Towards an equivariant version of Gromov-Taubes invariant

Weimin Chen

Department of Mathematics and Statistics
University of Massachusetts
Amherst, MA 01003, USA

Symposium on Geometry and Topology of Manifolds, PIMS
June 29, 2015
An overview of the talk:

Part I: Brief review of Taubes’ work "Seiberg-Witten=Gromov".

Part II: Taubes’ theorems in an equivariant setting: an examination.

Part III: Smooth classification of \mathbb{Z}_n-Hirzebruch surfaces.
Part I: Brief review of Taubes’ work "Seiberg-Witten=Gromov".

Part II: Taubes’ theorems in an equivariant setting: an examination.

Part III: Smooth classification of \mathbb{Z}_n-Hirzebruch surfaces.
Part I: Brief review of Taubes’ work "Seiberg-Witten=Gromov".

Part II: Taubes’ theorems in an equivariant setting: an examination.

Part III: Smooth classification of \mathbb{Z}_n-Hirzebruch surfaces.
The set-up: Let \((X, \omega)\) be a symplectic 4-manifold with \(b_2^+ > 1\). Fix a \(\omega\)-compatible almost complex structure \(J\), and endow \(X\) with the resulting Riemannian metric \(g(\cdot, \cdot) := \omega(\cdot, J\cdot)\). The \(J\) gives rise to a decomposition \(T^*X \otimes \mathbb{C} = T^{1,0}X \oplus T^{0,1}X\). Denote by \(K_X = \Lambda^2 T^{1,0}X\) the canonical line bundle.

Seiberg-Witten invariant: \(SW_X: \{\text{Spin}^c\text{-structures}\} \to \mathbb{Z}\).

1. The canonical \(\text{Spin}^c\)-structure: \(S_0^+ = I \oplus K_X^{-1}, S_0^- = T^{0,1}X\).

2. All \(\text{Spin}^c\)-structures: \(S^E_+ = E \oplus K_X^{-1} \otimes E, S^E_- = T^{0,1}X \otimes E\), where \(E\) is a complex line bundle.

3. Virtual dimension of the SW moduli space \(M_E\): \(\dim M_E = 2d_E\), where

\[
d_E = \frac{1}{2}(e \cdot e - c \cdot e), \quad \text{where} \ e = c_1(E), \ c = c_1(K_X).
\]
The set-up: Let \((X,\omega)\) be a symplectic 4-manifold with \(b^+_2 > 1\). Fix a \(\omega\)-compatible almost complex structure \(J\), and endow \(X\) with the resulting Riemannian metric \(g(\cdot, \cdot) := \omega(\cdot, J\cdot)\). The \(J\) gives rise to a decomposition \(T^*X \otimes \mathbb{C} = T^{1,0}X \oplus T^{0,1}X\). Denote by \(K_X = \Lambda^2 T^{1,0}X\) the canonical line bundle.

Seiberg-Witten invariant: \(SW_X: \{\text{Spin}^c\text{-structures}\} \to \mathbb{Z}\).

1. The canonical \(\text{Spin}^c\)-structure: \(S^0_+ = I \oplus K_X^{-1}, S^0_- = T^{0,1}X\).
2. All \(\text{Spin}^c\)-structures: \(S^E_+ = E \oplus K_X^{-1} \otimes E, S^E_- = T^{0,1}X \otimes E\), where \(E\) is a complex line bundle.
3. Virtual dimension of the SW moduli space \(M_E\): \(\dim M_E = 2d_E\), where

\[
d_E = \frac{1}{2} (e \cdot e - c \cdot e), \text{ where } e = c_1(E), c = c_1(K_X).
\]
The set-up: Let \((X, \omega)\) be a symplectic 4-manifold with \(b_2^+ > 1\). Fix a \(\omega\)-compatible almost complex structure \(J\), and endow \(X\) with the resulting Riemannian metric \(g(\cdot, \cdot) := \omega(\cdot, J \cdot)\). The \(J\) gives rise to a decomposition \(T^*X \otimes \mathbb{C} = T^{1,0}X \oplus T^{0,1}X\). Denote by \(K_X = \Lambda^2 T^{1,0}X\) the canonical line bundle.

Seiberg-Witten invariant: \(SW_X: \{\text{Spin}^c\text{-structures}\} \to \mathbb{Z}\).

1. The canonical \(\text{Spin}^c\text{-structure}: \(S^0_+ = I \oplus K_X^{-1}, S^0_- = T^{0,1}X\).

2. All \(\text{Spin}^c\text{-structures}: \(S^E_+ = E \oplus K_X^{-1} \otimes E, S^E_- = T^{0,1}X \otimes E\), where \(E\) is a complex line bundle.

3. Virtual dimension of the SW moduli space \(M_E\): \(\dim M_E = 2d_E\), where

\[
d_E = \frac{1}{2}(e \cdot e - c \cdot e), \quad \text{where} \quad e = c_1(E), \quad c = c_1(K_X).
\]
Brief review of Taubes' work "Seiberg-Witten=Gromov"

The set-up: Let (X, ω) be a symplectic 4-manifold with $b_2^+ > 1$. Fix a ω-compatible almost complex structure J, and endow X with the resulting Riemannian metric $g(\cdot, \cdot) := \omega(\cdot, J \cdot)$. The J gives rise to a decomposition $T^*X \otimes C = T^{1,0}X \oplus T^{0,1}X$. Denote by $K_X = \Lambda^2 T^{1,0}X$ the canonical line bundle.

Seiberg-Witten invariant: $SW_X: \{\text{Spin}^c\text{-structures}\} \to \mathbb{Z}$.

1. The canonical Spin^c-structure: $S^0_+ = I \oplus K_X^{-1}$, $S^0_- = T^{0,1}X$.

2. All Spin^c-structures: $S^E_+ = E \oplus K_X^{-1} \otimes E$, $S^E_- = T^{0,1}X \otimes E$, where E is a complex line bundle.

3. Virtual dimension of the SW moduli space M_E: $\dim M_E = 2d_E$, where

$$d_E = \frac{1}{2}(e \cdot e - c \cdot e),$$

where $e = c_1(E)$, $c = c_1(K_X)$.
The set-up: Let \((X, \omega)\) be a symplectic 4-manifold with \(b_2^+ > 1\). Fix a \(\omega\)-compatible almost complex structure \(J\), and endow \(X\) with the resulting Riemannian metric \(g(\cdot, \cdot) := \omega(\cdot, J\cdot)\). The \(J\) gives rise to a decomposition \(T^*X \otimes \mathbb{C} = T^{1,0}X \oplus T^{0,1}X\). Denote by \(K_X = \Lambda^2 T^{1,0}X\) the canonical line bundle.

Seiberg-Witten invariant: \(SW_X: \{\text{Spin}^c\text{-structures}\} \rightarrow \mathbb{Z}\).

1. The canonical \(\text{Spin}^c\)-structure: \(S_0^+ = I \oplus K_X^{-1}, S_0^- = T^{0,1}X\).

2. All \(\text{Spin}^c\)-structures: \(S^E_+ = E \oplus K_X^{-1} \otimes E, S^E_- = T^{0,1}X \otimes E\), where \(E\) is a complex line bundle.

3. Virtual dimension of the SW moduli space \(M_E\): \(\dim M_E = 2d_E\), where

\[
d_E = \frac{1}{2}(e \cdot e - c \cdot e), \text{ where } e = c_1(E), \ c = c_1(K_X).
\]
The 1-parameter family of SW equations: Let parameter $r \gg 0$, and let A be a $U(1)$-connection on $\text{det} S^E_+$, and ψ be a smooth section of S^E_+. The SW equations are the following equations for pairs (A, ψ)

$$D_A \psi = 0, F^+_A = q(\psi) + \mu_r$$

where $\mu_r := -\frac{ir}{4} \omega + F^+_{A_0}$. Here A_0 is a canonical $U(1)$-connection on $\text{det} S^0_+ = K_X^{-1}$.

Re-formulation: Introduce $(a, (\alpha, \beta))$ by writing $A = A_0 + 2a$ and $\psi = \sqrt{r} \cdot (\alpha, \beta)$, where a is a $U(1)$-connection on E, and α, β are smooth sections of E, $K_X^{-1} \otimes E$ respectively.
The 1-parameter family of SW equations: Let parameter $r \gg 0$, and let A be a $U(1)$-connection on $\det S^E$, and ψ be a smooth section of S^E_+. The SW equations are the following equations for pairs (A, ψ)

$$D_A \psi = 0, \quad F_A^+ = q(\psi) + \mu_r$$

where $\mu_r := -\frac{i}{4}r \omega + F^+_{A_0}$. Here A_0 is a canonical $U(1)$-connection on $\det S^0_+ = K_X^{-1}$.

Re-formulation: Introduce $(a, (\alpha, \beta))$ by writing $A = A_0 + 2a$ and $\psi = \sqrt{r} \cdot (\alpha, \beta)$, where a is a $U(1)$-connection on E, and α, β are smooth sections of E, $K_X^{-1} \otimes E$ respectively.
Theorem A (Taubes): Let (X, ω) be symplectic 4-manifold, $b_2^+ > 1$.

(1) $SW_X(K_X) = \pm 1$.

(2) Suppose $SW_X(E) \neq 0$. Then fix any set Ω of d_E distinct points, for any parameter r there is a solution (A, ψ) of the r-version of SW equations such that $\Omega \subset \alpha^{-1}(0)$. Moreover, as $r \to \infty$, the zero set $\alpha^{-1}(0)$ converges in C^0-topology to a finite union of J-holomorphic curves $\{C_i\}$, and

$$c_1(E) = \sum_i m_i C_i,$$

where $m_i > 0$.

Note: $\Omega \subset \bigcup_i C_i$.
Theorem A (Taubes): Let \((X, \omega)\) be symplectic 4-mnfd, \(b_2^+ > 1\).

1. \(SW_X(K_X) = \pm 1\).

2. Suppose \(SW_X(E) \neq 0\). Then fix any set \(\Omega\) of \(d_E\) distinct points, for any parameter \(r\) there is a solution \((A, \psi)\) of the \(r\)-version of SW equations such that \(\Omega \subset \alpha^{-1}(0)\). Moreover, as \(r \to \infty\), the zero set \(\alpha^{-1}(0)\) converges in \(C^0\)-topology to a finite union of \(J\)-holomorphic curves \(\{C_i\}\), and

\[
c_1(E) = \sum_i m_i C_i, \text{ where } m_i > 0.
\]

Note: \(\Omega \subset \bigcup_i C_i\).
Theorem A (Taubes): Let \((X, \omega)\) be symplectic 4-manifold, \(b_2^+ > 1\).

1. \(SW_X(K_X) = \pm 1\).

2. Suppose \(SW_X(E) \neq 0\). Then fix any set \(\Omega\) of \(d_E\) distinct points, for any parameter \(r\) there is a solution \((A, \psi)\) of the \(r\)-version of SW equations such that \(\Omega \subset \alpha^{-1}(0)\). Moreover, as \(r \to \infty\), the zero set \(\alpha^{-1}(0)\) converges in \(C^0\)-topology to a finite union of \(J\)-holomorphic curves \(\{C_i\}\), and

\[
c_1(E) = \sum_{i} m_i C_i, \text{ where } m_i > 0.
\]

Note: \(\Omega \subset \bigcup_i C_i\).
Theorem B (Taubes): Assume J and Ω are generic. Then

(1) (Regularity) The J-holomorphic curves $\{C_i\}$ obey the following constraints:
- Each C_i is embedded and C_i, C_j are disjoint for $i \neq j$.
- The multiplicity $m_i = 1$ unless C_i is a torus with $C_i^2 = 0$.
- There are only finitely many such sets $\{C_i\}$.
- There is a well-defined invariant, denoted by $GT_X(E)$, which is an algebraic count of such sets of J-holomorphic curves $\{C_i\}$.

(2) (Equivalence) $SW_X(E) = GT_X(E)$.
Theorem B (Taubes): Assume J and Ω are generic. Then

(1) (Regularity) The J-holomorphic curves $\{C_i\}$ obey the following constraints:

- Each C_i is embedded and C_i, C_j are disjoint for $i \neq j$.
- The multiplicity $m_i = 1$ unless C_i is a torus with $C_i^2 = 0$.
- There are only finitely many such sets $\{C_i\}$.
- There is a well-defined invariant, denoted by $GT_X(E)$, which is an algebraic count of such sets of J-holomorphic curves $\{C_i\}$.

(2) (Equivalence) $SW_X(E) = GT_X(E)$.
Theorem B (Taubes): Assume J and Ω are generic. Then

(1) (Regularity) The J-holomorphic curves $\{C_i\}$ obey the following constraints:

- Each C_i is embedded and C_i, C_j are disjoint for $i \neq j$.
- The multiplicity $m_i = 1$ unless C_i is a torus with $C_i^2 = 0$.
- There are only finitely many such sets $\{C_i\}$.
- There is a well-defined invariant, denoted by $GT_X(E)$, which is an algebraic count of such sets of J-holomorphic curves $\{C_i\}$.

(2) (Equivalence) $SW_X(E) = GT_X(E)$.
The set-up: Let \((X, \omega)\) be a symplectic 4-manifold equipped with a symplectic \(G\)-action by a finite group \(G\). Assume \(b_2^+ > 1\), where \(b_2^+ = \dim H^2,+(X; R)^G\). Fix a \(\omega\)-compatible, \(G\)-invariant almost complex structure \(J\), and endow \(X\) with the resulting \(G\)-invariant Riemannian metric \(g(\cdot, \cdot) := \omega(\cdot, J \cdot)\).

Example 1: Holomorphic finite group actions on Kähler surfaces.

Example 2: One can perform an equivariant version of knot surgery on a K3 surface equipped with a finite automorphism group to produce infinitely many distinct symplectic, non-Kähler, homotopy K3 surfaces, each equipped with a symplectic finite group action by a K3 group.

Equivariant SW invariant:

\[SW_X^G : \{G\text{-complex line bundles}\} \rightarrow \mathbb{Z}. \]
Taubes’ theorems in an equivariant setting

The set-up: Let \((X, \omega)\) be a symplectic 4-manifold equipped with a symplectic \(G\)-action by a finite group \(G\). Assume \(b_2^+)^G > 1\), where \(b_2^+)^G = \dim H^2(\mathbb{Z}; R)^G\). Fix a \(\omega\)-compatible, \(G\)-invariant almost complex structure \(J\), and endow \(X\) with the resulting \(G\)-invariant Riemannian metric \(g(\cdot, \cdot) := \omega(\cdot, J\cdot)\).

Example 1: Holomorphic finite group actions on Kähler surfaces.

Example 2: One can perform an equivariant version of knot surgery on a K3 surface equipped with a finite automorphism group to produce infinitely many distinct symplectic, non-Kähler, homotopy K3 surfaces, each equipped with a symplectic finite group action by a K3 group.

Equivariant SW invariant:

\[SW_X^G : \{ G\text{-complex line bundles} \} \rightarrow \mathbb{Z}. \]
Taubes’ theorems in an equivariant setting

The set-up: Let \((X, \omega)\) be a symplectic 4-manifold equipped with a symplectic \(G\)-action by a finite group \(G\). Assume \(b_2^+ G > 1\), where \(b_2^+ G = \dim H^{2,+}(X; R)^G\). Fix a \(\omega\)-compatible, \(G\)-invariant almost complex structure \(J\), and endow \(X\) with the resulting \(G\)-invariant Riemannian metric \(g(\cdot, \cdot) := \omega(\cdot, J\cdot)\).

Example 1: Holomorphic finite group actions on Kähler surfaces.

Example 2: One can perform an equivariant version of knot surgery on a K3 surface equipped with a finite automorphism group to produce infinitely many distinct symplectic, non-Kähler, homotopy K3 surfaces, each equipped with a symplectic finite group action by a K3 group.

Equivariant SW invariant:

\[SW^G_X : \{G\text{-complex line bundles}\} \to \mathbb{Z}. \]
The set-up: Let (X, ω) be a symplectic 4-manifold equipped with a symplectic G-action by a finite group G. Assume $b_2^+ > 1$, where $b_2^+ = \dim H^{2,+}(X; \mathbb{R})^G$. Fix a ω-compatible, G-invariant almost complex structure J, and endow X with the resulting G-invariant Riemannian metric $g(\cdot, \cdot) := \omega(\cdot, J\cdot)$.

Example 1: Holomorphic finite group actions on Kähler surfaces.

Example 2: One can perform an equivariant version of knot surgery on a K3 surface equipped with a finite automorphism group to produce infinitely many distinct symplectic, non-Kähler, homotopy K3 surfaces, each equipped with a symplectic finite group action by a K3 group.

Equivariant SW invariant:

$SW^G_X : \{G\text{-complex line bundles}\} \to \mathbb{Z}$.
Theorem A (Taubes): Let \((X, \omega)\) be symplectic 4-manifold equipped with a symplectic \(G\)-action, such that \(b_2^+ G > 1\).

1. \(SW_X^G(K_X) = \pm 1\).

2. Suppose \(SW_X^G(E) \neq 0\). Denote by \(|E|\) the underlying complex line bundle of \(E\). Then there is a finite set of \(J\)-holomorphic curves \(\{C_i\}\), where the set \(\bigcup_i C_i\) is invariant under the \(G\)-action, such that

\[
c_1(|E|) = \sum_i m_i C_i, \quad \text{where } m_i > 0.
\]

Note: More information can be derived about the behavior of \(C_i\) near the fixed-points of the \(G\)-action from the equivariant data of the \(G\)-bundle \(E\).
Theorem A (Taubes): Let \((X, \omega)\) be symplectic 4-manifold equipped with a symplectic \(G\)-action, such that \(b_2^+ G > 1\).

1. \(SW_X^G(K_X) = \pm 1\).

2. Suppose \(SW_X^G(E) \neq 0\). Denote by \(|E|\) the underlying complex line bundle of \(E\). Then there is a finite set of \(J\)-holomorphic curves \(\{C_i\}\), where the set \(\bigcup_i C_i\) is invariant under the \(G\)-action, such that

\[
c_1(|E|) = \sum_i m_i C_i, \quad \text{where} \quad m_i > 0.
\]

Note: More information can be derived about the behavior of \(C_i\) near the fixed-points of the \(G\)-action from the equivariant data of the \(G\)-bundle \(E\).
Theorem A (Taubes): Let (X, ω) be symplectic 4-manifold equipped with a symplectic G-action, such that $b_2^+ G > 1$.

(1) $SW_X^G(K_X) = \pm 1$.

(2) Suppose $SW_X^G(E) \neq 0$. Denote by $|E|$ the underlying complex line bundle of E. Then there is a finite set of J-holomorphic curves $\{C_i\}$, where the set $\cup_i C_i$ is invariant under the G-action, such that

$$c_1(|E|) = \sum_i m_i C_i, \text{ where } m_i > 0.$$

Note: More information can be derived about the behavior of C_i near the fixed-points of the G-action from the equivariant data of the G-bundle E.
Theorem B of Taubes in the equivariant setting?

Question: Can one, by choosing generic G-invariant J, arrange to have the J-holomorphic curves $\{C_i\}$ to be embedded and disjoint, and the multiplicities $m_i = 1$ except for C_i being a torus with $C_i^2 = 0$ (of course, $\bigcup_i C_i$ continue to be G-invariant)?

Answer: in general, no!.

Example 1: By Theorem A (1), $c_1(|K_X|) = \sum_i m_i C_i$, where $\bigcup_i C_i$ is G-invariant. Assume $\{C_i\}$ are embedded and disjoint. Then $m_i > 1$ if C_i contains an isolated fixed point.

Reason: Near C_i, $K_X = N_{C_i}^{m_i}$ where N_{C_i} is the normal bundle of C_i, which is naturally an equivariant bundle. On the other hand, $K_X \neq N_{C_i}$ as equivariant bundles by examining the weights of the group action at a fixed point.
Theorem B of Taubes in the equivariant setting?

Question: Can one, by choosing generic G-invariant J, arrange to have the J-holomorphic curves $\{C_i\}$ to be embedded and disjoint, and the multiplicities $m_i = 1$ except for C_i being a torus with $C_i^2 = 0$ (of course, $\bigcup_i C_i$ continue to be G-invariant)?

Answer: in general, no!.

Example 1: By Theorem A (1), $c_1(|K_X|) = \sum_i m_i C_i$, where $\bigcup_i C_i$ is G-invariant. Assume $\{C_i\}$ are embedded and disjoint. Then $m_i > 1$ if C_i contains an isolated fixed point.

Reason: Near C_i, $K_X = N_{C_i}^{m_i}$ where N_{C_i} is the normal bundle of C_i, which is naturally an equivariant bundle. On the other hand, $K_X \neq N_{C_i}$ as equivariant bundles by examining the weights of the group action at a fixed point.
Theorem B of Taubes in the equivariant setting?

Question: Can one, by choosing generic G-invariant J, arrange to have the J-holomorphic curves $\{C_i\}$ to be embedded and disjoint, and the multiplicities $m_i = 1$ except for C_i being a torus with $C_i^2 = 0$ (of course, $\cup_i C_i$ continue to be G-invariant)?

Answer: in general, no!.

Example 1: By Theorem A (1), $c_1(|K_X|) = \sum_i m_i C_i$, where $\cup_i C_i$ is G-invariant. Assume $\{C_i\}$ are embedded and disjoint. Then $m_i > 1$ if C_i contains an isolated fixed point.

Reason: Near C_i, $K_X = N_{C_i}^{m_i}$ where N_{C_i} is the normal bundle of C_i, which is naturally an equivariant bundle. On the other hand, $K_X \neq N_{C_i}$ as equivariant bundles by examining the weights of the group action at a fixed point.
Theorem B of Taubes in the equivariant setting?

Question: Can one, by choosing generic G-invariant J, arrange to have the J-holomorphic curves $\{C_i\}$ to be embedded and disjoint, and the multiplicities $m_i = 1$ except for C_i being a torus with $C_i^2 = 0$ (of course, $\cup_i C_i$ continue to be G-invariant)?

Answer: in general, no!

Example 1: By Theorem A (1), $c_1(|K_X|) = \sum_i m_i C_i$, where $\cup_i C_i$ is G-invariant. Assume $\{C_i\}$ are embedded and disjoint. Then $m_i > 1$ if C_i contains an isolated fixed point.

Reason: Near C_i, $K_X = N_{C_i}^{m_i}$ where N_{C_i} is the normal bundle of C_i, which is naturally an equivariant bundle. On the other hand, $K_X \neq N_{C_i}$ as equivariant bundles by examining the weights of the group action at a fixed point.
Theorem B of Taubes in the equivariant setting?

Question: Can one, by choosing generic G-invariant J, arrange to have the J-holomorphic curves $\{C_i\}$ to be embedded and disjoint, and the multiplicities $m_i = 1$ except for C_i being a torus with $C_i^2 = 0$ (of course, $\cup_i C_i$ continue to be G-invariant)?

Answer: in general, no!

Example 1: By Theorem A (1), $c_1(|K_X|) = \sum_i m_i C_i$, where $\cup_i C_i$ is G-invariant. Assume $\{C_i\}$ are embedded and disjoint. Then $m_i > 1$ if C_i contains an isolated fixed point.

Reason: Near C_i, $K_X = N_{C_i}^{m_i}$ where N_{C_i} is the normal bundle of C_i, which is naturally an equivariant bundle. On the other hand, $K_X \neq N_{C_i}$ as equivariant bundles by examining the weights of the group action at a fixed point.
Example 2: Let \((X, \omega)\) be a symplectic homotopy K3, and let \(G = \mathbb{Z}_p\) for an odd prime \(p\), which acts symplectically on \((X, \omega)\). Furthermore, assume that the \(G\)-action is homologically trivial. Note that \(b_2^+ G = 3\).

Conjecture: Such group actions do not exist!

Claim: Assume further that the action has only isolated fixed points. Then for \(p > 3\), the \(J\)-holomorphic curves \(\{C_i\}\) in \(c_1(|K_X|) = \sum_i m_i C_i\) in this example can not be made both embedded and disjoint, even for a generic \(G\)-invariant \(J\).
Example 2: Let (X, ω) be a symplectic homotopy K3, and let $G = \mathbb{Z}_p$ for an odd prime p, which acts symplectically on (X, ω). Furthermore, assume that the G-action is homologically trivial. Note that $b_2^+ = 3$.

Conjecture: Such group actions do not exist!

Claim: Assume further that the action has only isolated fixed points. Then for $p > 3$, the J-holomorphic curves $\{C_i\}$ in $c_1(|K_X|) = \sum_i m_i C_i$ in this example can not be made both embedded and disjoint, even for a generic G-invariant J.
Example 2: Let \((X, \omega)\) be a symplectic homotopy K3, and let \(G = \mathbb{Z}_p\) for an odd prime \(p\), which acts symplectically on \((X, \omega)\). Furthermore, assume that the \(G\)-action is homologically trivial. Note that \(b_2^+ = 3\).

Conjecture: Such group actions do not exist!

Claim: Assume further that the action has only isolated fixed points. Then for \(p > 3\), the \(J\)-holomorphic curves \(\{C_i\}\) in \(c_1(|K_X|) = \sum_i m_i C_i\) in this example can not be made both embedded and disjoint, even for a generic \(G\)-invariant \(J\).
Explaination: By Theorem A (1), \(c_1(\vert K_X \vert) = \sum_i m_i C_i \), where \(\bigcup_i C_i \) is \(G \)-invariant. By choosing a generic \(G \)-invariant \(J \), one can decompose \(\bigcup_i C_i = \bigcup_j \Lambda_j \), where \(\{ \Lambda_j \} \) are disjoint, such that \(\Lambda_j \) belongs to one of the following cases

- a sphere with one cusp singularity, which is a fixed-point of \(G \), and \(p > 5 \);
- a union of two embedded \((-2)\)-spheres intersecting at one point with tangency of order 2, and \(p > 3 \);
- a union of three embedded \((-2)\)-spheres intersecting at one point transversely, and \(p > 3 \);
- an embedded torus with a non-free \(G \)-action, and \(p = 3 \);
- an embedded torus with a free \(G \)-action.
This motivates the following

Problem: Construct Gromov-Taubes invariant of singular spaces (e.g. symplectic 4-orbifolds, normal projective surfaces).

More concretely,

(1) Define a Gromov-Taubes invariant which algebraically counts embedded and disjoint pseudo-holomorphic curves in the complement of the singular set, and

(2) Relate the Gromov-Taubes invariant so defined to the corresponding Seiberg-Witten invariant.
This motivates the following

Problem: Construct Gromov-Taubes invariant of singular spaces (e.g. symplectic 4-orbifolds, normal projective surfaces).

More concretely,

1. Define a Gromov-Taubes invariant which algebraically counts embedded and disjoint pseudo-holomorphic curves in the complement of the singular set, and

2. Relate the Gromov-Taubes invariant so defined to the corresponding Seiberg-Witten invariant.
This motivates the following

Problem: Construct Gromov-Taubes invariant of singular spaces (e.g. symplectic 4-orbifolds, normal projective surfaces).

More concretely,

(1) Define a Gromov-Taubes invariant which algebraically counts embedded and disjoint pseudo-holomorphic curves in the complement of the singular set, and

(2) Relate the Gromov-Taubes invariant so defined to the corresponding Seiberg-Witten invariant.
Consider the following situation: let \((X, \omega)\) be symplectic 4-manifold equipped with a symplectic \(G\)-action, such that \(b_2^+ < 1\). Suppose \(C\) is an embedded, \(G\)-invariant \(J\)-holomorphic curve, such that the induced \(G\)-action on \(C\) is effective. Furthermore, assume either \(C^2 < 0\) or \(C^2 = 0\) and the induced \(G\)-action on \(C\) is not free. Finally, assume that the \(G\)-invariant \(J\) is regular (e.g. \(J\) is a generic \(G\)-invariant almost complex structure).
Consider the following situation: let \((X, \omega)\) be symplectic 4-manifold equipped with a symplectic \(G\)-action, such that \(b_2^+ G > 1\). Suppose \(C\) is an embedded, \(G\)-invariant \(J\)-holomorphic curve, such that the induced \(G\)-action on \(C\) is effective. Furthermore, assume either \(C^2 < 0\) or \(C^2 = 0\) and the induced \(G\)-action on \(C\) is not free. Finally, assume that the \(G\)-invariant \(J\) is regular (e.g. \(J\) is a generic \(G\)-invariant almost complex structure).
Theorem: Assume the above, then

(1) The virtual dimension of the moduli space containing C is 0.

(2) There is a G-complex line bundle E canonically associated to C such that $c_1(\|E\|) = C$. Moreover, the virtual dimension of the equivariant SW moduli space associated to E equals 0, and $SW^G_X(E) = \pm 1$.

(3) There is a well-defined invariant, denoted by $GT^G_X(E)$, which is an algebraic count of such embedded, G-invariant J-holomorphic curves C which determines the same G-bundle E.

(4) In this case, $SW^G_X(E) = GT^G_X(E)$.

Weimin Chen
Toward an equivariant version of Gromov-Taubes invariant
Remarks: It is well-known that in the non-equivariant setting, for a generic \(J \) the only \(J \)-holomorphic curves with negative self-intersection are the \((-1)\)-spheres. With this understood, suppose in the above theorem, the \(G \)-invariant \(J \)-holomorphic curve \(C \) has negative self-intersection but is not a \((-1)\)-sphere.

Then observe that

(1) the ordinary SW invariant \(SW_X(|E|) = 0 \), while
(2) the equivariant SW invariant \(SW^G_X(E) \neq 0 \).
Denote by Z_n the cyclic group of order n.

Definition: A Z_n-Hirzebruch surface is a Hirzebruch surface equipped with a holomorphic Z_n-action which is homologically trivial.

Problem: Classify Z_n-Hirzebruch surfaces up to orientation-preserving equivariant diffeomorphisms.
Examples: Fix a generator of \mathbb{Z}_n. Then to any pair (a, b) and r, where $a, b, r \in \mathbb{Z}$, one can associate a \mathbb{Z}_n-Hirzebruch surface

$$F_r(a, b) := P(L_r(a, b) \oplus L_0(a, 0)).$$

Here $L_r(a, b)$ stands for the \mathbb{Z}_n-holomorphic line bundle over CP^1 of degree r such that

- the action of \mathbb{Z}_n on the base CP^1 is given by

 $$[z_0: z_1] \rightarrow [\exp\left(\frac{2\pi ia}{n}\right)z_0: z_1],$$

- the action of \mathbb{Z}_n on the fiber at the fixed point $[0: 1]$ is

 $$w \rightarrow \exp\left(-\frac{2\pi ib}{n}\right)w.$$

Canonical equivariant diffeomorphisms: There are 6 types

\[c_i : F_r(a, b) \to F_{r'}(a', b'), \quad i = 1, 2, \cdots, 6. \]

(1) \(c_1 \) exists if \(a' = -a, \ b' = -b, \) and \(r' = r. \)
(2) \(c_2 \) exists if \(a' = -a, \ b' = b + ra, \) and \(r' = r. \)
(3) \(c_3 \) exists if \(a' = a, \ b' = -b, \) and \(r' = -r. \)
(4) \(c_4 \) exists if \(r' = r = 0, \) and \(a' = b, \ b' = a. \)

In the following two cases, assume \(\gcd(a, n) = \gcd(a', n) = 1. \)
(5) \(c_5 \) exists if \(a' = a, \ b' = b, \) and \(r' = r \mod 2n. \)
(6) \(c_6 \) exists if \(a' = a, \ b' = b, \) and \(r'a' = -2b - ra \mod 2n. \)
Theorem (D. Wilczynski) Any Z_n-Hirzebruch surface is holomorphically conjugate to $F_r(a, b)$ for some r and (a, b).

Theorem (Chen, 2015) Two Z_n-Hirzebruch surfaces are orientation-preservingly equivariantly diffeomorphic if and only if they can be connected by a finite sequence of canonical equivariant diffeomorphisms.

Remarks: For the pseudo-free case, the result was proved earlier by D. Wilczynski using his topological classification theorem for pseudo-free, locally linear Z_n-actions on simply connected 4-manifolds. Our proof is independent, using the equivariant Gromov-Taubes invariant, and it works for non-pseudo-free actions as well.
Smooth classification of Z_n-Hirzebruch surfaces

Theorem (D. Wilczynski) Any Z_n-Hirzebruch surface is holomorphically conjugate to $F_r(a, b)$ for some r and (a, b).

Theorem (Chen, 2015) Two Z_n-Hirzebruch surfaces are orientation-preservingly equivariantly diffeomorphic if and only if they can be connected by a finite sequence of canonical equivariant diffeomorphisms.

Remarks: For the pseudo-free case, the result was proved earlier by D. Wilczynski using his topological classification theorem for pseudo-free, locally linear Z_n-actions on simply connected 4-manifolds. Our proof is independent, using the equivariant Gromov-Taubes invariant, and it works for non-pseudo-free actions as well.
Key Proposition: Suppose n is even, $0 \leq b' = b \leq \frac{n}{2}$, $0 \leq r' < n$, $b + r' < n$, and $r = r' + n$. There exists no orientation-preserving equivariant diffeomorphisms from $F_r(1, b)$ to $F_{r'}(1, b')$.

Note: $F_r(1, b)$, $F_{r'}(1, b')$ have the same fixed-point set data.

Proof has 2 ingredients: Fix a \mathbb{Z}_n-invariant Kähler form ω.

(1) For $F_r(1, b)$, $F_{r'}(1, b')$, if there exists a smoothly embedded \mathbb{Z}_n-invariant $(-r')$-sphere, then for any generic \mathbb{Z}_n-invariant J, there exists a J-holomorphic \mathbb{Z}_n-invariant $(-r')$-sphere.

(2) For a generic \mathbb{Z}_n-invariant J, there exists no J-holomorphic \mathbb{Z}_n-invariant $(-r')$-spheres in $F_r(1, b)$.
Key Proposition: Suppose n is even, $0 \leq b' = b \leq \frac{n}{2}$, $0 \leq r' < n$, $b + r' < n$, and $r = r' + n$. There exists no orientation-preserving equivariant diffeomorphisms from $F_r(1, b)$ to $F_{r'}(1, b')$.

Note: $F_r(1, b)$, $F_{r'}(1, b')$ have the same fixed-point set data.

Proof has 2 ingredients: Fix a Z_n-invariant Kähler form ω.

(1) For $F_r(1, b)$, $F_{r'}(1, b')$, if there exists a smoothly embedded Z_n-invariant $(-r')$-sphere, then for any generic Z_n-invariant J, there exists a J-holomorphic Z_n-invariant $(-r')$-sphere.

(2) For a generic Z_n-invariant J, there exists no J-holomorphic Z_n-invariant $(-r')$-spheres in $F_r(1, b)$.
Smooth classification of \mathbb{Z}_n-Hirzebruch surfaces

Key Proposition: Suppose n is even, $0 \leq b' = b \leq \frac{n}{2}$, $0 \leq r' < n$, $b + r' < n$, and $r = r' + n$. There exists no orientation-preserving equivariant diffeomorphisms from $F_r(1, b)$ to $F_{r'}(1, b')$.

Note: $F_r(1, b)$, $F_{r'}(1, b')$ have the same fixed-point set data.

Proof has 2 ingredients: Fix a \mathbb{Z}_n-invariant Kähler form ω.

1. For $F_r(1, b)$, $F_{r'}(1, b')$, if there exists a smoothly embedded \mathbb{Z}_n-invariant $(-r')$-sphere, then for any generic \mathbb{Z}_n-invariant J, there exists a J-holomorphic \mathbb{Z}_n-invariant $(-r')$-sphere.

2. For a generic \mathbb{Z}_n-invariant J, there exists no J-holomorphic \mathbb{Z}_n-invariant $(-r')$-spheres in $F_r(1, b)$.
Key Proposition: Suppose n is even, $0 \leq b' = b \leq \frac{n}{2}$, $0 \leq r' < n$, $b + r' < n$, and $r = r' + n$. There exists no orientation-preserving equivariant diffeomorphisms from $F_r(1, b)$ to $F_{r'}(1, b')$.

Note: $F_r(1, b)$, $F_{r'}(1, b')$ have the same fixed-point set data.

Proof has 2 ingredients: Fix a Z_n-invariant Kähler form ω.

(1) For $F_r(1, b)$, $F_{r'}(1, b')$, if there exists a smoothly embedded Z_n-invariant $(-r')$-sphere, then for any generic Z_n-invariant J, there exists a J-holomorphic Z_n-invariant $(-r')$-sphere.

(2) For a generic Z_n-invariant J, there exists no J-holomorphic Z_n-invariant $(-r')$-spheres in $F_r(1, b)$.
The end

Thank you!

Weimin Chen

Toward an equivariant version of Gromov-Taubes invariant