q(w1, . . . , wr) = 0, so it will suffice to show that the w′i satisfy no polynomial relation.

Now, by the Künneth theorem,
H∗((BO1)r;Z2) ∼= Z2[x1, . . . , xr].

Further,

w′i = w(γ1) · · ·w(γ1)

= (1 + x1) · · · (1 + xr).

Thus w′i is the ith elementary symmetric function in x1, . . . , xr. But as we have previously observed, the σi are
algebraically independent, so the w′i are as well.

Now, returning to BOr, we have a Gysin sequence

· · · −−−−→ Hi(BOr;Z2) ∪wr−−−−→ Hi+r(BOr;Z2)
π∗0−−−−→ Hi+r(E0;Z2) −−−−→ · · ·

But by the lemma, we have a map f : E0 → BOr−1 inducing an isomorphism in cohomology. Inserting this into the
Gysin sequence, we get

· · · −−−−→ Hi(BOr;Z2) ∪wr−−−−→ Hi+r(BOr;Z2)
g−−−−→ Hi+r(BOr−1;Z2) −−−−→ · · ·

But from the definitions of f and π0 it is clear that π∗0wi = f∗wi(γr−1), so that g sends wi to wi(γr−1).
We now proceed by induction on r. The case r = 1 is Proposition 10.1. Now, since H∗(BOr−1;Z2) is generated

by w1(γr−1), . . . , wr−1(γr−1), g is surjective, and we obtain a short exact sequence

0 −−−−→ Hi(BOr;Z2) ∪wr−−−−→ Hi+r(BOr;Z2)
g−−−−→ Hi+r(BOr−1;Z2) −−−−→ 0.

Take x ∈ Hi+r(BOr;Z2). Then g(x) = q(w1(γr−1), . . . , wr−1

(
γr−1)

)
for some polynomial q, by the induction

hypothesis. Thus g
(
x − q(w1, . . . , wr−1)

)
= 0, so x − q(w1, . . . , wr−1) = wry for some y ∈ Hi(BOr;Z2). So now

a second induction on i will show that w1, . . . , wr generate H∗(BOr;Z2). Combined with the independence shown
earlier, this establishes the proposition. �
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11. Computations in Projective Space

In our final calculation of the unoriented cobordism groups we will need some information on the s-numbers of
projective spaces. In this section we will carry out those computations.

Now, recall that γ1(Rn+1) is a line bundle over RPn. By Proposition 10.1, we have w(γ1(Rn+1)) = 1 + x, where
x is the generator of H∗(RPn;Z2).

By its very definition γ1(Rn+1) is contained as a subbundle in the trivial bundle εn+1. Let γ⊥ be its orthogonal
complement in εn+1. Then γ1(Rn+1) ⊕ γ⊥ = εn+1. Now, since ε1 is trivial, there is a bundle map from ε1 to a
bundle over a point. Thus all of its higher Stiefel-Whitney classes are zero, and w(ε1) = 1. Then by the Whitney
product formula, w(εn+1) = 1.

We now relate these bundles to the tangent bundle τ(RPn).
Proposition 11.1. τ(RPn) ∼= Hom(γ1(Rn+1), γ⊥).

Proof. Let f : Sn → RPn be the quotient map, f(x) = {±x}. Note that

Df(x, v) = Df(−x,−v)

for all x ∈ Sn, v ∈ τ(Sn)x. We can then identify the tangent bundle τ(RPn) with the set of pairs

{(x, v), (−x,−v)}
with x · x = 1 and x · v = 0. But such pairs are in bijection with linear maps

l : L→ L⊥

where L is the line through x and −x and l is defined by l(x) = v. Therefore the fiber τ(RPn)x is canonically
isomorphic to Hom(L,L⊥). It then follows that

τ(RPn) ∼= Hom(γ1(Rn+1), γ⊥),

since the fibers of γ1(Rn+1) are simply the lines L and the fibers of γ⊥ are the n-planes L⊥. �

We are now in a position to compute the Stiefel-Whitney classes w
(
τ(RPn)

)
.

Proposition 11.2. Let x = w1

(
γ1(Rn+1)

)
be the generator of H∗(RPn;Z2) ∼= Z2[x]/(xn+1). Then

w
(
τ(RPn)

)
= (1 + x)n+1.

Proof. It is clear that Hom(γ1(Rn+1), γ1(Rn+1)) is the trivial line bundle, since it has a non-zero section. Therefore,

τ ⊕ ε1 ∼= Hom(γ1(Rn+1), γ⊥)⊕Hom(γ1(Rn+1), γ1(Rn+1))
∼= Hom(γ1(Rn+1), γ⊥ ⊕ γ1(Rn+1))
∼= Hom(γ1(Rn+1), εn+1)
∼= Hom(γ1(Rn+1), ε1)⊕ · · · ⊕Hom(γ1(Rn+1), ε1)
∼= γ1(Rn+1)⊕ · · · ⊕ γ1(Rn+1).

Now, by the Whitney product formula,

w(τ) = w(τ)w(ε1)

= w(τ ⊕ ε1)

= w(γ1(Rn+1)⊕ · · · ⊕ γ1(Rn+1))

= w(γ1(Rn+1))n+1

= (1 + x)n+1.

�

Corollary 11.3. The Stiefel-Whitney numbers of τ(RPn) are given by

WI [τ(RPn)] =
(
n+ 1
i1

)
· · ·
(
n+ 1
ik

)
∈ Z2

where I = (i1, . . . ik) is a partition of n. Also,

S(n)[w
(
τ(RPn)

)
] = n+ 1 ∈ Z2.



AN INTRODUCTION TO COBORDISM THEORY 21

Proof. By the definition of the fundamental homology class µRPn we will have WI 6= 0 if and only if each of the
factors wiα is non-zero. Now, by Proposition 11.2,

wiα
(
τ(RPn)

)
=
(
n+ 1
iα

)
.

The first statement now follows immediately.
For the second statement, recall that by definition

s(n)(σ1, . . . , σn) = tn1 + · · ·+ tnn+1.

Now, in this case, wi is simply the ith elementary symmetric function of n+ 1 copies of x. Therefore,

s(n)(w1, . . . , wn) = xn + · · ·+ xn

= (n+ 1)xn.

Therefore, as before,
S(n)[w

(
τ(RPn)

)
] = n+ 1.

�

We will also need to consider one other class of manifolds. Choose positive integers m and n with m ≤ n. Let
RPm have homogeneous coordinates [x0, . . . , xm] and RPn have homogeneous coordinates [y0, . . . , yn]. Define Hm,n

to be the subset of RPm × RPn of points satisfying the homogeneous equation

x0y0 + · · ·+ xmym = 0.

Then Hm,n is a manifold of dimension m+ n− 1.
Proposition 11.4. The s-number S(m+n−1)[w

(
τ(Hm,n)

)
] is given by

S(m+n−1)[w
(
τ(Hm,n)

)
] =

(
m+ n

m

)
∈ Z2.

Proof. Set H = Hm,n. Let π1 : RPm × RPn → RPm and π2 : RPm × RPn → RPn be the projections. Let
λ be the line bundle π∗1γ

1(Rm+1) ⊗ π∗2γ1(Rn+1). Then we see that λ|H is the orthogonal complement of τ(H) in
τ(RPm × RPn)|H . That is,

τ(H)⊕ λ|H = τ(RPm × RPn)|H .
(Of course, by restriction to H we mean the pullback under the inclusion H ↪→ RPm × RPn.)

Now, by the Künneth theorem,

H∗(RPm × RPn;Z2) = H∗(RPm;Z2)⊗H∗(RPn;Z2)

= Z2[α1]/(αm+1
1 )⊗ Z2[α2]/(αn+1

2 )

= Z2[β1, β2]/(βm+1
1 , βn+1

2 ).

where βi = π∗i αi. Also,

w
(
τ(RPm × RPn)

)
= π∗1w

(
τ(RPm)

)
π∗2w

(
τ(RPn)

)
= (1 + β1)m+1(1 + β2)n+1

and
w(λ) = 1 + β1 + β2.

So
w(λ|H) = 1 + δ1 + δ2

where δi = βi|H .
By Corollary 9.4 we have

s(m+n−1)

(
w(τ(RPm × RPn)|H)

)
= s(m+n−1)

(
w(τ(H))

)
+ s(m+n−1)

(
w(λ|H)

)
.

But

s(m+n−1)

(
w(τ(RPm × RPn))

)
= (m+ 1)βm+n−1

1 + (n+ 1)βm+n−1
2

= 0
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since m,n < m+ n− 1. Thus, since we are working in Z2,

s(m+n−1)

(
w(τ(H))

)
= s(m+n−1)

(
w(λ|H)

)
.

But we can compute
s(m+n−1)(w1(λ|H), 0, . . . , 0) = s(m+n−1)(δ1 + δ2, 0, . . . , 0)

by noting that wi(λ|H) are the symmetric functions of t1 = δ1 + δ2, ti = 0 for i > 1. Thus

s(m+n−1)(w1(λ|H), 0, . . . , 0) = (δ1 + δ2)m+n−1.

So
s(m+n−1)

(
w(τ(H))

)
= (δ1 + δ2)m+n−1

and

S(m+n−1)[w
(
τ(H)

)
] =

〈
(δ1 + δ2)m+n−1, µH

〉
=
〈
(δ1 + δ2)m+n−1, µM |H

〉
=
〈
(β1 + β2)m+n−1w1(λ), µM

〉
=
〈
(β1 + β2)m+n, µM

〉
=
〈(

m+ n

m

)
βm1 β

n
2 , µM

〉
=
(
m+ n

m

)
since all other monomials in (β1 + β2)m+n vanish. �

12. The Cohomology of TBOr

By the Thom-Pontrjagin theorem, in order to solve the cobordism problem for unoriented manifolds it will be
enough to compute the homotopy groups of TBOr. In order to do this, we will first need some facts about the
cohomology of these spaces.
Lemma 12.1. For any r-plane bundle ξ over B

Hr+i(Tξ, t0;Z2) ∼= Hi(B;Z2)

for all i.

Proof. B is embedded as the zero cross section in ξ, and thus also in Tξ− t0. Let T0 be the complement of B in Tξ.
Then T0 is clearly contractible to t0. So by the exact sequence of the triple (Tξ, T0, t0) we quickly conclude

Hi(Tξ, t0;Z2) ∼= Hi(Tξ, T0;Z2).

Further, the excision axiom in cohomology shows that

Hi(Tξ, t0;Z2) ∼= Hi(E(ξ), E(ξ)0;Z2).

Together with the Thom isomorphism, we obtain our desired isomorphism

Hi(Tξ, t0;Z2) ∼= Hi−r(B;Z2).

�

In particular, we have
Hr+i(TBOr, t0;Z2) ∼= Hi(BOr;Z2).

Since, by Proposition 10.3
Hi(BOr;Z2) ∼= Hi(BOs;Z2)

for i ≤ min{r, s}, we obtain an isomorphism

Hr+i(TBOr, t0;Z2) ∼= Hs+i(TBOs, t0;Z2)

for i ≤ min{r, s}.
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Definition 13. We define Hn(TBO, t0;Z2) to be this constant value. That is,

Hn(TBO, t0;Z2) ∼= Hn+r(TBOr, t0;Z2)

for any r ≥ n. Define

H∗(TBO, t0;Z2) =
∞⊕
n=0

Hn(TBO, t0;Z2).

Note that under our isomorphism the element 1 ∈ H0(TBO0, t0;Z2) maps to the image of the Thom class in
Hr(TBOr, t0;Z2). We will denote this element of H∗(TBO, t0;Z2) by U .

Now, the Whitney sum of vector bundles gives a map

BOr ×BOs → BOr+s.

This induces a map
TBOr ∧ TBOs → TBOr+s.

(We take the smash product here because all of t0(TBOr) × TBOs and TBOr × t0(TBOs) have been identified to
a single point.) Combining these operations for all r and s we get a map

ψ : H∗(TBO, t0;Z2)→ H∗(TBO, t0;Z2)⊗H∗(TBO, t0;Z2).

Since the Whitney sum is associative ψ will be coassociative. If we define a counit ε : H∗(TBO, t0;Z2) → Z2 by
sending U to 1 and everything else to 0, we see that H∗(TBO, t0;Z2) is a connected coalgebra over Z2.

In addition, we see that the action of the Steenrod squares is compatible with our isomorphism of Definition 13.
(As complicated as this isomorphism is, all of the isomorphisms are natural except for the two involving the cup
product with the Thom class. These actions will cancel each other out, however, so that the overall action of the
Steenrod algebra will be compatible.) Thus H∗(TBO, t0;Z2) is a left A2-module; for a ∈ Ak2 we can use the action

a : Hn+r(TBOr, t0;Z2)→ Hn+r+k(TBOr, t0;Z2)

for any r ≥ n + k to give the action on Hn(TBO, t0;Z2). Since ψ is also a homomorphism of A2-modules, we are
almost in a position to apply Proposition 6.2.
Lemma 12.2. The map ν : A2 → H∗(TBO, t0;Z2) given by ν(a) = a(U) is injective.

Proof. Suppose that there is an a ∈ A2 with ν(a) = 0. Then the same is true of all of the homogeneous components
of a, so it will be enough to show that ν : An2 → H∗(TBO, t0;Z2) is injective for all n.

Now, the action of a ∈ An2 on H∗(TBO, t0;Z2) is given by

a : Hr(TBOr, t0;Z2)→ Hr+n(TBOr, t0;Z2)

for any r ≥ n. Thus ν is given by
ν : An2 → Hr+n(TBOr, t0;Z2)

by evaluation on the image of the Thom class u.
Now, let ξ = γ1 × · · · × γ1 be the Cartesian product of r copies of γ1. This is an r-plane bundle over (BO1)r, so

we have a classifying map g : (BO1)r → BOr covered by a bundle map ξ → γr. Now, suppose that we have a ∈ An2
with a(u) = 0. Then by the naturality of the A2 action, a(uξ) = g∗a(u) = 0, where uξ is the Thom class of ξ. So it
will be enough to prove that

ν : An2 → Hr+n(Tξ, t0;Z2)
is injective.

Here, however, uξ splits as a product x1 · · ·xr of the Thom classes of the r different γ1’s. Now, recall that An2 has
a base consisting of SqI with I = (i1, . . . , ik) a partition of n with iα ≥ 2iα+1. It can be shown by an easy induction,
using the product formula for Steenrod squares, that for such an I we will have

SqI(x1 · · ·xr) =
∑

x2v1
1 · · ·x2vr

r

where there are iα − 2α+1 copies of the integer α in the sequence of v’s, and the sum is over all monomials of this
form. But it is then clear that the sequence of v’s determines I, so that for any I ′, SqI

′
(x1 · · ·xr) will consist of

an entirely different set of monomials. Therefore no linear combination of them could vanish, which proves that the
map ν is injective. �

Corollary 12.3. H∗(TBO, t0;Z2) is a free left A2-module.
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Proof. Simply apply Proposition 6.2. �

13. Determination of the Unoriented Cobordism Ring

We are now finally in a position to determine the unoriented cobordism groups. Recall that these are the groups
Nn = Ωn(BO, 1), so that by the Thom-Pontrjagin theorem

Nn
∼= lim
r→∞

πn+r(TBOr, t0).

In fact, we can give N = ⊕∞n=0Nn the structure of a graded Z2-algebra.
Proposition 13.1. N is a commutative graded Z2-algebra with product induced by the Cartesian product of manifolds.

Proof. For any [M ] ∈ N we have M + M + ∂∅ ∼= ∅ + ∂(M × I), so M + M ≡ ∅ and M is its own additive inverse.
Now, if M,N,N ′ are closed with N ≡ N ′, then there are manifolds U and U ′ with N + ∂U ∼= N ′ + ∂U ′, so that

M ×N + ∂(M × U) ∼= M ×N ′ + ∂(M × U ′).

Thus M×N ≡M×N ′, so Cartesian product induces a well-defined product on N. Commutativity and distributivity
follow from the corresponding properties of Cartesian product. �

We are now ready to prove the first version of the structure theorem.
Theorem 13.2. The dimension of Nn as a Z2 vector space is pnd(n), the number of non-dyadic partitions of n.
Also, two manifolds are cobordant if and only if their tangent bundles have the same Stiefel-Whitney numbers.

Proof. Since by Corollary 12.3 Hn(TBO, t0;Z2) is a free A2-module, and Hn(TBO, t0;Z2) ∼= Hn+r(TBOr, t0;Z2)
for r ≥ n, Hi(TBOr, t0) is a free A2-module for dimensions between r and 2r. But Hi(TBOr, t0;Z2) = 0 for i < r,
so Hi(TBOr, t0;Z2) is actually a free A2-module for all dimensions ≤ 2r.

Now, choose a basis x1, . . . , xm of this part of H∗(TBOr, t0;Z2) as an A2-module, with xi ∈ Hni(TBOr, t0;Z2).
Note that we have ni ≥ r for all i, since the lower cohomology groups are zero. Each xi corresponds to a map
ϕi : TBOr → K(Z2, ni), and for j ≤ 2ni the map

ϕ∗i : Hj(K(Z2, ni);Z2) ∼= Aj−ni2 → Hj(TBOr, t0;Z2)

is just given by evaluation of the Steenrod algebra on xi. (See Section 8.)
Next, set K =

∏m
i=1K(Z2, ni), and let ϕ : TBOr → K be the product of the ϕi. By the Künneth theorem,

(2) Hj(K;Z2) =
⊕

∑
jα=n+r

Hj1(K(Z2, n1);Z2)⊗ · · · ⊗Hjm(K(Z2, nm);Z2).

Since ni ≥ r for all i, Hj(K(Z2, ni);Z2) = 0 for 0 < j < r and all i. Thus, if j ≤ 2r, the only non-zero terms in (2)
will be those with one jα0 = j and all other jα = 0. Thus, for j ≤ 2r,

(3) Hj(K;Z2) =
m⊕
i=1

Hj(K(Z2, ni);Z2).

Now, consider
ϕ∗ : Hj(K;Z2)→ Hj(TBOr, t0;Z2).

By (3), for j ≤ 2r,
Hj(K;Z2) ∼= ⊕Aj−ni2 ,

and ϕ∗ is given by evaluation on (x1, . . . , xm). So, since the xi are a basis for H∗(TBOr, t0;Z2) in dimension ≤ 2r,
ϕ∗ will be an isomorphism in Z2-cohomology for j ≤ 2r.

We wish to show that ϕ actually induces an isomorphism in Z-homology. Let E be the total space of γr, and E0

the complement of BOr in E. Let p be an odd prime. We then have the Zp-cohomology long exact sequence of the
pair

· · · → Hi(E,E0;Zp)→ Hi(E;Zp)→ Hi(E0;Zp)→ · · ·
Now, we have that Hi(E,E0;Zp) is canonically isomorphic to Hi(TBOr, t0;Zp), and that Hi(E;Zp) is canonically
isomorphic to Hi(BOr;Zp). Also, by Lemma 10.2, we have that Hi(E0;Zp) is isomorphic to Hi(BOr−1;Zp). So we
obtain a long exact sequence

· · · → Hi(TBOr, t0;Zp)→ Hi(BOr;Zp)→ Hi(BOr−1;Zp)→ · · ·
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By Corollary 17.2, the last two are isomorphic for i ≤ 2r, which implies that

Hi(TBOr, t0;Zp) = 0

for i ≤ 2r.
Now, by the universal coefficient theorem with field coefficients, we also have Hi(TBOr, t0;Zp) = 0 for i ≤ 2r. Of

course, Hi(K;Zp) = 0 as well in this range. So ϕ actually induces an isomorphism in Z-homology in these dimensions.
So by the Whitehead theorem, ϕ#i gives a homotopy equivalence for i < 2r. (See [19, Section 7.5,Theorem 9].)

We now compute πn+r(K). If we let mk be the number of ni equal to k, then this is just mn+r copies of Z2. To
compute this, we use (3):

Hn+r(K;Z2) =
m⊕
i=1

Hn+r(K(Z2, ni);Z2).

Therefore,

dimHn+r(K;Z2) =
m∑
i=1

dimHn+r(K(Z2, ni);Z2)

=
m∑
i=1

dim An+r−ni
2

=
m∑
i=1

pd(n+ r − ni)

=
n+r∑
k=r

mkpd(n+ r − k).

But
Hn+r(K;Z2) ∼= Hn+r(TBOr, t0;Z2) ∼= Hn(BOr;Z2)

which has rank p(n) since n ≤ r. So

p(n) =
n+r∑
k=r

mkpd(n+ r − k)

and by Lemma 7.1, mk = pnd(k − r). Thus,

dimπn+r(TBOr, t0) = dimπn+r(K)
= mn+r

= pnd(n).

Since by the Thom-Pontrjagin theorem
Nn
∼= lim
r→∞

πn+r(TBOr, t0)

and we have shown that the groups on the right-hand side all have Z2-dimension pnd(n) for r ≥ n, we have shown
that Nn has dimension pnd(n).

Now, since the Hurewicz homomorphism (from homotopy groups to homology groups) is certainly injective for
K, it is also injective for TBOr in dimensions < 2r. This gives us an injection of Nn into H∗(TBOr, t0;Z2). Since
the map Θ sends an n-manifold to the image of its normal bundle, which in turn maps to Stiefel-Whitney classes, we
see that Stiefel-Whitney numbers of the normal bundle are determined by cobordism. But since the Whitney sum
of the normal bundle and the tangent bundle is trivial, the Stiefel-Whitney numbers of the normal bundle are the
same as those of the tangent bundle, which completes the proof. �

As an immediate corollary, we obtain the following theorem of Rohlin (see [17]), for which a direct proof has never
been found.
Corollary 13.3. A compact 3 dimensional manifold (without boundary) is the boundary of a 4 dimensional manifold.

Proof. We calculate pnd(3) = 0, so the oriented cobordism group N3 is trivial. Thus all closed 3-manifolds bound,
which is the assertion. �

Theorem 13.2 seems to suggest very strongly that the entire algebra N is a polynomial ring with one generator
for each degree not of the form 2s − 1. Using our computations of Section 11, this will not be difficult to prove.



26 TOM WESTON

Theorem 13.4. N is the free Z2-algebra with one generator in each dimension not of the form 2s − 1. These
generators may be taken to be RPn for n even and the hypersurface H2p,2p+1q ⊆ RP 2p×RP 2p+1q for n = 2p(2q+1)−1
odd not of the form 2s − 1.

Proof. Let Mi be the asserted generator of dimension i. It follows easily from Corollary 11.3 and Proposition 11.4
that

S(i)[w
(
τ(Mi)

)
] 6= 0

for all i.
Consider the set of non-dyadic partitions of n. These have a partial ordering where I ≤ I ′ if I ′ refines I. Choose

a total ordering of the non-dyadic partitions compatible with this partial ordering.
For a non-dyadic partition I = (i1, . . . , ik) of n, define

MI = Mi1 × · · ·Mik .

Let I ′ be another non-dyadic partition of n. Now, by Proposition 9.3

SI′ [w
(
τ(MI)

)
] =

∑
I1···Ik=I

SI1 [w
(
τ(MI1)

)
] · · ·SIk [w

(
τ(MIk)

)
].

So if I ′ does not refine I, SI′ [w
(
τ(MI)

)
] must be zero, since there will be no way to choose partitions I1, . . . , Ik with

each Iα a partition of iα. Also, SI [w
(
τ(MI)

)
] = 1 since in this case there is exactly one choice of I1, . . . , Ik giving a

non-zero contribution to the sum.
Now, consider the matrix indexed by the non-dyadic partitions of n, ordered by our total ordering. Then the above

calculations show that this matrix is triangular with 1’s on the diagonal. Therefore it has non-zero determinant,
and the s-numbers of the manifolds MI are linearly independent over Z2. Since the polynomials sI are a basis for
the symmetric functions of degree n, this is equivalent to the linear independence of the Stiefel-Whitney numbers of
the tangent bundles of the MI . It now follows from Theorem 13.2 that the manifolds MI are linearly independent
over Z2 as elements of Nn. Since there are exactly pnd(n) of them, they form a basis for Nn. This completes the
proof. �

Part 3. The Oriented Cobordism Ring

14. Oriented Bundles and the Euler Class

We now turn our attention towards the oriented cobordism ring ΩSO. We will first need to develop the theory of
characteristic classes with coefficients in Z. Most of the material in the next three sections will be directly analogous
to that in Sections 9, 10 and 11. For a more complete treatment of these topics, see [14, Sections 9-16]. [4, Sections
20-22] provides a much different approach to this material; [21, Chapter 5] unifies all of the characteristic classes into
a single theory, although this requires quite a bit more machinery than we will make use of here.

Recall than an orientation on a real vector space V of dimension n is a choice of an equivalence class of or-
dered bases, where two bases are said to be equivalent if they are related by a linear transformation with positive
determinant. Evidently, then, there are two possible orientations on a real vector space.

A choice of an orientation on V is equivalent to a choice of a preferred generator µV ∈ Hn(V, V0;Z) ∼= Z, where
V0 = V − 0. This in turn gives rise to a preferred generator uV ∈ Hn(V, V0;Z) ∼= Z by the relation 〈uV , µV 〉 = +1.

An orientation on a vector bundle, then, is a choice of orientation on each fiber satisfying the usual local triviality
condition. In this case, that says that every point b in the base space has a neighborhood W and a cohomology class
uW ∈ Hn(π−1(W ), π−1(W )0;Z) such that uW |(F,F0) = uF for every fiber F over W , where π is the projection. Of
course, the fundamental example of an oriented bundle is the tangent bundle of an oriented manifold.

The oriented version of the Thom isomorphism theorem asserts that the above local orientation classes glue to
give a global Thom class.
Theorem 14.1 (Oriented Thom Isomorphism Theorem). Let ξ be an oriented n-dimensional vector bundle over a
base space B with projection map π : E = E(ξ)→ B. Let E0 be the complement of the zero section in E. Then there
exists a unique cohomology class uξ ∈ Hn(E,E0;Z) (called the Thom class) such that

uξ|(F,F0) = uF

for all fibers F = π−1(b). Furthermore, for all i the map x 7→ x ∪ uξ defines an isomorphism

Hi(E;Z)→ Hi+n(E,E0;Z).
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Proof. See [14, Section 10]. �

Definition 14. The (oriented) Thom isomorphism

ϕ : Hi(B;Z)→ Hi+n(E,E0;Z)

is defined by ϕ(x) = π∗(x) ∪ uξ.
Unfortunately, we can not continue to proceed as with Stiefel-Whitney classes, because we have no analogue of the

Steenrod algebra with Z-coefficients. We can, however, define an analogue of the top Stiefel-Whitney class wn(ξ).

Definition 15. Let ξ be an oriented n-plane bundle over B. The Euler class e(ξ) ∈ Hn(B;Z) is defined by

e(ξ) = ϕ−1(uξ ∪ uξ).

where uξ is the Thom class. That is,

π∗e(ξ) = uξ|E .

The Euler class has many of the same properties as Stiefel-Whitney classes. We list some here. The proofs of the
first three are similar to the corresponding proofs for Stiefel-Whitney classes, and the proof of the fourth is trivial.
Note that we give Whitney sums and Cartesian products of oriented vector bundles orientations in the obvious way.

(1) If f : B(ξ)→ B(η) is covered by an orientation preserving bundle map from ξ to η, then

e(ξ) = f∗e(η).

(2) If ξ and ξ′ are oriented vector bundles, then

e(ξ × ξ′) = e(ξ)× e(ξ′).

(3) If ξ and ξ′ are oriented vector bundles over the same base space, then

e(ξ ⊕ ξ′) = e(ξ) ∪ e(ξ′).

(4) If ξ′ is isomorphic to ξ as an unoriented bundle, but has the opposite orientation, then

e(ξ′) = −e(ξ).

(5) If ξ is an n-plane bundle with n odd, then 2e(ξ) = 0.

Proof. If ξ has odd fiber dimension, then it has an orientation reversing automorphism (b, v) 7→ (b,−v). So,
by property 4, e(ξ) = −e(ξ). �

(6) Let ξ be an oriented vector bundle over a base space B. Then the canonical map Hn(B;Z) → Hn(B;Z2)
sends e(ξ) to wn(ξ).

Proof. We have e(ξ) = ϕ−1(uξ ∪ uξ). Now, clearly uξ maps to the unoriented Thom class u′ξ, and therefore
uξ ∪ uξ maps to Sqn(u′ξ). Thus, ϕ−1(uξ ∪ uξ) maps to ϕ−1

(
Sqn(u′ξ)

)
, which is just wn(ξ). �

In analogy with property 6, the Euler class e(ξ) gives rise to a well-defined element eR(ξ) in Hn(B;R) for any
ring R, under the homomorphism of cohomology induced by the ring map Z→ R. This class has all the properties
of the usual Euler class, as is easy to see.

One final useful application of the Euler class is the construction of an oriented Gysin sequence. The proof is
identical to the proof of Proposition 9.2.

Proposition 14.2 (The Gysin Sequence). Let ξ be an oriented n-plane bundle with projection π : E → B. Let
π0 : E0 → B be the restriction of π to E0. Then for any coefficient ring R, there is a long exact sequence

· · · −−−−→ Hi(B;R) ∪e−−−−→ Hi+n(B;R)
π∗0−−−−→ Hi+n(E0;R) −−−−→ · · ·

where e = eR(ξ) is the Euler class with respect to R.
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15. Complex Vector Bundles and Chern Classes

Before we can further develop the theory of characteristic classes of real vector bundles, we must turn to the
complex case. Let ω be a complex n-plane bundle; that is, each fiber has the structure of a complex vector space of
dimension n. We can endow ω with a Hermitian metric in the usual way. Of course, ω can also be considered as a
real 2n-plane bundle; we will denote this by ωR. In fact, ωR has a canonical preferred orientation: if v1, . . . , vn is a
C-basis for a fiber F of ω, we take v1, iv1, . . . , vn, ivn to be an R-basis for F as a fiber of ωR. It is easy to show that
the orientation is independent of the choice of complex basis.

There are several important constructions on complex vector bundles. First, there is the conjugate bundle ω. This
bundle has the same underlying real structure as ω (that is, ωR = ωR), but has C-action on fibers where (x+ iy)v in
ω is given by (x− iy)v in ω. Using the Hermitian metric, it is easy to show that

ω = HomC(ω, ε1
C
)

where ε1
C

is the trivial complex line bundle over B(ω).
We will need one other construction on complex vector bundles. Let ω be a complex n-plane bundle with total

space E. We now define a complex (n− 1)-plane bundle ω0 over E0 as follows : Given a pair (b, v) in E0 of a point
in the base space and a non-zero vector in the fiber Fb, let the fiber over (b, v) in ω0 be the orthogonal complement
of v in Fb. This is then an (n− 1)-plane, and it is easy to see that this construction makes ω0 into a complex vector
bundle over E0.

Finally, recall that since ωR is an oriented 2n-plane bundle, we have an exact Gysin sequence

· · · −−−−→ Hi−2n(B;Z)
∪e(ωR)−−−−→ Hi(B;Z)

π∗0−−−−→ Hi(E0;Z) −−−−→ · · ·
Since for i < 2n− 1 we have Hi−2n(B;Z) = Hi−2n+1(B;Z) = 0, we see that

π∗0 : Hi(B;Z)→ Hi(E0;Z)

is an isomorphism in this range.
We can now define the Chern classes of a complex vector bundle.

Definition 16. Let ω be a complex n-plane bundle over B. For i ≤ n, the ith Chern class ci(ω) ∈ H2i(B;Z) is
defined inductively as follows : Set cn(ω) = e(ωR). For i < n, set

ci(ω) = π−1
0 ci(ω0).

(Note that by the Gysin sequence above π0 is an isomorphism in this range.) For i > n, we set ci(ω) = 0. We define
the total Chern class c(ω) ∈ H∗(B;Z) by

c(ω) = 1 + c1(ω) + · · ·+ cn(ω).

Chern classes satisfy the usual properties of characteristic classes. We omit the proofs of the first two, although it
should be noted that they are actually considerably more difficult than the analogous results about Stiefel-Whitney
classes and the Euler class. For the proofs, see [14, Lemma 14.2 and pp. 164-167].

(1) If f : B(ω)→ B(ω′) is covered by a bundle map from ω to ω′, then

c(ω′) = f∗c(ω).

(2) If ω and ω′ are complex vector bundles over the same base space, then

c(ω ⊕ ω′) = c(ω)c(ω′).

(3) If ω is a complex vector bundle, then

ci(ω) = (−1)ici(ω).

Proof. This follows immediately from the fact that the underlying real vector bundles ωR and ωR have the
same orientation if ω has even fiber dimension, and opposite orientations if ω has odd fiber dimension. �

As an application of Chern classes and the Gysin sequence, we can determine the cohomology of complex projective
space CPn. Recall that CPn is the complex Grassmann manifold of lines in Cn+1. It has a canonical line bundle
γ1(Cn+1), consisting of pairs of lines in Cn+1 and points in that line.
Proposition 15.1. Set x = c1

(
γ1(Cn+1)

)
∈ H2(CPn;Z). Then

H∗(CPn;Z) = Z[x]/(xn+1).
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Proof. The proof is nearly identical to the proof of Proposition 10.1. The even dimensional cohomology groups
H2i(CPn;Z) are all isomorphic to H0(CPn;Z) ∼= Z and generated by xi, and the odd dimensional cohomology
groups are all isomorphic to H1(CPn;Z), which can be seen to be 0 from the portion

· · · −−−−→ H−1(CPn;Z) −−−−→ H1(CPn;Z) −−−−→ H1(E0;Z) −−−−→ · · ·

of the Gysin sequence. �

We can now compute the Chern classes of τ(CPn). The computation is entirely analogous to the one for RPn

(Propositions 11.1 and 11.2), so we will skip most of the details.
Proposition 15.2.

c
(
τ(CPn)

)
= (1− x)n+1

where x = c1
(
γ1(Cn+1)

)
.

Proof. Set γ = γ1(Cn+1) and τ = τ(CPn). Proceeding exactly as in the case of RPn, we have

τ ∼= Hom(γ, γ⊥)

where γ ⊕ γ⊥ = εn+1
C

. Thus, we find that
τ ⊕ ε1

C
∼= γ ⊕ · · · ⊕ γ.

So, by the product formula for Chern classes,

c(τ) =
(
c(γ)

)n+1

= (1− x)n+1.

�

16. Pontrjagin Classes

We now return to the study of real vector bundles. Let ξ be a real n-plane bundle. We define the complexification
of ξ, ξ ⊗ C, to be the complex n-plane bundle with the same base space and typical fiber F ⊗ C, where F is a fiber
of ξ.

Visibly, (ξ ⊗ C)R ∼= ξ ⊕ ξ. In fact, we also have ξ ⊗ C ∼= ξ ⊗ C, since conjugation is an R-linear homeomorphism
interchanging the two complex structures, and thus is a bundle isomorphism. Therefore, since ci(ξ ⊗ C) = (−1)ici(ξ⊗
C), we see that the odd Chern classes c1, c3, . . . of the complexification of a real vector bundle are 2-torsion elements.
Definition 17. Let ξ be an n-plane bundle over B. The ith Pontrjagin class pi(ξ) ∈ H4i(B;Z) is defined by

pi(ξ) = (−1)ic2i(ξ ⊗ C).

We define the total Pontrjagin class p(ξ) ∈ H∗(B;Z) by

p(ξ) = 1 + p1(ξ) + · · ·+ p[n/2](ξ).

The properties of Pontrjagin classes follow easily from those of Chern classes, so we omit the proofs. However,
ignoring the odd Chern classes does complicate the statement of the product formula somewhat.

(1) If f : B(ξ)→ B(η) is covered by a bundle map from ξ to η, then

p(ξ) = f∗p(η).

(2) Let ξ be a vector bundle over a base space B. Let εk be the trivial k-plane bundle over B. Then

p(ξ ⊕ εk) = p(ξ).

(3) If ξ and ξ′ are vector bundles over the same base space, then

2p(ξ ⊕ ξ′) = 2p(ξ)p(ξ′).

(We need the factors of 2 to annihilate the 2-torsion elements.)
One other useful property of Pontrjagin classes is a connection with the Euler class.

Proposition 16.1. If ξ is an oriented 2n-plane bundle, then pn(ξ) = e(ξ)2.
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Proof. As we have already observed, (ξ ⊗ C)R ∼= ξ ⊕ ξ as unoriented bundles. Let F be a typical fiber of ξ, with
ordered basis v1, . . . , v2n. Then the orientation (F ⊗ C)R is given by the ordered basis v1, iv1, . . . , v2n, iv2n. On the
other hand, the orientation on ξ ⊕ ξ is given by v1, . . . , v2n, iv1, . . . , iv2n. So we see that a linear transformation
between the two bases has sign (−1)2n(2n−1)/2 = (−1)n. Thus,

e
(
(ξ ⊗ C)R

)
= (−1)ne(ξ ⊕ ξ)

c2n(ξ ⊗ C) = (−1)ne(ξ)2

pn(ξ) = e(ξ)2.

�

Now, let M4n be a compact oriented manifold. We then have a fundamental homology class µM ∈ H4n(M ;Z).
As with Stiefel-Whitney classes, for any vector bundle ξ over M and any partition I = (i1, . . . , ik) of n, we can then
define a Pontrjagin number

PI [ξ] = 〈pi1(ξ) · · · pik(ξ), µM 〉 ∈ Z
and an s-number

SI [p(ξ)] =
〈
sI
(
p1(ξ), . . . , pn(ξ)

)
, µM

〉
∈ Z.

Just as in the case of Stiefel-Whitney classes, we have the following proposition.
Proposition 16.2. Let ξ and ξ′ be vector bundles over M . Then

2sI
(
p(ξ ⊕ ξ′)

)
= 2

∑
I1I2=I

sI1
(
p(ξ)

)
sI2
(
p(ξ′)

)
.

If η is a vector bundle over another manifold N , then

SI [p(ξ × η)] =
∑

I1I2=I

SI1 [p(ξ)]SI2 [p(η)].

Proof. The proof is nearly identical to the proof of Proposition 9.3. The 2’s are present in the first formula to
eliminate the torsion elements but are not needed in the second formula since the Kronecker index of any torsion
element is 0. �

We now wish to compute the Pontrjagin classes and numbers of complex projective spaces. This is not quite as
easy as it sounds, since we must compute the Chern classes of (τ(CPn)⊗C)R. This is accomplished by means of the
following lemma.
Lemma 16.3. Let ω be a complex vector bundle. Then ωR ⊗ C ∼= ω ⊕ ω.

Proof. This follows easily from the fact that for a complex vector space V , V ⊗ C ∼= V ⊕ V , where V is the same
real vector space as V , with the conjugate complex structure. �

Proposition 16.4. Let τ = τ(CPn). Then

p(τR) = (1 + x2)n+1,

where x = c1
(
γ1(Cn+1)

)
. Further,

P(n)[τR] = n+ 1.

Proof. By Lemma 16.3 we have
τR ⊗ C ∼= τ ⊕ τ .

Thus
c(τR ⊗ C) = c(τ ⊕ τ).

But the odd Chern class disappear, since these cohomology groups have no 2-torsion. Therefore,

1 + c2(τR ⊗ C) + · · ·+ c2n(τR ⊗ C) = c(τ)c(τ)

1− p1(τR) + p2(τR)− · · · ± pn(τR) = (1− x)n+1(1 + x)n+1

= (1− x2)n+1.

Thus, p(τR) = (1 + x2)n+1. The computation of P(n)[τR] is now immediate. �
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17. The Cohomology of BSOr

In analogy with the unoriented Grassmann manifolds Gr(Rn+r), we now define the oriented Grassmann manifolds
G̃r(Rn+r). This is simply the manifold of all oriented r-planes in Rn+r. It is a two-sheeted covering of Gr(Rn+r). We
let γ̃r(Rn+r) be the canonical r-plane bundle over G̃r(Rn+r). Then, in the same way as in the unoriented case, we
obtain the Grassmann manifold BSOr of oriented r-planes in R∞. It is a two-sheeted covering space of BOr, with
covering map fr : BSOr → BOr. We denote by γ̃r the pullback f∗r γ

r. This makes BSOr into a universal classifying
space for oriented r-plane bundles over paracompact base spaces. (The notations BOr and BSOr are related to
the reduction of the structural groups of vector bundles to the orthogonal group and the special orthogonal group
respectively. See [4, Sections 5 and 6].)

We now compute the cohomology of BSOr. We will be most interested in coefficients in Q and Zp for p an odd
prime, so we will do the computation for any integral domain R in which 2 is invertible.
Proposition 17.1. Let R be an integral domain containing 1

2 . Let pi be the image of pi(γ̃r) and e be the image of
e(γ̃r) under the cohomology map induced by the ring map Z→ R. Then, for odd r,

H∗(BSOr;R) ∼= R[p1, . . . , p r−1
2

],

and for even r,
H∗(BSOr;R) ∼= R[p1, . . . , p r2−1, e].

Proof. This will be an extension of the methods of Proposition 10.3. Now, since the space G̃1(Rn) is homeomorphic
to Sn−1, letting n go to infinity shows that

H∗(BSO1;R) ∼= R.

We proceed by induction on n. We have a Gysin sequence

· · · −−−−→ Hi(BSOr;R) ∪e−−−−→ Hi+r(BSOr;R) −−−−→ Hi+r(E0;R) −−−−→ · · ·
Just as in the unoriented case, we can replace E0 by BSOr−1, obtaining a long exact sequence

· · · −−−−→ Hi(BSOr;R) ∪e−−−−→ Hi+r(BSOr;R)
g−−−−→ Hi+r(BSOr−1;R) −−−−→ · · ·

where g sends pi to the image p′i of pi(γ̃r−1).
Now, suppose r is even. Then by the induction hypothesis g is surjective, so we get a short exact sequence

0 −−−−→ Hi(BSOr;R) ∪e−−−−→ Hi+r(BSOr;R)
g−−−−→ Hi+r(BSOr−1;R) −−−−→ 0

By the induction hypothesis, H∗(BSOr−1;R) ∼= R[p′1, . . . , p
′
r
2−1], and it easily follows that

H∗(BSOr;R) ∼= R[p1, . . . , p r2−1, e].

Next, suppose that r is odd. Then e = 0 since 2 is a unit in R, so the Gysin sequence yields a short exact sequence

0 −−−−→ Hi(BSOr;R)
g−−−−→ Hi(BSOr−1;R) −−−−→ Hi−r+1(BSOr;R) −−−−→ 0

In this way we can consider H∗(BSOr;R) as a subring of H∗(BSOr−1;R).
Set A = R[p1, . . . , p r−1

2
] ⊆ H∗(BSOr−1;R). We wish to show that A = H∗(BSOr;R). Of course, we already have

A ⊆ g(H∗(BSOr;R))

and therefore
rankAi ≤ rankHi(BSOr;R)

where by the rank of an R-module we mean the maximal number of elements which are linearly independent over R.
By the induction hypothesis, we have

H∗(BSOr−1;R) = R[p′1, . . . , p
′
r−3

2
, e′]

so every x ∈ H∗(BSOr−1;R) can be written uniquely in the form a+ e′a′ with a ∈ Ai and a′ ∈ Ai−r+1. That is,

Hi(BSOr−1;R) ∼= Ai ⊕Ai−r+1

so
rankHi(BSOr−1;R) = rankAi + rankAi−r+1.

By the short exact sequence above, we also have

rankHi(BSOr−1;R) = rankHi(BSOr;R) + rankHi−r+1(BSOr;R).
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It follows that
rankHi(BSOr;R) = rankAi

for all i. Now, suppose that g(Hi(BSOr;R)) 6= Ai. Then we can find an element a + e′a′ ∈ Hi(BSOr;R) with
a′ 6= 0, and this element will be linearly independent of Ai. But then

rankAi < rankHi(BSOr;R)

which is a contradiction. Thus, Ai = g(Hi(BSOr;R)), so

H∗(BSOr;R) ∼= A

which completes the induction. �

Corollary 17.2. Let R be as above. Let pi be the image of pi(γr) under the cohomology homomorphism induced by
the ring map Z→ R. Then

H∗(BOr;R) ∼= R[p1, . . . , p[r/2]].

Proof. The covering map fr induces an injection

f∗r : H∗(BOr;R) ↪→ H∗(BSOr;R).

An element x ∈ H∗(BSOr;R) will lie in f∗rH
∗(BOr;R) if and only if it is fixed by the map ρ : BSOr → BSOr which

interchanges the two sheets of the covering. Now, the Pontrjagin classes are independent of orientation, so they are
fixed by ρ and thus lie in fr∗H∗(BOr;R). The Euler class, however, changes sign with a change in orientation, so
it is not fixed by ρ and does not lie in f∗rH

∗(BOr;R). This completes the proof. �

Corollary 17.3. Hi(BSOr;Z) is finite if i is not divisible by 4 and has rank p(i/4) if i is divisible by 4.

Proof. This follows immediately from the universal coefficient theorem and Proposition 17.1 with R = Q. �

18. Determination of ΩSO ⊗Q

In this section we will determine the structure of ΩSO ⊗Q. Tensoring with Q has the effect of killing all torsion,
while preserving the free structure. (Although free generators for ΩSO ⊗Q need not generate the free part of ΩSO.)
By the Thom-Pontrjagin theorem, we already have

ΩSOn ∼= lim
r→∞

πn+r(TBSOr, t0).

Unfortunately, computing πn+r(TBSOr, t0) is much more difficult than computing πn+r(TBOr, t0). Instead, we will
use several results of Serre to approximate these homotopy groups by homology groups. For an exposition of the
needed results, see [18] or [19, Sections 9.6 and 9.7].

Recall that a CW-complex is said to be k-connected if it is connected and Hi(X;Z) = πi(X) = 0 for 1 ≤ i ≤ k.
Proposition 18.1. Let X be a finite k-connected CW complex. Then

rankHi(X;Z) = rankπi(X)

for i ≤ 2k.

Proof. We will establish this result by approximating X by spheres. First, consider the sphere Sn, with n ≥ k + 1.
Then Hn(Sn;Z) and πn(Sn) both have rank 1, and Hi(Sn;Z) and πi(Sn) are both finite for 1 ≤ i ≤ 2n − 2, i 6= n.
Since 2k ≤ 2n− 2, this establishes the proposition in this case.

Now, suppose that the result holds for two finite k-connected CW complexes X and Y . Then by the Künneth
theorem,

Hi(X × Y ;Z) ∼=
⊕

i1+i2=i

Hi1(X;Z)⊗Hi2(Y ;Z)

∼= Hi(X;Z)⊕Hi(Y ;Z)

since for the other terms at least one of Hi1(X;Z) and Hi2(Y ;Z) is 0. Since also

πi(X × Y ) ∼= πi(X)⊕ πi(Y )

the proposition is also true for X × Y .
Next, since

Hi(X ∨ Y ;Z) ∼= Hi(X;Z)⊕Hi(Y ;Z)
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and
πi(X ∨ Y ) ∼= πi(X)⊕ πi(Y )⊕ πi+1(X × Y,X ∨ Y )

and πi+1(X × Y,X ∨ Y ) is finite, we see that the proposition is also true for X ∨ Y . Thus it is true for a finite
bouquet of spheres of dimension ≥ k + 1.

Finally, let X be any finite k-connected CW complex. Since the homotopy groups of X are finitely generated, we
can choose a finite basis for the free part of πi(X) for i ≤ 2k + 1. Each of these basis elements is represented by a
map

ρi : Sri → X

where ri ≥ k + 1. Combining the ρi’s, we obtain a map

ρ : Sr1 ∨ · · · ∨ Srm → X.

Since by construction the homotopy groups of Sr1 ∨ · · · ∨ Srm and X have the same rank in dimensions ≤ 2k + 1,
by the generalized Whitehead theorem the homology groups have the same rank for dimensions ≤ 2k. But since we
already have that

rankπi(Sr1 ∨ · · · ∨ Srm) = rankHi(Sr1 ∨ · · · ∨ Srm ;Z)

for i ≤ 2k, it follows that
rankπi(X) = rankHi(X;Z)

in this range, as asserted. �

With this proposition, we can now give a partial solution to the oriented cobordism problem.
Theorem 18.2. ΩSOn is finite for n not divisible by 4, and has rank p(n/4) for n divisible by 4.

Proof. By the Thom-Pontrjagin theorem,

ΩSOn ∼= lim
r→∞

πn+r(TBSOr, t0).

Choose r > n. By Proposition 18.1, taking the limit of the finite complexes T γ̃r(Rn+r) as n goes to infinity, we see
that

rankπn+r(TBSOr, t0) = rankHn+r(TBSOr;Z).

But this is the same as the rank of Hn+r(TBSOr, t0;Z), by the exact sequence of the pair (TBSOr, t0). This in turn
is the same as the rank of Hn+r(TBSOr, t0;Z), by the universal coefficient theorem. But by Lemma 12.1,

Hn+r(TBSOr, t0;Z) ∼= Hn(BSOr;Z).

By Corollary 17.3, this is finite for n not divisible by 4, and has rank p(n/4) for n divisible by 4. This completes the
proof. �

As with N, ΩSO can be given the structure of a commutative graded Z-algebra with product induced by the
Cartesian product of manifolds. (See Proposition 13.1.) We can in fact give explicit generators for ΩSO ⊗Q.
Theorem 18.3. ΩSO ⊗Q is the free Z-algebra generated by CP 2n for n ≥ 1.

Proof. By Proposition 16.4,
P(n)[τ(CP 2n)R] = 2n+ 1.

Proceeding as in the proof of Theorem 13.4, we conclude that the CP 2n are algebraically independent as elements
of ΩSO ⊗Q. Since (ΩSO ⊗Q)i has no torsion, by Theorem 18.2 it is 0 if i is not divisible by 4, and has rank p(i/4)
for i divisible by 4. Thus,

rank(ΩSO ⊗Q)i = rank(Q[CP 2,CP 4, . . .])i

for all i, so they are isomorphic. �

We can also relate oriented cobordism to the vanishing of Pontrjagin numbers, although it turns out that this
alone is not enough to show that an oriented manifold is a boundary.
Proposition 18.4. Let M be a compact 4n-dimensional oriented manifold. If M is the boundary of an oriented
(4n+ 1)-dimensional manifold B, then all of the Pontrjagin numbers of the tangent bundle of M are zero.
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Proof. We have the exact sequences

H4n+1(B,M ;Z) ∂−−−−→ H4n(M ;Z) i∗−−−−→ H4n(B;Z)

and

H4n(B;Z) i∗−−−−→ H4n(M ;Z) δ−−−−→ H4n+1(B,M ;Z)

arising from the long exact sequence of the pair (B,M), where δ is the dual of ∂. Let µB,M ∈ H4n+1(B,M ;Z) be the
fundamental homology class of the pair (B,M) and µM ∈ H4n(M ;Z) the fundamental homology class of M . Then
∂µB,M = µM .

Now, note that there is a unique outward pointing normal vector along M ⊆ B, so

τ(B)|M = τ(M)⊕ ε1.

Thus,
p(τ(B)|M ) = p

(
τ(M)

)
,

and therefore for any partition I of 4n,

PI [τ(M)] = PI [τ(B)|M ]

= 〈pI(τ(B)|M ), µM 〉
=
〈
i∗pI

(
τ(B)

)
, µM

〉
=
〈
i∗pI

(
τ(B)

)
, ∂µB,M

〉
=
〈
δi∗pI

(
τ(B)

)
, µB,M

〉
= 〈0, µB,M 〉
= 0

by exactness. �

The complete determination of ΩSO is a very difficult problem. The above result was obtained by Thom in
[22]. Additional results were obtained by Milnor, Averbuh and Novikov (see [12], [3] and [16]), before the complete
structure theorem was obtained by C.T.C. Wall in [23]. We state it without proof.

Theorem 18.5. Two oriented manifolds are cobordant if and only if their tangent bundles have the same Pontrjagin
numbers and Stiefel-Whitney numbers. ΩSO is the Z-algebra generated by manifolds X4i of dimension 4i (for all
i ≥ 1) and by manifolds Y2i−1,j of dimension 2i− 1, subject only to the relations 2Y2i−1,j = 0. There is one torsion
generator Y2i−1,j for each partition of i into distinct positive integers, none a power of 2.

19. The Hirzebruch Signature Theorem

As an application of cobordism, in this section we will use our cobordism classification to give a proof of the re-
markable Hirzebruch signature theorem. This is a special case of the Atiyah-Singer index theorem; for an explanation
of this celebrated result, see [1].

Let M be a compact oriented manifold of dimension n. We define the signature of M , σ(M), as follows: If n is
not divisible by 4, then σ(M) = 0. If n is divisible by 4, say n = 4m, we define σ(M) to be the signature of the
rational quadratic form Q on H2m(M ;Q) given by

Q(x) = 〈x ∪ x, µM 〉 ∈ Q

where µM ∈ Hn(M ;Q) is the fundamental rational homology class of M . (Recall that the signature of a rational
quadratic form is computed as follows : Choose a basis x1, . . . , xr of H2m(M ;Q) for which the symmetric matrix
(〈xi ∪ xj , µM 〉) is diagonal. Then the signature of the associated quadratic form is the number of positive diagonal
entries minus the number of negative diagonal entries.)

The signature satisfies the following properties.

(1) σ(M +N) = σ(M) + σ(N).
(2) σ(M ×N) = σ(M)σ(N).
(3) If M is an oriented boundary, then σ(M) = 0.
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See [8, Section 9] for a proof. These combine to show that σ induces a well-defined Q-algebra homomorphism

σ : ΩSO ⊗Q→ Q.

We now construct another such homomorphism. Define a graded commutative Q-algebra A by

A = Q[t1, t2, . . .]

where ti has degree i. Define an associated ring A to be the ring of infinite formal sums

a = a0 + a1 + a2 + · · ·
where ai ∈ A is homogeneous of degree i. We let A∗ be the subgroup of the multiplicative group of A of elements
with leading term 1.

Now, suppose we have a sequence of polynomials

K1(t1),K2(t1, t2),K3(t1, t2, t3), . . . ∈ A
where Kn is homogeneous of degree n. For a = 1 + a1 + a2 + · · · ∈ A∗, we then define K(a) ∈ A∗ by

K(a) = 1 +K1(a1) +K2(a1, a2) + · · ·
We say that the Kn form a multiplicative sequence if K(ab) = K(a)K(b) for all a, b ∈ A∗.

A simple example is provided by the sequence

Kn(t1, . . . , tn) = λntn

for any λ ∈ Q. We will now construct a more interesting example.
Consider the power series expansion of

√
t/ tanh

√
t :

√
t

tanh
√
t

= 1 +
1
3
t− 1

45
t2 + · · ·+ (−1)i−1 22iBi

(2i)!
ti + · · ·

where Bi is the ith Bernoulli number. (We use the conventions B1 = 1
6 , B2 = 1

30 , B3 = 1
42 , . . .) Set

λi = (−1)i−1 22iBi
(2i)!

.

Further, for any partition I = (i1, . . . , ik) of n, set

λI = λi1 · · ·λik .
Now, define polynomials Ln(t1, . . . , tn) ∈ A by

Ln(t1, . . . , tn) =
∑
I

λIsI(t1, . . . , tn)

where the sum if over all partitions of n and sI is the polynomial of Section 7.
We claim that the Ln form a multiplicative sequence. It is clear from the definition of sI that Ln is homogeneous

of degree n. Now, take a, b ∈ A∗. Then

L(ab) =
∑
I

λIsI(ab)

=
∑
I

λI
∑

I1I2=I

sI1(a)sI2(b)

=
∑

I1I2=I

λI1sI1(a)λI2sI2(b)

= L(a)L(b).

Therefore the Ln do indeed form a multiplicative sequence.
The first few L-polynomials are :

L1(t1) = 1
3 t1

L2(t1, t2) = 1
45 (7t2 − t21)

L3(t1, t2, t3) = 1
945 (62t3 − 13t1t2 + 2t31)

L4(t1, t2, t3, t4) = 1
14175 (381t4 − 71t1t3 − 19t22 + 22t21t2 − 3t41).

Note that the coefficient of tn1 is Ln is λn, since the only s-polynomial containing that monomial is s(n).
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Now, let M be a manifold of dimension n. We define the L-genus L[M ] as follows : If n is not divisible by 4, then
L[M ] = 0. If n is divisible by 4, say n = 4m, then we define

L[M ] =
〈
Km

(
p1(τ(M)), . . . , pm(τ(M))

)
, µM

〉
.

This makes sense, since Km

(
p1(τ(M)), . . . , pm(τ(M))

)
∈ Hn(M ;Z).

Lemma 19.1. The correspondence M 7→ L[M ] defines a Q-algebra homomorphism

L : ΩSO ⊗Q→ Q.

Proof. The additivity of the correspondence is clear. It follows immediately from Proposition 18.4 that the L-genus
of a boundary is zero, and these two facts together show that L is well-defined. Now, consider a product manifold
M ×N . Since the total Pontrjagin class p(M ×N) of M ×N is given by p(M) × p(N), up to elements of order 2,
we see that

L
(
p(M ×N)

)
= L

(
p(M)

)
× L

(
p(N)

)
.

Therefore,

L[M ×N ] =
〈
L
(
p(M ×N)

)
, µM×N

〉
=
〈
L
(
p(M ×N)

)
, µM × µN

〉
=
〈
L
(
p(M)

)
× L

(
p(N)

)
, µM × µN

〉
=
〈
L
(
p(M)

)
, µM

〉 〈
L
(
p(N)

)
, µN

〉
= L[M ]L[N ].

�

The Hirzebruch signature theorem states that the two homomorphisms we have constructed are in fact the same.
Theorem 19.2. For any oriented manifold M , σ(M) = L[M ].

Proof. Since both σ and L are Q-algebra homomorphisms from ΩSO ⊗ Q to Q, it will suffice to check the theorem
on a set of algebra generators of ΩSO ⊗ Q. By Theorem 18.3 we may use the complex projective spaces CP 2n as
generators.

Now, by Proposition 15.1, H2n(CP 2n) is generated by a single element xn satisfying

〈xn ∪ xn, µCP 2n〉 = 1.

Thus σ(CP 2n) = +1.
Next, recall from Proposition 16.4 that p(τ(CP 2n)R) = (1 + x2)2n+1. Since the coefficient of ti1 in Li is λi, we see

that

L(1 + x2) = 1 + L1(x2) + L2(x2, 0) + L3(x2, 0, 0) + · · ·
= 1 + λ1x

2 + λ2x
4 + · · ·

=

√
x2

tanh
√
x2

=
x

tanhx
.

Therefore,

L
(
p(τ(CP 2n)R)

)
= L

(
(1 + x2)2n+1

)
= L(1 + x2)2n+1

=
( x

tanhx

)2n+1

.

Thus, Ln
(
p(τ(CP 2n))

)
is simply the x2n term in this power series, and L[CP 2n] is the coefficient of that term.

We can compute that coefficient by classical methods of complex analysis. Recall that the coefficient of z2n in the
Taylor expansion of (z/ tanh z)2n+1 is simply given by the integral

1
2πi

∮ ( z

tanh z

)2n+1 dz

z2n+1
=

1
2πi

∮
dz

(tanh z)2n+1
.
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To compute this, we make the substitution u = tanh z, so

dz =
du

1− u2
= (1 + u2 + u4 + · · · )du.

Thus,

1
2πi

∮
dz

(tanh z)2n+1
=

1
2πi

∮
(1 + u2 + u4 + · · · )du

u2n+1

=
1

2πi

∮
du

u

= 1.

Thus, L[CP 2n] = +1 = σ(CP 2n). This completes the proof. �

The power of the cobordism classification here is quite impressive; we have given a formula for the signature
of a manifold in terms of certain polynomials derived from the power series of

√
t/ tanh

√
t evaluated on certain

characteristic numbers simply by checking it in the nearly trivial case of complex projective space. A direct proof
can be given, using the Atiyah-Singer index theorem. (See [2, Section 6].) However, the depth of that result only
serves to make the cobordism classification even more impressive.
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