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1. Elliptic Differential Operators

We present here the basic facts about elliptic differential operators. The treatment
follows closely [12].

1.1. Partial differential operators. In this section we present some of the basic
notions of partial differential operators (p.d.o.) which we need. A basic example of
p.d.o. is the Laplacian:

∆ : C∞(RN )→ C∞(RN ) : ∆u := −
N∑
k=1

∂2
ku,

where ∂k := ∂
∂xk

, and x = (xk) is a coordinate system on RN . The Laplacian ∆ is a
p.d.o. of order 2. Another example of p.d.o. is the exterior derivative of differential
forms

d : Ω∗(RN )→ Ω∗+1(RN ).
Let’s write out the explicit form for the case of d : Ω1(R3)→ Ω2(R3). If we identify a
1-form u = u1dx1 + u2dx2 + u3dx3 ∈ Ω1(R3) with the column vector (u1, u2, u3)T and
a 2-form v = v1dx1 ∧ dx2 + v2dx2 ∧ dx3 + v3dx1 ∧ dx3 ∈ Ω2(R3) with (v1, v2, v3)T , then

d : (u1, u2, u3)T 7→ (∂1u2 − ∂2u1, ∂2u3 − ∂3u2, ∂1u3 − ∂3u1)T ,

or equivalently,
d = A1∂1 +A2∂2 +A3∂3,

1
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where Ai, i = 1, 2, 3, are the matrices

A1 :=

 0 1 0
0 0 0
0 0 1

 , A2 :=

 −1 0 0
0 0 1
0 0 0

 , A3 :=

 0 0 0
0 −1 0
−1 0 0

 .

The exterior derivative d : Ω∗(RN )→ Ω∗+1(RN ) is a p.d.o. of order 1.
In general, a p.d.o. L of order ≤ k on RN , sending a smooth m-vector valued

function to a smooth n-vector valued function, has the form

L :=
∑
|α|≤k

Aα(x)∂α,

where α = (α1, · · · , αN ) ∈ ZN , αi ≥ 0, |α| =
∑N

i=1 αi, ∂
α = ∂α1

1 · · · ∂
αN
N , and Aα(x)

are smooth m× n matrix valued functions on RN . The operator L is said of order k
if
∑
|α|=k Aα(x)∂α is not identically zero. Note that in the above discussion, RN may

be replaced by any open subset D ⊂ RN .
To define p.d.o. on a smooth manifold, we let M be a smooth manifold (not

necessarily compact but with no boundary) of dimension N , and let E, F be smooth
(real or complex) vector bundles over M of rank m and n respectively. We denote by
C∞(E), C∞(F ) the space of smooth sections of the corresponding bundles, and by
C∞(U,E), C∞(U,F ) the subspace of smooth sections whose support lies in a given
open subset U ⊂M .

Definition 1.1. A linear map L : C∞(E) → C∞(F ) is called a p.d.o. of order k if
the following are true:

(1) supp(Lu) ⊂ supp(u), ∀u ∈ C∞(E). Note that this implies L : C∞(U,E) →
C∞(U,F ) for any open subset U ⊂M ;

(2) for any point p ∈ M , there is a smooth chart (U, φ) centered at p over which
E, F are trivial, such that L : C∞(U,E) → C∞(U,F ) is given by a p.d.o. of
order ≤ k on φ(U) ⊂ RN after fixing a trivialization of E and F over U , and
moreover, L : C∞(U,E)→ C∞(U,F ) is of order k for some U .

We remark regarding condition (2) above that the notion of p.d.o. of order k on RN

is invariant under a coordinate change of RN . We shall illustrate this for the Laplacian
∆ = −

∑N
k=1 ∂

2
k and leave the general case as an exercise.

Let y = (yi) be another coordinate system on RN , and set ∂′i := ∂
∂yi

. Then ∂k =∑N
i=1

∂yi
∂xk
· ∂′i, and

∆u = −
N∑
k=1

∂2
ku = (

N∑
i,j=1

aij(y)∂′i∂
′
j +

N∑
i=1

bi(y)∂′i)u,

where aij(y) = −
∑N

k=1
∂yi
∂xk

∂yj
∂xk

and bi(y) = −
∑N

k=1 ∂k(
∂yi
∂xk

). Note that the matrix-
valued function (aij(y)) is not identically zero, so that ∆ is also of order 2 in the new
coordinate system (yi).

Exercise 1.2. Verify that the notion of a p.d.o. of order k on RN is invariant under
change of coordinates and trivialization of bundles.
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An operator L : C∞(E) → C∞(F ) is said to be local if it has the property
supp(Lu) ⊂ supp(u), ∀u ∈ C∞(E). The locality of a p.d.o. on manifold plus the
fact that it is given locally by a p.d.o. on RN allows us to reduce many aspects in
the study of p.d.o. on manifolds to the special case of p.d.o. on RN with the aid
of a partition of unity. However, the following intrinsic characterization of p.d.o. on
manifolds, which is a sort of generalization of the intrinsic characterization of tangent
vectors on manifolds, proves to be also very useful.

Let Op(E,F ) be the space of linear maps (called operators) T : C∞(E)→ C∞(F ).
For any f ∈ C∞(M), we define

ad(f) : Op(E,F )→ Op(E,F ), ad(f)T := [T, f ] = T ◦ f − f ◦ T, ∀T ∈ Op(E,F ).

Above, f denotes the C∞(M)-module multiplication by the function f . With this
understood, for any integer k ≥ 0, we define PDO(k)(E,F ) inductively as follows:

PDO(0)(E,F ) := ∩f∈C∞(M) ker ad(f),

and

PDO(k)(E,F ) := {T ∈ Op(E,F )|ad(f)T ∈ PDO(k−1)(E,F ), ∀f ∈ C∞(M)}.

Notice that PDO(k)(E,F ) ⊂ PDO(k+1)(E,F ), ∀k ≥ 0. For any k > 0, we set
PDOk(E,F ) to be the subset of PDO(k)(E,F ) which consists of elements not belong-
ing to PDO(k−1)(E,F ). Finally, set PDO(E,F ) := ∪k≥0PDO

(k)(E,F ).
First, some elementary properties of PDO(k)(E,F ) are collected in the following

proposition.

Proposition 1.3. (1) PDO(0)(E,F ) may be identified with the space of smooth sec-
tions of the vector bundle Hom(E,F ) over M . Here Hom(E,F ) is the bundle whose
fiber at p ∈M consists of homomorphisms from Ep into Fp.

(2) Let k ≥ 0. Any L ∈ PDO(k)(E,F ) is a local operator, i.e.,

supp(Lu) ⊂ supp(u),∀u ∈ C∞(E).

(3) If P ∈ PDO(k)(E,F ), Q ∈ PDO(l)(F,G), then Q ◦ P ∈ PDO(k+l)(E,G).
(4) If L : C∞(E)→ C∞(F ) is a p.d.o. of order k, then L ∈ PDO(k)(E,F ).

Proof. (1) Exercise.
(2) We argue by induction on k. For k = 0 the claim is obvious. Let L ∈

PDO(k+1)(E,F ), and u ∈ C∞(E). For every f ∈ C∞(M), we have

L(fu) = [L, f ]u+ fLu.

Since [L, f ] = ad(f)L ∈ PDO(k)(E,F ), we deduce by induction

supp(L(fu)) ⊂ supp(u) ∪ supp(f).

Now for any open subset U such that supp(u) ⊂ U , we pick an f ∈ C∞(M) such that
f ≡ 1 on supp(u) and supp(f) ⊂ U . Then since fu ≡ u, we have

supp(Lu) ⊂ U, ∀U such that supp(u) ⊂ U.

It follows that supp(Lu) ⊂ supp(u).
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(3) We argue by induction over k + l. For k + l = 0 it is obvious. In general, if
f ∈ C∞(M), then

[Q ◦ P, f ] = [Q, f ] ◦ P +Q ◦ [P, f ].

By induction, the operators on the left-hand side all belong to PDO(k+l−1)(E,G).
Hence the claim Q ◦ P ∈ PDO(k+l)(E,G).

(4) Exercise. (Hint: Let k ≥ 1. Then for any f ∈ C∞(M), ad(f)L is a p.d.o. of
order k − 1. The claim follows from induction.)

�

Our next goal is to explain the proof of the following theorem. Along the way we
shall introduce the important notion of the principal symbol of a p.d.o.

Theorem 1.4. An L ∈ Op(E,F ) is a p.d.o. of order k iff L ∈ PDOk(E,F ).

We shall illustrate the proof by first considering the special case of PDO1(E,F )
where E,F are trivial bundles of rank 1. Note that in this case, both C∞(E) and
C∞(F ) are naturally identified with C∞(M).

Suppose L ∈ PDO1(E,F ). Then for any f ∈ C∞(M), ad(f)L = [L, f ] ∈ PDO(0)(E,F ),
hence there exists a σ(f) ∈ C∞(M) such that [L, f ]u = σ(f)u, ∀u ∈ C∞(E). One can
easily check that for any f, g ∈ C∞(M),

σ(fg) = σ(f)g + fσ(g).

By the intrinsic characterization of tangent vecters on manifolds, there exists a unique
smooth vector field X on M such that

σ(f) = Xf, ∀f ∈ C∞(M).

We define L0 ∈ Op(E,F ) by L0u := Xu. Then it is easy to check that L0 is a
p.d.o. of order 1. (Note that here the vector field X is not identically zero because
L ∈ PDO1(E,F ).) Moreover, for any f ∈ C∞(M) ad(f)L0 = Xf , hence

ad(f)(L− L0) = 0, ∀f ∈ C∞(M).

This implies that L − L0 ∈ PDO(0)(E,F ), and L = L0 + a for some a ∈ C∞(M). It
follows that L is a p.d.o. of order 1.

Let’s consider more generally, for any k ≥ 1, L ∈ PDO(k)(E,F ). We introduce

σ(L)(f1, · · · , fk) :=
1
k!

ad(f1) · · · ad(fk)L ∈ PDO(0)(E,F ), ∀fi ∈ C∞(M).

Lemma 1.5. (1) σ(L)(f1, · · · , fk) is symmetric in f1, · · · , fk.
(2) For any p ∈M , σ(L)(f1, · · · , fk)(p) depends only on the values df1(p), · · · , dfk(p).

Proof. (1) Exercise. (Hint: Jacobi identity plus [f, g] = 0, ∀f, g ∈ C∞(M).)
(2) By the multi-linearality of σ(L)(f1, · · · , fk) in f1, · · · , fk and the symmetric

property in part (1), it suffices to show that if df1(p) = 0, then σ(L)(f1, · · · , fk)(p) = 0.
Set Q := 1

k!ad(f2) · · · ad(fk)L ∈ PDO(1)(E,F ). (When k = 1, Q = L.) We need
to show that ad(f1)Q(p) = 0. For this we recall the fact that df1(p) = 0 implies that



PART 1: ELLIPTIC EQUATIONS 5

there exist smooth functions αj , βj (at least locally which suffices) which vanish at p
such that

f1 = f1(p) +
∑
j

αjβj .

Now we have

ad(f1)Q = [Q,
∑
j

αjβj ] =
∑
j

([Q,αj ]βj + αj [Q, βj ]),

which gives ad(f1)Q(p) = 0, for αj(p) = βj(p) = 0 and [Q,αj ], [Q, βj ] ∈ PDO(0)(E,F ).
�

Let L ∈ PDO(k)(E,F ). For any p ∈ M , Lemma 1.5 gives rise to a symmetric
k-multilinear map

σ(L)(p) : T ∗pM × · · · × T ∗pM → Hom(Ep, Fp).

It is a standard algebraic fact that σ(L)(p) as a symmetric, k-multilinear map is
determined by the corresponding homogeneous polynomial of degree k in ξ:

σ(L)(p)(ξ) := σ(L)(p)(ξ, · · · , ξ), ξ ∈ T ∗pM.

In this way {σ(L)(p) : p ∈ M} defines a smooth section σ(L) of the vector bundle
Hom(π∗E, π∗F ) over T ∗M , where π∗E, π∗F are the pull-back bundles of E,F via
π : T ∗M →M . When L ∈ PDO(0)(E,F ), we define σ(L) := π∗L. Here L is regarded
as a smooth section of Hom(E,F ) over M , and π∗L is the pull-back section of the
pull-back bundle Hom(π∗E, π∗F ) over T ∗M .

Definition 1.6. For any L ∈ PDOk(E,F ), σ(L) is called the principal symbol of L.

Exercise 1.7. (1) Show that for any L ∈ PDO(k)(E,F ), σ(L) is not identically zero
iff L ∈ PDOk(E,F ).

(2) Consider the special case M = RN , where E,F are necessarily trivial bundles.
Let L be a p.d.o. of order k on RN , given by

L =
∑
|α|≤k

Aα(x)∂α.

Note that by Proposition 1.3(4), L ∈ PDO(k)(E,F ). Show that

σ(L)(x)(ξ) =
∑
|α|=k

Aα(x)ξα,∀x ∈ RN

where ξ = ξ1dx1 + · · ·+ ξNdxN and ξα = ξα1
1 · · · ξ

αN
N for α = (α1, · · · , αN ).

(3) Prove Theorem 1.4, by modifying the proof for the special case where k = 1 and
E,F are trivial bundles of rank 1.

(4) Show that σ(Q ◦ P ) = σ(Q) ◦ σ(P ).

Definition 1.8. (1) A p.d.o. L : C∞(E) → C∞(F ) on M is said to be elliptic if for
any p ∈M and ξ ∈ T ∗pM \ {0},

σ(L)(p)(ξ) : Ep → Fp

is an isomorphism.
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(2) More generally, a complex of p.d.o.

0 → C∞(E0) L0→ C∞(E1) L1→ C∞(E2) → · · · → C∞(En) → 0

(where Li+1 ◦ Li = 0, ∀i ≥ 0) is called an elliptic complex if for any p ∈ M and
ξ ∈ T ∗pM \ {0}, the associated complex of principal symbols

0 −→ E0|p
σ(L0)(p)(ξ)−→ E1|p

σ(L1)(p)(ξ)−→ E2|p −→ · · · −→ En|p −→ 0

is exact.

Observe that if P ∈ PDOk(E,F ), Q ∈ PDOl(F,G) are elliptic, then Q ◦ P ∈
PDOk+l(E,G) and is also elliptic.

Next we discuss the notion of formal adjoint of a p.d.o. To this end we need further
assume M is oriented and is endowed with a Riemannian metric g and the bundles E,
F are endowed with a metric 〈·, ·〉E , 〈·, ·〉F respectively (in the case of complex vector
bundles, endowed with a Hermitian metric). Finally, we denote the corresponding
space of compactly supported smooth sections by C∞0 (E), C∞0 (F ). We should point
out that the notion of formal adjoint depends on the choice of the additional data g,
〈·, ·〉E , and 〈·, ·〉F .

Definition 1.9. Let P ∈ PDO(E,F ). An operator Q ∈ Op(F,E) is said to be a
formal adjoint of P if ∀u ∈ C∞0 (E), v ∈ C∞0 (F ), we have∫

M
〈Pu, v〉F dV olg =

∫
M
〈u,Qv〉E dV olg.

It turns out that every P ∈ PDO(E,F ) admits a unique formal adjoint, which will
be denoted by P ∗.

Exercise 1.10. (1) Show that formal adjoints (assuming they exist) are unique.
(2) Show that (a) for L1, L2 ∈ PDO(E,F ), if L∗1, L

∗
2 exist, then (L1 + L2)∗ exists

and (L1 + L2)∗ = L∗1 + L∗2, (b) for P ∈ PDO(E,F ), Q ∈ PDO(F,G), if P ∗, Q∗ exist,
then (Q ◦ P )∗ exists, and (Q ◦ P )∗ = P ∗ ◦Q∗.

(3) If L ∈ PDOk(E,F ), then L∗ ∈ PDOk(F,E). Moreover,

σ(L∗) = (−1)kσ(L)∗.

Here σ(L)∗ denotes the transpose (conjugate transpose in the Hermitian case) of σ(L)
as a linear map. In particular, the formal adjoint of an elliptic p.d.o is again an elliptic
p.d.o of the same order.

Definition 1.11. A p.d.o. L ∈ PDO(E,E) is said to be formally self-adjoint if
L = L∗.

Proposition 1.12. Every P ∈ PDO(E,F ) admits at least one formal adjoint.

Proof. (A sketch.) Suppose {φi} is a partition of unity on M . Then P =
∑

i,j Pij ,
where Pi,j := φi ◦ P ◦ φj ∈ PDO(E,F ). Furthermore, if each P ∗i,j exists, so does
P ∗. This allows to reduce the problem to the special case of M = RN by picking a
partition of unity such that each Pi,j is given by a p.d.o. on RN .

�
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Exercise 1.13. (1) Prove the existence of formal adjoint for the case of a p.d.o. on
RN . (Note that the Riemannian metric on RN is not necessarily Euclidean.)

(2) Give the details of the proof of Proposition 1.12.

We end this section by discussing some clasical examples of p.d.o.-s on manifolds.

Example 1.14. (1) Let (M, g) be an oriented Riemannian manifold of dimension n.
Consider the Laplacian

∆ : C∞(M)→ C∞(M),∆u := − ∗ d ∗ du,∀u ∈ C∞(M),

where ∗ : Λ∗(M) → Λn−∗(M) is the Hodge ∗-operator, which is characterized by
α ∧ ∗β = 〈α, β〉gdV olg. In a local coordinate system (xi),

∆u = −
n∑

i,j=1

(gij∂i∂ju+
1√

det(gij)
∂i(
√
det(gij)gij)∂ju),

where ∂i := ∂
∂xi

, gij = 〈∂i, ∂j〉g, and (gij) = (gij)−1. (The Laplacian ∆ := −
∑N

k=1 ∂
2
k

on RN is a special case with M = RN endowed with the Euclidean metric.) From the
local description above, it follows that ∆ is a second order p.d.o. on M . Its principal
symbol is given by

σ(∆)(p)(ξ) = −
n∑

i,j=1

gij(p)ξiξj = −|ξ|2g, ∀p ∈M,

where ξ =
∑n

i=1 ξidxi|p ∈ T ∗pM . In particular, ∆ is an elliptic p.d.o. Finally, we
observe that ∆ is formally self-adjoint: ∀u, v ∈ C∞0 (M),∫

M
(∆u)vdV olg =

∫
M
−(d ∗ du)v =

∫
M
dv ∧ ∗du =

∫
M
du ∧ ∗dv =

∫
M
u(∆v)dV olg.

(2) Let E be a smooth vector bundle over a smooth manifold M . A connection on
E (also called a covariant derivative) is a linear map

∇ : C∞(E)→ C∞(T ∗M ⊗ E),

which satisfies: ∀f ∈ C∞(M), u ∈ C∞(E),

∇(fu) = df ⊗ u+ f∇u.
Note that∇ is a p.d.o. of order 1, i.e., ∇ ∈ PDO1(E, T ∗M⊗E), because ∀f ∈ C∞(M)
ad(f)∇ := [∇, f ] = df⊗ ∈ PDO(0)(E, T ∗M ⊗ E). The principal symbol is given by

σ(∇)(p)(ξ) = ξ⊗, ∀p ∈M, ξ ∈ T ∗pM.

Suppose furthermore, M is oriented and endowed with a Riemannian metric g, E
is endowed with a metric 〈·, ·〉. We determine the formal adjoint ∇∗ of ∇ in local
coordinates. Suppose (ei) is a positively oriented local orthonormal frame of T ∗M ,
(αj) is a local orthonormal frame of E, and (∂i) is the local frame of TM dual to (ei).
Moreover, suppose

∇αk =
∑
i,j

Γijk ei ⊗ αj , dek =
∑
s,t

ωstk es ∧ et.
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Then
∇∗(

∑
i,j

vijei ⊗ αj) =
∑
k

(
∑
i

−∂ivik +
∑
i,j

Γijk vij)αk.

(Here one uses the fact that ωjij = 0,∀i, j. As an exercise verify the above formula for
∇∗!) From the local description we can read off its principal symbol

σ(∇∗)(p)(ξ) : (ei ⊗ αj)|p 7→ −ξiαj |p, ∀p ∈M,

where ξ =
∑

i ξiei|p ∈ T ∗pM . Observe that

σ(∇∗) = −σ(∇)∗,

which is a special case of the general fact

σ(L∗) = (−1)kσ(L)∗, ∀L ∈ PDOk(E,F ).

The associated covariant Laplacian is the second order p.d.o

∆ = ∆∇ : C∞(E)→ C∞(E),∆ := ∇∗∇.
It is an elliptic p.d.o because its principal symbol

σ(∆)(p)(ξ) = σ(∇∗) ◦ σ(∇) = −|ξ|2g, ∀p ∈M, ξ ∈ T ∗pM.

(3) Let M be a smooth n-manifold. The exterior derivative d : Ωk(M)→ Ωk+1(M)
is a first order p.d.o. For any f ∈ C∞(M), ω ∈ Ωk(M),

(ad(f)d)ω = d(fω)− fdω = df ∧ ω.
Hence the principal symbol of d is given by

σ(d)(p)(ξ) = e(ξ),∀p ∈M, ξ ∈ T ∗pM,

where e(ξ) denotes the exterior multiplication by ξ. From this it is easy to check that
the deRham complex

0 → Ω0(M) d→ Ω1(M) d→ Ω2(M) → · · · → Ωn(M) → 0

is an elliptic complex, i.e., the associated complex of principal symbols

0 → Λ0
p(M)

e(ξ)−→ Λ1
p(M)

e(ξ)−→ Λ2
p(M) −→ · · · −→ Λnp (M) −→ 0

is exact for any p ∈M and ξ ∈ T ∗pM \ {0}.
AssumeM is oriented and endowed with a Riemannian metric g. Let d∗ : Ωk+1(M)→

Ωk(M) be the formal adjoint of d. One easily finds that d∗ = (−1)nk+n+1 ∗ d∗, where
∗ is the Hodge ∗-operator.

The Hodge-deRham operator is the formally self-adjoint, first order p.d.o.

δ := d+ d∗ : Ω∗(M)→ Ω∗(M).

We claim it is an elliptic operator. To see this, note that its principal symbol
σ(δ)(p)(ξ) = e(ξ) − e(ξ)∗, and it suffices to show that σ(δ)(p)(ξ) has trivial kernel
for any ξ 6= 0.

Suppose (e(ξ)− e(ξ)∗)α = 0. Then e(ξ)∗ ◦ e(ξ)α = 0 (since e(ξ)∗ ◦ e(ξ)∗ = 0), which
implies that

〈e(ξ)α, e(ξ)α〉g = 〈α, e(ξ)∗ ◦ e(ξ)α〉g = 0.
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Hence e(ξ)α = 0. Since the deRham complex is elliptic, there exists a β such that
α = e(ξ)β. Then e(ξ)∗α = 0 implies e(ξ)∗ ◦ e(ξ)β = 0, which implies similarly
α = e(ξ)β = 0. Hence σ(δ)(p)(ξ) is invertible for any ξ 6= 0, and the Hodge-deRham
operator δ is elliptic. (Note that the ellipticity of δ follows formally from the ellipticity
of the corresponding deRham complex.)

Exercise 1.15. (1) For any ξ ∈ T ∗pM , let ξ∗ ∈ TpM be the metric dual of ξ, and let
i(ξ∗) denote the interior multiplication by ξ∗. Show that e(ξ)∗ = i(ξ∗).

(2) Let ∆ := δ2 = dd∗ + d∗d be the Hodge Laplacian. Then ∆ is a formally self-
adjoint, second order elliptic p.d.o. Show that σ(∆)(p)(ξ) = −|ξ|2g, ∀p ∈M , ξ ∈ T ∗pM .

Definition 1.16. Let E be a smooth vector bundle over a Riemannian manifold
(M, g). A second order p.d.o.

L : C∞(E)→ C∞(E)

is called a generalized Laplacian if σ(L)(p)(ξ) = −|ξ|2g for any p ∈M , ξ ∈ T ∗pM .

Exercise 1.17. Suppose (M, g) is oriented. Prove the following fact: for any formally
self-adjoint, generalized Laplacian L : C∞(E)→ C∞(E) (with respect to some metric
on E), there exists a unique connection ∇ on E compatible with the metric such that

L = ∇∗∇+R,

where R is a smooth section of End(E) over M (or equivalently, R ∈ PDO(0)(E,E)).
In favorable situations where R is “positive”, since ∇∗∇ is always semi-positive, this
allows to prove that the equation Lu = 0 has only trivial solution. For geometrically
defined generalized Laplacian L, R is often expressed in terms of various curvatures
(the so-called Bochner technique or Weitzenböck formula).

As an example, let (M, g) be a compact, oriented Riemannian manifold, and let ∇
be the Levi-Civita connection. Then the Hodge Laplacian ∆ := dd∗+ d∗d : Ω1(M)→
Ω1(M) satisfies

∆ = ∇∗∇+ Ric,

where Ric is the Ricci tensor, which is regarded as a self-adjoint endomorphism of
T ∗M via the metric duality. On the other hand, the kernel of ∆ is the space of
harmonic 1-forms on M , which via the Hodge theory identifies with the first deRham
cohomology group H1

dR(M). Here is the upshot: if (M, g) has positive Ricci curvature,
then H1

dR(M) = 0. (Proof: if ∆u = 0, then

0 =
∫
M
〈(∇∗∇+ Ric)u, u〉gdV olg =

∫
M

(|∇u|2g + 〈Ric u, u〉g)dV olg,

which implies that u ≡ 0 because 〈Ric u, u〉g ≥ 0 and 〈Ric u, u〉g ≡ 0 iff u ≡ 0.)

Example 1.14-cont. (Cauchy-Riemann operator.) Let M be a complex manifold of
(complex) dimension n and E a holomorphic vector bundle over M . The Dolbeault
operator ∂̄ : Ω0,∗(E) → Ω0,∗+1(E) is the first order p.d.o. which is locally defined as
follows: let (zi) be a local holomorphic coordinate system on M and let (sα) be a
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holomorphic local frame of E, then

∂̄(
∑
A,α

fA,αdz̄
A ⊗ sα) =

∑
i,A,α

∂fA,α
∂z̄i

dz̄i ∧ dz̄A ⊗ sα.

(Here Ω0,∗(E) := C∞(Λ0,∗(M) ⊗ E), and A denotes a multi-index of non-negative
integers.) To determine the principal symbol, note that ∀f ∈ C∞(M),

ad(f)∂̄ := [∂̄, f ] = (
∑
i

∂f

∂z̄i
dz̄i)∧ = e((df)0,1),

where (df)0,1 is the (0, 1)-component of df viewed as a section of the complexified
cotangent bundle, and e(·) denotes the exterior multiplication. It follows that

σ(∂̄)(p)(ξ) = e(ξ0,1), ∀p ∈M, ξ ∈ T ∗pM,

where ξ0,1 denotes the (0, 1)-component of ξ viewed as an element of T ∗pM ⊗ C. As
in the case of deRham complex, it follows similarly from the above description of
σ(∂̄)(p)(ξ) that the Dolbeault complex

0 → Ω0,0(E) ∂̄→ Ω0,1(E) ∂̄→ Ω0,2(E) → · · · → Ω0,n(E) → 0

is also an elliptic complex. In the case when n = 1, e.g., M = Σ is a Riemann surface,
the Dolbeault complex reduces to a first order elliptic p.d.o.

∂̄ : C∞(E)→ C∞(Λ0,1 ⊗ E),

which is called a Cauchy-Riemann operator. Note that its principal symbol is given
by the exterior multiplication e(ξ0,1).

Definition 1.18. Let E be a complex vector bundle over a Riemann surface Σ. A
first order p.d.o.

L : C∞(E)→ C∞(Λ0,1 ⊗ E)
is called a generalized Cauchy-Riemann operator if σ(L)(p)(ξ) = e(ξ0,1) for any p ∈ Σ,
ξ ∈ T ∗pΣ. In particular, a generalized Cauchy-Riemann operator is elliptic.

Exercise 1.19. Let L be a generalized Cauchy-Riemann operator. Show that 2L∗L
is a generalized Laplacian.

1.2. Sobolev spaces and Hölder spaces. In this section we present the necessary
tools from functional analysis in the study of p.d.o.-s. Throughout, for 1 ≤ p < ∞
and D ⊂ RN an open set, Lp(D) will denote the classical Banach space of p-integrable
Lebesgue measurable functions over D with the norm

||u||p = ||u||p,D := (
∫
D
|u|pdx)1/p, ∀u ∈ Lp(D).

When p = 2, L2(D) is a Hilbert space with 〈u, v〉 =
∫
D uv dx, ∀u, v ∈ L2(D). Finally,

Lploc(D) := {u|φu ∈ Lp(D),∀φ ∈ C∞0 (D)} (called locally Lp-functions).

The following inequality (called Hölder’s inequality) will be frequently used:

||uv||r ≤ ||u||p · ||v||q, where
1
r

=
1
p

+
1
q
.
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Exercise 1.20. Use Hölder’s inequality in the following:
(1) Show that ||u||q ≤ ||u||λp ||u||1−λr where p ≤ q ≤ r and 1/q = λ/p+ (1− λ)/r.
(2) Prove that ∀ε > 0, ||u||q ≤ ε||u||r + ε−µ||u||p where µ = (1/p− 1/q)/(1/q− 1/r).

(Hint: use |ab| ≤ |a|p/p+ |b|q/q for any a, b ∈ R where 1 = 1/p+ 1/q.)
(3) Derive Young’s inequality:

||u ∗ v||p ≤ ||u||1 · ||v||p, ∀u ∈ L1(RN ), v ∈ Lp(RN ),

where u ∗ v is the convolution

u ∗ v(x) =
∫

RN
u(x− y)v(y)dy,∀x ∈ RN .

(4) Show that Lploc(D) ⊂ L1
loc(D) for p ≥ 1.

Definition 1.21. (1) Let u, v ∈ L1
loc(D). We say ∂ku = v weakly if∫

D
vφ dx = −

∫
D
u∂kφ dx, ∀φ ∈ C∞0 (D).

(Note that if ∂ku = vi weakly, i = 1, 2, then v1 = v2 a.e. in D.) Moreover, v is called
the weak ∂k-derivative of u and we say ∂ku exists weekly. (As an exercise, check that
if u ∈ C1(D), v ∈ C0(D), then ∂ku = v weakly iff ∂ku = v classically.)

(2) More generally, for any p.d.o. L : C∞(D)→ C∞(D) (including as a special case
higher order partial derivatives L = ∂α where α is a multi-index), Lu = v weakly if∫

D
vφ dx =

∫
D
uL∗φ dx, ∀φ ∈ C∞0 (D).

(Here the formal adjoint L∗ is with respect to the Euclidean metric on D.)

Definition 1.22. (Sobolev spaces.) Let k > 0 be an integer, 1 ≤ p <∞. Set

Lk,p(D) := {u ∈ Lp(D)|∂αu exists weakly and ∂αu ∈ Lp(D),∀α, |α| ≤ k}.

The functions in Lk,p(D) are called Lk,p-functions on D, which come with a natural
norm

||u||k,p = ||u||k,p,D := (
∑
|α|≤k

||∂αu||pp)1/p, ∀u ∈ Lk,p(D).

The locally Lk,p-functions on D are defined and denoted by

Lk,ploc (D) := {u|φu ∈ Lk,p(D), ∀φ ∈ C∞0 (D)}.

Lemma 1.23. Let (un) ⊂ Lk,p(D) be a sequence. If there exists a v0 ∈ Lp(D), and
for any multi-index α, 0 < |α| ≤ k, there exists a vα ∈ Lp(D), such that

un → v0, ∂αun → vα in Lp(D), as n→∞,

then ∂αv0 = vα weakly and limn→∞ un = v0 in Lk,p(D).
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Proof. It suffices to show ∂αv0 = vα weakly. For this observe that ∀φ ∈ C∞0 (D),∫
D
∂αv0 φ dx = (−1)|α|

∫
D
v0∂

αφ dx = (−1)|α| lim
n→∞

∫
D
un∂

αφ dx

= lim
n→∞

∫
D
∂αun φ dx =

∫
D
vαφ dx.

Above, limn→∞
∫
D ∂

αun φ dx =
∫
D vαφ dx and limn→∞

∫
D un∂

αφ dx =
∫
D v0∂

αφ dx

follows from Hölder’s inequality and the fact that φ, ∂αφ ∈ Lq(D) where 1
p+ 1

q = 1. �

As a corollary, we obtain

Proposition 1.24. For 1 ≤ p < ∞, Lk,p(D) is a Banach space which is reflexive if
1 < p <∞.

(Recall a Banach space V is called reflexive if (V ∗)∗ = V , where V ∗ denotes the
dual space of V (the space of functionals on V ). For 1 < p < ∞, Lp(D) is reflexive
with dual space Lq(D), 1

p + 1
q = 1.)

Proof. By Lemma 1.23, the embedding

T : Lk,p(D)→ Lp(D)× · · · × Lp(D), T (u) = (∂αu|0 ≤ |α| ≤ k)

has a closed image. The proposition follows from the fact that a closed subspace of
a Banach space is a Banach space and furthermore, a closed subspace of a reflexive
Banach space is reflexive. �

Remark 1.25. (1) When p = 2, Lk,2(D) is in fact a Hilbert space.
(2) For alternative notations for Lk,p(D), some authors use W k,p(D), and Hk(D)

for the case of p = 2.

An important fact is that Lk,p-functions can be locally approximated by smooth
functions in Lk,p-norms. To make this precise we will need mollifiers. Pick a bump-
function ρ ∈ C∞0 (RN ) such that

ρ ≥ 0, supp(ρ) ⊂ {|x| < 1}, and
∫

RN
ρ dx = 1.

Then for each δ > 0, δ → 0, we define ρδ(x) := δ−Nρ(x/δ). Note that

supp(ρδ) ⊂ {|x| < δ}, and
∫

RN
ρδ dx = 1.

The sequence (ρδ) is called a mollifying sequence. Now let D1, D2 ⊂ RN be bounded
domains such that D1 ⊂ D2 and dist(∂D1, ∂D2) := δ0 > 0. We assume δ < δ0.

Exercise 1.26. Prove the following statements.
(1) For any u ∈ Lk,p(D2) such that supp(u) ⊂ D1, ρδ ∗ u ∈ C∞0 (D2).
(2) For any multi-index α, |α| ≤ k, ∂α(ρδ ∗ u) = ρδ ∗ ∂αu in C∞(D2).

Lemma 1.27. For any u ∈ Lk,p(D2), supp(u) ⊂ D1, ρδ ∗u→ u in Lk,p(D2) as δ → 0.
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Proof. Let α be any multi-index, 0 ≤ |α| ≤ k. ∀ε > 0, we approximate ∂αu by
a continuous function vα such that supp(vα) ⊂ D2 and ||vα − ∂αu||p < ε/3. Note
that for sufficiently small δ > 0 (once vα is chosen), ρδ ∗ vα ∈ C∞0 (D2). By Young’s
inequality, we have

||ρδ ∗ vα − ρδ ∗ ∂αu||p ≤ ||ρδ||1 · ||vα − ∂αu||p = ||vα − ∂αu||p < ε/3

because ||ρδ||1 =
∫

RR ρδ dx = 1. It remains to estimate ||ρδ ∗ vα − vα||p. For any
x ∈ D2,

|ρδ ∗ vα(x)− vα(x)| = |
∫
D2

ρδ(x− y)(vα(y)− vα(x)) dy|

≤
∫
{|z|<δ}

ρδ(z)|vα(x− z)− vα(x))| dz

≤ sup
|z|<δ,x∈D2

|vα(x− z)− vα(x))|.

By the uniform continuity of vα,

sup
|z|<δ,x∈D2

|vα(x− z)− vα(x))| < (V olume(D2))−1/p · (ε/3)

when δ > 0 is sufficiently small, which gives ||ρδ ∗ vα − vα||p < ε/3. Putting the three
estimates together,

||∂α(ρδ ∗ u)− ∂αu||p = ||ρδ ∗ ∂αu− ∂αu||p < ε, ∀α, |α| ≤ k,

hence ρδ ∗ u→ u in Lk,p(D2) as δ → 0. �

Exercise 1.28. Show that C∞0 (RN ) is dense in Lk,p(RN ).
Hint: For any R > 0, pick a cut-off function ηR on RN such that ηR ≡ 1 on {|x| ≤ R}

and ηR ≡ 0 on {|x| ≥ R+ 1}, and furthermore, |dηR| ≤ 2. For any multi-index α,∫
RN
|∂α(ηRu)− ∂αu|p dx ≤

∑
|β|≤|α|

∫
{|x|≥R}

|∂βu|p dx.

Apply Lemma 1.27 to ηRu.

Remark 1.29. In general, C∞0 (D) is not dense in Lk,p(D). We denote by Lk,p0 (D)
the closure of C∞0 (D) in Lk,p(D). When D is a bounded domain in RN with “good”
boundary regularity (e.g. ∂D ⊂ RN is an embedded submanifold of codimension 1),
one can show that C∞(D) is dense in Lk,p(D). The idea is for any u ∈ Lk,p(D), we
first approximate u in Lk,p(D)-norm by a ũ ∈ Lk,p(D̃) with compact support for some
D̃ containing D. Then apply Lemma 1.27 to ũ. See [5].

Exercise 1.30. Let φ : RN → RN be a Ck-diffeomorphism and f ∈ Ck(RN ). For any
u ∈ Lk,p(RN ) with compact support, show that f · u ◦ φ ∈ Lk,p(RN ). Moreover, the
chain rule holds true for the weak partial derivatives of f · u ◦ φ up to order k.

Hint: (1) Let D ⊂ RN be a bounded domain. ∀v1, v2 ∈ C∞0 (D),

||f · v1 ◦ φ− f · v2 ◦ φ||k,p ≤ c(f, φ,D)||v1 − v2||k,p.
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(2) Apply Lemma 1.27 to u. Show that (with help of (1) above) {f · (ρδ ∗ u) ◦ φ}
converges in Lk,p(RN ) as δ → 0.

(3) Prove that f · (ρδ ∗ u) ◦ φ converges to f · u ◦ φ in Lp(RN ).

Note that the above result allows one to define the notion of Lk,p-sections of a
smooth vector bundle over a smooth manifold.

Exercise 1.31. Let u ∈ Lp(RN ). Show that the following statements are equivalent.
(1) u ∈ L1,p(RN ).
(2) There exists a constant C > 0 such that, ∀φ ∈ C∞0 (RN ), we have

|
∫

RN
u∂kφ dx| ≤ C||φ||q,∀k = 1, · · · , N

where q = p/(p− 1).
(3) There exists a constant C > 0 such that, for all h ∈ RN , we have

||∆hu||p ≤ C|h|,

where ∆hu(x) := u(x+ h)− u(x), ∀x ∈ RN .

Exercise 1.32. Let f ∈ C1(R) such that |f ′| ≤ const. Show that for any u ∈ L1,p(RN )
with f(u) ∈ Lp(RN ), one has f(u) ∈ L1,p(RN ) and ∂k f(u) = f ′(u)∂ku.

Exercise 1.33. Let u ∈ L1,p(RN ). Show that |u| ∈ L1,p(RN ), and

∂k|u| =

 ∂ku a.e. on {u > 0}
0 a.e. on {u = 0}

−∂ku a.e. on {u < 0}.

Hint: Show that uε := (ε2 + u2)1/2 converges to |u| in L1,p(RN ) as ε→ 0.

Next we discuss embedding theorems of Sobolev spaces. To this end each space
Lk,p(RN ), where 1 ≤ p <∞, is associated with a “strength”

σ(k, p) := σN (k, p) = k −N/p.

The geometric meaning of σ(k, p) is given in

Exercise 1.34. Let λ > 0. For any f ∈ C∞0 (RN ), define fλ(x) := f(λx), ∀x ∈ RN .
Show that ||∂αfλ||p = λσ(k,p)||∂αf ||p for any α with |α| = k.

Theorem 1.35. (Sobolev) If σN (k, p) = σN (m, q) < 0 and k > m, then there exists a
constant C = C(N, k,m, p, q) > 0 such that

||u||m,q ≤ C||u||k,p, ∀u ∈ Lk,p(RN ).

In particular, there is a continuous inclusion Lk,p(RN ) ↪→ Lm,q(RN ).

The following estimate plays a crucial role.

Lemma 1.36. Let N ≥ 2. Then ||u||N/(N−1) ≤ (
∏N
i=1 ||∂iu||1)1/N , ∀u ∈ L1,1(RN ).

Proof. The proof relies on the following elementary, but ingenious inequality.
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Exercise 1.37. (Gagliardo-Nirenberg) Let N ≥ 2 and f1, · · · , fN ∈ LN−1(RN−1).
For each x = (x1, x2, · · · , xN ) ∈ RN and 1 ≤ i ≤ N , define

ξi := (x1, · · · , x̂i, · · · , xN ) ∈ RN−1.

Prove that
f(x) := f1(ξ1)f2(ξ2) · · · fN (ξN ) ∈ L1(RN ),

and moreover, ||f ||1 ≤
∏N
i=1 ||fi||N−1.

Back to the proof of Lemma 1.36. First, assume u ∈ C∞0 (RN ). We define, for
1 ≤ i ≤ N , gi :=

∫∞
−∞ |∂iu|dx

i ∈ C∞0 (RN−1) and fi := g
1/(N−1)
i . Then

|u(x)| = |
∫ xi

−∞
∂iu dx

i| ≤ gi(ξi),

and |u(x)|N/(N−1) ≤ f1(ξ1)f2(ξ2) · · · fN (ξN ). By Gagliardo-Nirenberg,

||u||N/(N−1) ≤ (
N∏
i=1

||fi||N−1)(N−1)/N =
N∏
i=1

||gi||1)1/N = (
N∏
i=1

||∂iu||1)1/N .

For arbitrary u ∈ L1,1(RN ), use density of C∞0 (RN ) in L1,1(RN ). �

The Sobolev theorem can be easily reduced to the case of k = 1, m = 0, which
follows from the following estimate.

Lemma 1.38. Let N ≥ 2. There exists C(N, p) such that for any u ∈ C∞0 (RN ),

||u||p∗ ≤ C(N, p)(
N∑
i=1

||∂iu||p), where p∗ := Np/(N − p).

Proof. Recall the classical arithmetric-geometric means inequality:

(a1a2 · · · aN )1/N ≤ 1
N

(a1 + a2 + · · ·+ aN ), ∀ai ∈ R, ai ≥ 0.

The case of p = 1 follows from Lemma 1.36.
For p > 1. We consider v := |u|r for some r > 1 to be determined.

Exercise 1.39. Let r > 1 and u ∈ C∞0 (RN ). Show that v := |u|r ∈ L1,1(RN ) and ∀i,
∂iv = r|u|r−1∂i|u|. Moreover, show that |∂i|u|| = |∂iu|, ∀i.

Now apply Lemma 1.36 to v, and set q := p/(p− 1), we obtain (using Hölder)

(
∫

RN
|u|rN/(N−1)dx)(N−1)/N ≤ (

N∏
i=1

∫
RN

r|u|r−1|∂iu|dx)1/N

≤ r(
N∏
i=1

(
∫

RN
|u|(r−1)qdx)1/q · (

∫
RN
|∂iu|pdx)1/p)1/N

= r(
∫

RN
|u|(r−1)qdx)1/q · (

N∏
i=1

(
∫

RN
|∂iu|pdx)1/p)1/N .
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If we choose r such that rN/(N−1) = (r−1)q, which means r = p(N−1)/(N−p) > 1,
then rN/(N − 1) = pN/(N − p) = p∗ and (N − 1)/N − 1/q = 1/p∗, and we obtain

||u||p∗ ≤ r(
N∏
i=1

||∂iu||p)1/N ≤ p(N − 1)
N(N − p)

(
N∑
i=1

||∂iu||p).

�

Proof of Theorem 1.35. Note that if the theorem holds for k = 1, m = 0, then it
holds for m = k− 1, ∀k > 0. Now for any (k, p), (m, q) with σ(k, p) = σ(m, q), k > m,
there are p1, p2, · · · , such that

σ(k, p) = σ(k − 1, p1) = σ(k − 2, p2) = · · · = σ(m, q).

The theorem follows easily.
2

Remark 1.40. It is clear from the proof that Theorem 1.35 holds true for Lk,p0 (D)
for any open subset of RN . It also holds true for Lk,p(D) when D has good boundary
regularity, cf. [5].

Theorem 1.41. (Rellich-Kondrachov) Suppose 0 > σN (k, p) > σN (m, q) and k > m.
Then any bounded sequence (un) ⊂ Lk,p(RN ) supported in a ball BR(0) of radius R
has a subsequence which is convergent in Lm,q(RN ).

Proof. (A sketch.) This precompactness result comes from the following well-known
Arzéla-Ascoli theorem on equicontinuous families of functions on bounded domains:

Let {uα ∈ C0(D)|α ∈ A} be a family of continuous functions on a bounded domain
D ⊂ RN with the following property: there exists a constant C > 0 such that (1)
|uα(x)| ≤ C,∀α ∈ A, x ∈ D, (2) given any ε > 0, there is a δ > 0 such that if
|x− y| < δ, then |uα(x)−uα(y)| < ε for ∀α ∈ A, x, y ∈ D. Then {uα ∈ C0(D)|α ∈ A}
is precompact in C0(D).

With this understood, the proof consists of two steps: (i) apply the Arzéla-Ascoli
theorem to mollifiers {ρδ ∗un} for each fixed δ > 0, (2) establish convergence ρδ ∗un →
un as δ → 0, which is uniform in un (compare Lemma 1.23). It suffices to consider
the case where k = 1, m = 0, and q < p∗ := pN/(N − p).

More concretely,
(1) For each δ > 0, there exists C(δ) > 0 such that

|ρδ ∗ u(x)| ≤ C(δ)||u||p, |ρδ ∗ u(x)− ρδ ∗ u(y)| ≤ C(δ)||u||p · |x− y|,∀x, y ∈ D.

(2) Establish the following estimate: there is a constant C > 0 such that

||ρδ ∗ u− u||1 ≤ δ · C · ||u||1,p.

(3) Use ||u||q ≤ ||u||λ1 ||u||1−λp∗ (Exercise 1.20(1)) and then the embedding L1,p → Lp
∗
.

�

Exercise 1.42. Work out the details of the proof of Theorem 1.41.
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Next we define the Hölder spaces Ck,α(D), where D ⊂ RN is an open subset, k ≥ 0,
and 0 < α < 1. Denote by Bz(R) the open ball of radius R > 0 centered at z ∈ D.
We introduce for any u ∈ C0(D)

osc uz,R := sup
x,y∈Bz(R)∩D

|u(x)− u(y)|,

and define for any ρ > 0,

[u]α,D,ρ := sup
0<R≤ρ,z∈D

R−αosc uz,R.

Finally, set ||u||∞,D := supx∈D |u(x)|.

Exercise 1.43. Let ρ1 < ρ2. Show that [u]α,D,ρ1 ≤ [u]α,D,ρ2 and

[u]α,D,ρ2 ≤ [u]α,D,ρ1 + 2ρ−α1 ||u||∞,D.

The above result shows that the following subspace of C0(D) is independent of the
choice of ρ > 0:

C0,α(D) := {u ∈ C0(D)|||u||∞,D + [u]α,D,ρ <∞}.

We fix a choice of ρ = 1, define a norm

||u||0,α = ||u||0,α,D = ||u||∞,D + [u]α,D,1.

Finally, Ck,α(D) := {u ∈ Ck(D)|∂Au ∈ C0,α(D), ∀0 ≤ |A| ≤ k}, with

||u||k,α =
∑

0≤|A|≤k

||∂Au||0,α,∀u ∈ Ck,α(D),

and Ck,αloc (D) := {u ∈ Ck(D)|φu ∈ Ck,α(D),∀φ ∈ C∞0 (D)}.

Proposition 1.44. (1) The spaces Ck,α(D) with norm || · ||k,α are Banach spaces.
(2) There are natural inclusions: for α ≥ β, k ≥ 0, Ck,α(D) ⊂ Ck,β(D).

Exercise 1.45. (1) Prove Proposition 1.44.
(2) Extend the notion of Ck,αloc -functions to Ck,αloc -maps between smooth manifolds.

Theorem 1.46. (Morrey) If σ(m, p) = σ(k, α) := k + α > 0 and m > k, then
Lm,p(RN ) embeds continuously in Ck,α(RN ) via inclusion.

Proof. It suffices to prove the case where k = 0,m = 1 and α = 1−N/p > 0. For any
u ∈ C∞0 (Rn), We introduce the average of u over the ball Bz(R):

ūz,R :=
1

V ol(Bz(R))

∫
Bz(R)

u(y)dy.

Then the theorem follows from the following key estimate: ∀x ∈ Bz(R),

|u(x)− ūz,R| ≤ C(N)
∫
Bx(2R)

|du(y)|
|x− y|N−1

dy.

Here du denotes the gradient vector of u and |du(y)| = (
∑N

i=1 |∂iu(y)|2)1/2.
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To prove the estimate, for any unit vector ω ∈ Rn, let Dωu(y) be the directional
derivative of u at y in the direction of ω. Then

|u(x)− ūz,R| = | 1
V ol(Bz(R))

∫
Bz(R)

(u(x)− u(y))dy|

≤ 1
V ol(Bz(R))

∫
Bz(R)

∫ |x−y|
0

|Dω(x+ tω)|dtdy (where ω =
y − x
|x− y|

)

≤ 1
V ol(Bz(R))

∫ 2R

0
dt

∫
Bx(2R)

|du(x+ tω)|dy.

We write y in spherical coordinates (r, ω). Then since |du(x + tω)| is constant in r,
we have ∫

Bx(2R)
|du(x+ tω)|dy =

(2R)N

N

∫
SN−1(1)

|du(x+ tω)|dω.

This gives, for an appropriate constant C(N) > 0,

|u(x)− ūz,R| ≤ C(N)
∫ 2R

0
dt

∫
SN−1(1)

|du(x+ tω)|dω ≤ C(N)
∫
Bx(2R)

|du(y)|
|x− y|N−1

dy.

With this estimate in hand, we now observe that for q = p/(p− 1),∫
Bx(2R)

1
|x− y|q(N−1)

dy = C(N, p)(2R)αq

for some C(N, p) > 0. Use Hölder inequality, we easily obtain

||u||0,α ≤ C||u||1,p
from which the theorem follow. (As an exercise, work out the details!) �

Remark 1.47. Theorem 1.46 clearly holds true for Lm,p0 (D) where D is any open
subset of RN . When D has good boundary regularity, it also holds for Lk,p(D), cf.
[5].

With Arzéla-Ascoli theorem, we obtain

Corollary 1.48. If σ(m, p) > σ(k, α) := k + α > 0 and m > k, then a bounded
sequence (un) ⊂ Lm,p(RN ) with support contained in a fixed ball is precompact in
Ck,α(RN ).

There are interpolation inequalities which allow one to “absorb” terms involving
lower order partial derivatives in various estimates. We give a version for Sobolev
spaces below. There is a similar one for Hölder spaces, cf. [5].

Theorem 1.49. Let D ⊂ RN be an open subset and k ≥ 2. Then there exists
C(k,N) > 0 such that for any ε > 0,

||∂βu||p ≤ ε||u||k,p + C(k,N)ε|β|/(|β|−k)||u||p, ∀u ∈ Lk,p0 (D),

where β is any multi-index with 0 < |β| < k. When D is a bounded domain with good
boundary regularity, the above inequality holds for any u ∈ Lk,p(D).
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The following exercises are designed to give you some ideas for the interpolation
inequalities.

Exercise 1.50. Let u ∈ C2
0 (R). Then

(1) Show that for any interval (a, b) with b− a = ε,

|u′(x)| ≤ 3
ε

(|u(x1)|+ |u(x2)|) +
∫ b

a
|u(2)|, ∀x ∈ (a, b), x1 ∈ (a, a+

ε

3
), x2 ∈ (b− ε

3
, b).

With this show that |u′(x)| ≤
∫ b
a |u

(2)|+ 18
ε2

∫ b
a |u|, and then use Hölder to show∫ b

a
|u′|p ≤ 2p−1(εp

∫ b

a
|u(2)|p + (

18
ε

)p
∫ b

a
|u|p).

Sum over intervals of length ε > 0, one obtains, for any ε > 0,

||u′||p ≤ ε||u(2)||p +
36
ε
||u||p.

(2) Use
∫
|u′|2 = −

∫
u(2)u and Hölder inequality to prove a version of p = 2:

||u′||2 ≤ ε||u(2)||2 +
1
4ε
||u||2.

Exercise 1.51. Let D be a bounded domain. Use the fact that for k > m, Lk,p0 (D)→
Lm,p0 (D) sends bounded sets to precompact sets to show that for any ε > 0, there
exists C(ε) > 0, such that

||u||m,p ≤ ε||u||k,p + C(ε)||u||p, for k > m,∀u ∈ Lk,p0 (D).

Finally, we discuss Sobolev spaces and Hölder spaces of sections of a smooth vector
bundle over a compact smooth manifold.

Let E be a smooth vector bundle over a compact oriented smooth manifold M . Fix
a Riemannian metric g on M , a metric h on E, and a metric compatible connection
(i.e. covariant derivative) ∇ on E, ∇ : C∞(E) → C∞(T ∗M ⊗ E). Then for each
m ≥ 0, there are metrics 〈·, ·〉(g,h) and metric compatible connections on (T ∗M)⊗m⊗E
induced from g, h and the Levi-Civita connection. Via iteration we obtain higher order
covariant derivatives for all orders m ≥ 0, with ∇0 = Id and ∇1 = ∇:

∇m : C∞(E)→ C∞((T ∗M)⊗m ⊗ E).

Given any k ≥ 0, 1 ≤ p <∞, we define ∀u ∈ C∞(E),

||u||k,p(g, h,∇) := (
∑
m≤k

∫
M
|∇mu|p(g,h) dV olg)

1/p.

We define the Sobolev space Lk,p(E)(g, h,∇) to be the completion of C∞(E) under
the norm || · ||k,p(g, h,∇). Then Lk,p(E)(g, h,∇) is a Banach space, which is reflexive
if p > 1.

Exercise 1.52. (1) Show that Lk,p(E)(g, h,∇) consists of Lk,p-sections of E, i.e., those
sections of E which in local trivializations of E can be expressed as n-vector valued
functions (here n = rank E) whose components are Lk,p-functions. In particular, as
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a set Lk,p(E)(g, h,∇) does not depend on the data (g, h,∇). We shall denote it by
Lk,p(E) accordingly.

(2) For any two different choices of data (gi, hi,∇i), i = 1, 2, the norms ||·||k,p(gi, hi,∇i)
are equivalent. We shall fix a choice of (g, h,∇) and denote the norm by || · ||k,p.

To define Hölder spaces, let ρ0 > 0 be the injective radius of (M, g). For any
0 < ρ ≤ ρ0, z ∈M , let Bz(ρ) be the geodesic ball of radius ρ centered at z. Then any
x, y ∈ Bz(ρ), x 6= y, is connected by a unique geodesic γx,y ⊂ Bz(ρ). We denote by
Tx,y : (T ∗M)⊗m ⊗ E|x → (T ∗M)⊗m ⊗ E|y, m ≥ 0, the parallel transport along γx,y.
(Tx,y is determined by (g, h,∇).)

Let k ≥ 0, 0 < α < 1. We define ∀u ∈ C0(E)

||u||0,α := sup
z∈M
|u(z)|+ sup

0<ρ≤ρ0,z∈M
ρ−αosc uz,ρ,

where osc uz,ρ := supx,y∈Bz(ρ),x 6=y |u(y) − Tx,yu(x)|, and ∀u ∈ Ck(E), ||u||k,α :=∑
m≤k ||∇mu||0,α. Finally, we set Ck,α(E) := {u ∈ Ck(E)|||u||k,α <∞}.

Exercise 1.53. (1) Show that Ck,α(E) are independent of the choice of (g, h,∇), and
different choices of (g, h,∇) give equivalent norms || · ||k,α.

(2) Show that Ck,α(E) are Banach spaces.

Theorem 1.54. (1) If 0 > σ(k, p) ≥ σ(m, q), k > m, then there is continuous em-
bedding Lk,p(E)→ Lm,q(E) induced via the inclusion map. Moreover, when σ(k, p) >
σ(m, q), any bounded sequence (un) ⊂ Lk,p(E) is precompact in Lm,q(E).

(2) If σ(m, p) ≥ σ(k, α) := k + α, m > k, then there is continuous embedding
Lm,p(E)→ Ck,α(E) induced via the inclusion map. Moreover, when σ(m, p) > σ(k, α),
any bounded sequence (un) ⊂ Lm,p(E) is precompact in Ck,α(E).

Exercise 1.55. Prove Theorem 1.54. (Hint: use partition of unity to reduce to the
case of RN .)

1.3. Apriori estimates and elliptic regularity. In this section we discuss the
interior estimates for elliptic p.d.o-s and regularity of weak and strong solutions. Since
these are local issues we shall confine ourselves to the case of M = D ⊂ RN an open
subset and E,F are trivial bundles of rank n over D. We further assume, for simplicity,
that D, E,F are given standard metrics.

Throughout we let L : C∞(E)→ C∞(F ) be an elliptic p.d.o. of order k > 0.

Theorem 1.56. (Interior Elliptic Estimates) Let D′ be any bounded domain such that
D
′ ⊂ D. Then
(1) For any 1 < p <∞ and integer m ≥ 0, there exists a constant C > 0 such that

||u||m+k,p,D′ ≤ C(||Lu||m,p,D + ||u||p,D), ∀u ∈ C∞(E),

where C depends on L,m, p,D′, D, but is independent of u.
(2) For any 0 < α < 1 and integer m ≥ 0, there exists a constant C > 0 such that

||u||m+k,α,D′ ≤ C(||Lu||m,α,D + ||u||0,α,D), ∀u ∈ C∞(E).

Here C = C(L,m,α,D′, D).
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We shall explain the proof by breaking it down into several steps. During the course
of the proof we will explain in more concrete terms as how the constant C on the right-
hand side of the estimates may depend on L. We first recall the relevant results from
analysis which we quote without giving proofs.

Denote by SN−1 the unit sphere in RN . Let Ω ∈ C∞(SN−1) such that
∫

SN−1 Ωdx = 0.
To each such a function Ω, one can associate an operator TΩ as follows:

TΩu(x) := lim
ε→0

∫
|y|≥ε

Ω(y/|y|)
|y|N

u(x− y)dy, ∀u ∈ C∞0 (RN ).

Theorem 1.57. (1) (Calderon-Zygmund inequality) For 1 < p <∞, TΩ extends to a
bounded operator from Lp(RN ) to Lp(RN ): there exists A(p,N,Ω) > 0 such that

||TΩu||p ≤ A(p,Ω)||u||p, ∀u ∈ Lp(RN ).

(2) (Hölder-Korn-Lichtenstein-Girand) Let 0 < α < 1. There exists A(α,R,N,Ω) >
0 such that for any u ∈ C∞(RN ) satisfying u(x) = 0 for |x| ≥ R,

||TΩu||0,α ≤ A(α,R,Ω)||u||0,α.

Theorem 1.57(2) is elementary and we leave it as an exercise (for a proof see [2]).
The Calderon-Zygmund inequality is more involved and we refer to [6], Theorem 4.2.10.

Recall the Fourier transform of a function u ∈ C∞0 (RN ) is defined by

û(ξ) :=
∫

RN
e−2πi ξ·xu(x) dx, ξ ∈ RN ,

where ξ · x = ξ1x1 + · · ·+ ξNxN . The inverse Fourier transform is given by

u(x) =
∫

RN
e2πi ξ·xû(ξ) dξ, x ∈ RN .

The proof of the following result can be found in [6], Prop. 2.4.7.

Proposition 1.58. Let m̄ ∈ C∞(SN−1) with
∫

SN−1 m̄dx = 0. Set m(ξ) := m̄(ξ/|ξ|) ∈
C∞(RN \ {0}). Then there exists Ω ∈ C∞(SN−1) with

∫
SN−1 Ωdx = 0 such that the

Fourier transform of m(ξ) is given (as distributions) by Ω(x/|x|)
|x|N . More precisely, let

TΩu(x) := lim
ε→0

∫
|y|≥ε

Ω(y/|y|)
|y|N

u(x− y)dy, ∀u ∈ C∞0 (RN ),

then ˆTΩu(ξ) = m(ξ)û(ξ),∀ξ ∈ RN .

With these preparations, we now return to the proof of the interior elliptic estimates.

Lemma 1.59. Suppose L is of constant coefficients and homogeneous, i.e., L =∑
|α|=k Aα∂

α where Aα are constant n × n matrices. Let λ > 0 be the minimum
of the norms of the matrices σ(L)(ξ) =

∑
|α|=k Aαξ

α over the unit sphere |ξ| = 1, and

let A := maxα{|aijα |} where aijα are the entries of Aα, i.e., Aα = (aijα ). Let u ∈ C∞0 (E).
Then
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(1) for any 1 < p <∞, there exists C(λ,A, p) > 0 such that∑
|β|=k

||∂βu||p ≤ C(λ,A, p)||Lu||p,

(2) for any 0 < α < 1, there exists C(λ,A, α,R) > 0 such that∑
|β|=k

||∂βu||0,α ≤ C(λ,A, α,R)||Lu||0,α,

if u(x) = 0 for |x| ≥ R.

Proof. Let v := Lu ∈ C∞0 (F ). Write u = (u1, · · · , un)T , v = (v1, · · · , vn)T , and let

û(ξ) := (û1(ξ), · · · , ûn(ξ))T , v̂(ξ) := (v̂1(ξ), · · · , v̂n(ξ))T .

Then for any multi-index β with |β| = k, we have L(∂βu) = ∂βv, and taking Fourier
transforms of both sides, we obtain

(−2πi)k(
∑
|α|=k

Aαξ
α) ˆ∂βu(ξ) = ξβ v̂(ξ), ∀ξ ∈ RN .

For ξ 6= 0, we solve for ˆ∂βu(ξ)
ˆ∂βu(ξ) = (−2πi)−k(

∑
|α|=k

Aαξ
α)−1ξβ v̂(ξ),

and therefore
ˆ∂βui(ξ) =

n∑
j=1

mij(ξ)v̂j(ξ), ∀i = 1, 2, · · · , n,

where mij(ξ) are homogeneous of degree 0 so that mij(ξ) = m̄ij(ξ/|ξ|) for some m̄ij ∈
C∞(SN−1). Set cij :=

∫
SN−1 m̄ijdx. Then applying Proposition 1.58 to m̄ij − cij , we

obtain Ωij ∈ C∞(SN−1) with
∫

SN−1 Ωijdx = 0 and the associated operators Tij .
By the Calderon-Zygmund inequality, for any 1 < p <∞,

||∂βui||p ≤
n∑
j=1

(||Tijvj ||p + |cij |||vj ||p) ≤ C
n∑
j=1

||vj ||p, ∀i = 1, 2, · · · , n,

which implies ∑
|β|=k

||∂βu||p ≤ C||v||p = C||Lu||p,

where C = C({Ωij , |cij ||i, j = 1, · · · , n}, p).
Similarly, using Hölder-Korn-Lichtenstein-Girand, one obtains for 0 < α < 1,∑

|β|=k

||∂βu||0,α ≤ C||Lu||0,α

if u(x) = 0 for |x| ≥ R, where C = C({Ωij , |cij ||i, j = 1, · · · , n}, α,R) > 0.
Finally, to determine how the constant C may depend on L, we inspect the depen-

dence of C on {Ωij} and that of Ωij on m̄ij − cij . We conclude that C = C(λ,A, p) in
the Sobolev case and C = C(λ,A, α,R) in the Hölder case. �
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With this lemma, we shall prove a version of Theorem 1.56 with an additional
assumption that supp u ⊂ D′. Note that in this case, one has

||Lu||m,p,D′ = ||Lu||m,p,D, ||u||p,D′ = ||u||p,D, ||Lu||m,α,D′ = ||Lu||m,α,D, ||u||0,α,D′ = ||u||0,α,D.

We shall first deal with the case where m = 0. Let L =
∑
|α|≤k Aα(x)∂α, x ∈ D. We

denote by λ > 0 the minimum of the norms of matrices σ(L)(x)(ξ) =
∑
|α|=k Aα(x)ξα

over x ∈ D′ and the unit sphere |ξ| = 1, and let

A := max
x∈D′, |α|=k

{|aijα (x)|, |∇aijα (x)|}, B := max
x∈D′, |α|<k

{|aijα (x)|},

where Aα(x) = (aijα (x)).

Proposition 1.60. Suppose u ∈ C∞(E) such that supp u ⊂ D′. Then

||u||k,p,D′ ≤ C(||Lu||p,D′ + ||u||p,D′),

where C = C(λ,A,B, p,D′) > 0, 1 < p <∞.

Proof. Cover D′ by finitely many balls Bν := Bxν (r) of radius r > 0 centered at
xν ∈ D, ν = 1, 2, · · · ,M , with r to be specified later. For each ν, pick a bump
function ρν ≥ 0 with supp ρν ⊂ Bν such that

∑M
ν=1 ρν = 1 on D

′. Finally, set
uν := ρνu and Lν :=

∑
|α|=k Aα(xν)∂α. Note that supp uν ⊂ Bν .

By Lemma 1.59(1), for each ν,
∑
|β|=k ||∂βuν ||p,Bν ≤ C(λ,A, p)||Lνuν ||p,Bν . We

write

Lνuν = Luν + (Lν − L)uν

= ρνLu+ [L, ρν ]u+
∑
|α|=k

(Aα(xν)−Aα(x))∂αuν +
∑
|α|<k

Aα(x)∂αuν

and observe the following estimates

||ρνLu||p,Bν ≤ ||Lu||p,D′ , ||[L, ρν ]u||p,Bν ≤ C(r,A,B)||u||k−1,p,D′ ,

||
∑
|α|=k

(Aα(xν)−Aα(x))∂αuν ||p,Bν ≤ Ar
∑
|α|=k

||∂αuν ||p,Bν ,

and
||
∑
|α|<k

Aα(x)∂αuν ||p,Bν ≤ C(B, r)||u||k−1,p,D′ .

Choose r > 0 so that C(λ,A, p)Ar = 1/2, one can “absorb” the term

||
∑
|α|=k

(Aα(xν)−Aα(x))∂αuν ||p,Bν

in ||Lνuν ||p,Bν and obtain∑
|β|=k

||∂βuν ||p,Bν ≤ C(||Lu||p,D′ + ||u||k−1,p,D′)
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for a constant C = C(λ,A,B, p, r) > 0. Now over D′, u =
∑M

ν=1 uν , and moreover,
observe that ||u||k,p,D′ =

∑
|β|=k ||∂βu||p,D′ + ||u||k−1,p,D′ , one has

||u||k,p,D′ ≤
M∑
ν=1

∑
|β|=k

||∂βuν ||p,Bν + ||u||k−1,p,D′

≤ C(||Lu||p,D′ + ||u||k−1,p,D′)

for a constant C = C(λ,A,B, p, r,M) > 0. Finally, we use the interpolation inequali-
ties

||u||k−1,p,D′ ≤ ε||u||k,p,D′ + C(ε)||u||p,D′
to “absorb” the term ||u||k−1,p,D′ by choosing a sufficiently small ε > 0.

�

Exercise 1.61. (1) Assume supp u ⊂ D′. Prove that for any integer m ≥ 0,

||u||k+m,p,D′ ≤ C(||Lu||m,p,D′ + ||u||p,D′).

Also, explain the dependence of C on the coefficients of L. (Hint: For any multi-index
β with |β| = m, [L, ∂β] is a p.d.o. of order ≤ k+m− 1. Use interpolation inequalities
to “absorb” it.)

(2) Do the case of Hölder spaces.

Remark 1.62. Without the assumption that supp u ⊂ D′, the argument in Proposi-
tion 1.60 still gives an estimate

||u||k,p,D′ ≤ C(||Lu||p,D + ||u||k−1,p,D).

However, the interpolation inequality argument at the end breaks down.

In order to remove the assumption supp u ⊂ D′ and prove Theorem 1.56 in full
generality, one has to apply the interpolation inequalities in a more subtle way. For
simplicity, we shall only illustrate this for the case of k = 2. Essentially one needs
to deal with the case where D = BR, D′ = Br are balls centered at 0 with radius
R > r > 0 and R sufficiently small. For general D′, D, a covering argument with
small balls will do.

Proposition 1.63. Assume L =
∑
|α|≤2Aα(x)∂α is of order 2 and elliptic. Then for

sufficiently small R > 0, and any 0 < r < R,

||u||2,p,Br ≤ C(||Lu||p,BR + ||u||p,BR), ∀u ∈ C∞(E)

where C = C(λ,A,B, p, r, R) > 0 and 1 < p <∞. Here λ is the minimum of the norms
of the matrices

∑
|α|=2Aα(0)ξα over |ξ| = 1, A := maxx∈BR,|α|=2{|a

ij
α (0)|, |∇aijα (x)|},

and B := maxx∈BR,|α|<2{|a
ij
α (x)|}, where Aα(x) = (aijα (x)).

Proof. For 0 < σ < 1, pick a cut-off function ησ such that ησ ≡ 1 on BσR and
ησ ≡ 0 outside Bσ′R where σ′ = (1 + σ)/2 > σ. Moreover, we can arrange so that
|∇ησ| ≤ 100((1− σ)R)−1. Set uσ := ησu.
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As we argued in the proof of Proposition 1.60, when R > 0 is sufficiently small, one
can absorb the term ||

∑
|α|=2(Aα(0)−Aα(x))∂αuσ||p,BR , and have∑

|α|=2

||∂αu||p,BσR ≤
∑
|α|=2

||∂αuσ||p,BR

≤ C(||Lu||p,BR + ||[L, ησ]u||p,BR + ||
∑
|α|<2

Aα(x)∂αuσ||p,BR).

Notice that

||[L, ησ]u||p,BR ≤ C(((1− σ)R)−1
∑
|α|=1

||∂αu||p,Bσ′R + ((1− σ)R)−2||u||p,Bσ′R),

and

||
∑
|α|<2

Aα(x)∂αuσ||p,BR ≤ C(
∑
|α|=1

||∂αu||p,Bσ′R + ((1− σ)R)−1||u||p,Bσ′R).

It follows, with the observation (1− σ)/2 = 1− σ′, that

((1− σ)R)2
∑
|α|=2

||∂αu||p,BσR ≤ C(||Lu||p,BR + (1− σ′)R
∑
|α|=1

||∂αu||p,Bσ′R + ||u||p,BR),

where C = C(λ,A,B, p,R) > 0.
We introduce

Φl := sup
0<σ<1

((1− σ)R)l
∑
|α|=l

||∂αu||p,BσR <∞, l = 0, 1, 2.

Then we have Φ2 ≤ C(||Lu||p,BR + Φ1 + ||u||p,BR).
Next we will show that for any ε > 0, there exists C(ε) > 0, such that

Φ1 ≤ εΦ2 + C(ε)Φ0.

To this end, let γ > 0 be any number. Choose σ = σ(γ) such that

Φ1 ≤ (1− σ)R
∑
|α|=1

||∂αu||p,BσR + γ.

Now by the interpolation inequality, ∀ε > 0,∑
|α|=1

||∂αu||p,BσR ≤ ε(1− σ)R
∑
|α|=2

||∂αu||p,BσR +
C

ε(1− σ)R
||u||p,BσR .

This gives rise to

Φ1 ≤ ε((1− σ)R)2
∑
|α|=2

||∂αu||p,BσR +
C

ε
||u||p,BσR + γ

≤ εΦ2 +
C

ε
Φ0 + γ.

Letting γ → 0, we have Φ1 ≤ εΦ2 + C
ε Φ0.
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Now absorbing Φ1, we obtain Φ2 ≤ C(||Lu||p,BR + ||u||p,BR), and for any 0 < r < R,∑
|α|=2

||∂αu||p,Br ≤
1

(R− r)2
Φ2 ≤ C(||Lu||p,BR + ||u||p,BR),

where C = C(λ,A,B, p,R, r) > 0. Finally, using interpolation inequality again,

||u||2,p,Br ≤ C(
∑
|α|=2

||∂αu||p,Br + ||u||p,Br)

≤ C(||Lu||p,BR + ||u||p,BR).

�

Exercise 1.64. Complete the proof of Theorem 1.56.

Definition 1.65. (1) We say u is a classical solution of Lu = v if u ∈ Ck(E),
v ∈ C0(F ) and Lu = v pointwise in D.

(2) We say u is a Lp strong solution of Lu = v if u ∈ Lk,ploc (E), v ∈ Lploc(F ) where
1 ≤ p <∞, and Lu = v almost everywhere in D.

(3) We say u is a Lp weak solution of Lu = v if u ∈ Lploc(E), v ∈ Lploc(F ) for some
1 ≤ p <∞, and Lu = v weakly in D, i.e., ∀φ ∈ C∞0 (F ),∫

D
〈u, L∗φ〉Edx =

∫
D
〈v, φ〉Fdx.

Exercise 1.66. Show that

Classical solutions ⇒ Strong solutions ⇒ Weak solutions

The issue of regularity concerns whether the above arrows can be reversed, i.e.,

Classical solutions ?⇐ Strong solutions ?⇐ Weak solutions

Next we shall illustrate with a few examples how to prove or improve regularity of
solutions of elliptic equations using mollifiers ρδ∗ and apriori estimates. A key issue
of this approach is the behavior of the commutator [L, ρδ∗]. We shall first look at the
case when L has constant coefficients, in which case [L, ρδ∗] = 0.

Proposition 1.67. Suppose L : C∞(E)→ C∞(F ) is an elliptic p.d.o. of order k > 0
over D, which has constant coefficients. For 1 < p <∞, let u ∈ Lploc(E), v ∈ Lploc(F ),
where Lu = v weakly in D. Then for any integer m ≥ 0, if v ∈ Lm,ploc (F ), then
u ∈ Lm+k,p

loc (E).

Proof. Consider the case m = 0 first. Let x0 ∈ D be any point, and let R > 0 be
small enough such that the ball B4R of radius 4R centered at x0 is contained in D.
We pick a cut-off function η, 0 ≤ η ≤ 1, such that η ≡ 1 on B2R, η ≡ 0 outside
B3R. Let ũ = ηu, ṽ = ηv. Then ũ ∈ Lp(E|B4R

), ṽ ∈ Lp(F |B4R
). Moreover, For any

δ < R, the mollifiers ρδ ∗ ũ, ρδ ∗ ṽ converges to ũ, ṽ strongly in Lp(E|B4R
), Lp(F |B4R

)
respectively. In particular, there is a constant C0 > 0 independent of δ such that both
||ρδ ∗ ũ||p,B4R

≤ C0, ||ρδ ∗ ṽ||p,B4R
≤ C0, ∀δ.
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Now by the interior elliptic estimates, for any 0 < r < R,

||ρδ ∗ ũ||k,p,Br ≤ C(||L(ρδ ∗ ũ)||p,BR + ||ρδ ∗ ũ||p,BR)

where C > 0 is also independent of δ. Note that when δ < R, ρδ ∗ ũ = ρδ ∗ u,
ρδ ∗ ṽ = ρδ ∗ v on BR, so that

L(ρδ ∗ ũ) = L(ρδ ∗ u) = ρδ ∗ (Lu) = ρδ ∗ v = ρδ ∗ ṽ on BR.

Consequently, we obtain the bound ||ρδ ∗ ũ||k,p,Br ≤ 2CC0, ∀δ.
At this point we need to recall a result from functional analysis, i.e., if (fn) ⊂ B

is a sequence in a reflexive Banach space B such that ||fn|| ≤ C for some constant
C > 0 for all n, then there is a f ∈ B and a subsequence (fnk) such that fnk → f
weakly in B, which means that for any functional w ∈ B∗ in the dual space of B,
limk→∞w(fnk) = w(f), cf. [15].

Notice that Lk,p(E|Br) is reflexive. Hence there exists a sequence δn → 0, and a
ū ∈ Lk,p(E|Br), such that ρδn ∗ u → ū weakly in Lk,p(E|Br). In particular, for any
φ ∈ C∞0 (E|Br),

lim
n→∞

∫
Br

〈ρδn ∗ u, φ〉Edx =
∫
Br

〈ū, φ〉Edx.

On the other hand, since ρδn ∗ u→ u strongly in Lp(E|Br), we have

lim
n→∞

∫
Br

〈ρδn ∗ u, φ〉Edx =
∫
Br

〈u, φ〉Edx,

which implies
∫
Br
〈ū, φ〉Edx =

∫
Br
〈u, φ〉Edx, ∀φ ∈ C∞0 (E|Br). This implies that ū = u

almost everywhere in Br. Hence u ∈ Lk,p(E|Br) for sufficiently small r > 0. Since
x0 ∈ D is arbitrary, we conclude that u ∈ Lk,ploc (E).

For m > 0, notice [L, ∂α] = 0 and use induction on m.
�

The above argument clearly works for L with more general coefficients, as long as
one can get a contral over the commutator [L, ρδ∗]. The next lemma looks at the case
where L is a first order p.d.o.

Lemma 1.68. Suppose L is a first order p.d.o. (not necessarily elliptic). Let u, v ∈ Lp
and Lu = v weakly. Then there exists a constant C > 0 independent of δ such that
||L(ρδ ∗ u)− ρδ ∗ v||p ≤ C, ∀δ.

Proof. For simplicity we assume E,F are of rank 1. It suffices to consider the case
where L = a(x)∂, a(x) a smooth function. With this understood,

L(ρδ∗u)(x) = a(x)∂x(
∫
ρδ(x−y)u(y)dy) =

∫
∂xρδ(x−y)a(x)u(y)dy = −

∫
∂yρδ(x−y)a(x)u(y)dy.

On the other hand, since Lu = v weakly, and notice that ρδ ∈ C∞0 , one has

ρδ ∗ v(x) =
∫
ρδ(x− y)v(y)dy = −

∫
∂y(a(y)ρδ(x− y))u(y)dy.

Hence L(ρδ ∗ u)(x)− ρδ ∗ v(x) =
∫
∂y((a(y)− a(x))ρδ(x− y))u(y)dy. We write

∂y((a(y)− a(x))ρδ(x− y)) = ∂y(a(y))ρδ(x− y) + (a(y)− a(x))∂yρδ(x− y),
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and observe |(a(y)− a(x))∂yρδ(x− y)| ≤ sup |∇a| · δ−N |∂ρ|((x− y)/δ). Hence

||L(ρδ ∗ u)− ρδ ∗ v||p ≤ ||ρδ ∗ |u · ∂a|||p + sup |∇a| · |||∂ρ|δ ∗ |u|||p
≤ ||ρδ||1 · ||u · ∂a||p + sup |∇a| · |||∂ρ|δ||1 · ||u||p (by Young’s ineq.)
≤ sup |∇a|(1 + |||∂ρ|||1) · ||u||p

which is independent of δ. Note that in the last step we used ||ρδ||1 = ||ρ||1 = 1 and
|||∂ρ|δ||1 = |||∂ρ|||1. �

Proposition 1.69. Suppose L : C∞(E)→ C∞(F ) is a first order elliptic p.d.o. over
D. For 1 < p < ∞, let u ∈ Lploc(E), v ∈ Lploc(F ), where Lu = v weakly in D. Then
for any integer m ≥ 0, if v ∈ Lm,ploc (F ), then u ∈ Lm+k,p

loc (E).

Exercise 1.70. (1) Prove Proposition 1.69.
(2) Prove a generalization of Proposition 1.69 which says: if L is of order k > 0 and

u ∈ L(k−1),p
loc (E), v ∈ Lploc(F ), then Lu = v weakly implies that u ∈ Lk,ploc (E).

Here is another example.

Exercise 1.71. Let L =
∑
|α|≤k Aα(x)∂α : C∞(E) → C∞(F ) be an elliptic p.d.o. of

order k > 0 over D. Suppose u ∈ Ck(E). If Lu ∈ C0,α(F ) for some 0 < α < 1, then
u ∈ Ck,α(E).

Hints: (1) There exists C0 > 0 such that ||ρδ ∗ u||0,α ≤ C0||u||0,α, ||ρδ ∗ Lu||0,α ≤
C0||Lu||0,α, ∀δ.

(2) ||L(ρδ ∗ u)− ρδ ∗ Lu||0,α ≤ C1 maxα ||Aα||0,α · ||u||Ck for some C1 > 0, ∀δ.
Note that (1), (2) plus interior elliptic estimates imply that ||ρδ∗u||k,α ≤ C2(||Lu||0,α+

||u||Ck) for some C2 > 0, ∀δ.
(3) Use the fact that ρδ ∗u converges to u uniformly in Ck(E) to show that ||u||k,α ≤

C2(||Lu||0,α + ||u||Ck). In particular, u ∈ Ck,α(E).

There are different approaches to a proof of the following theorem, one of which is
through pseudo-differential operators, cf. e.g. [7].

Theorem 1.72. (Regularity of Lp Weak Solutions) Suppose L : C∞(E)→ C∞(F ) is
an elliptic p.d.o. of order k > 0 over D. For 1 < p <∞, let u ∈ Lploc(E), v ∈ Lploc(F ),
where Lu = v weakly in D. Then for any integer m ≥ 0, if v ∈ Lm,ploc (F ), then
u ∈ Lm+k,p

loc (E). Moreover, if v ∈ Cm,αloc (F ) for some 0 < α < 1, then u ∈ Cm+k,α
loc (E).

Corollary 1.73. If u is a Lp weak solution of Lu = v for some 1 < p < ∞ where v
is smooth, then u must be smooth.

1.4. Elliptic operators on compact manifolds. Let L : C∞(E) → C∞(F ) be
an elliptic p.d.o. of order k > 0 over a compact, oriented manifold M . We fix a
1 < p <∞. For any integer m ≥ 0, L determines uniquely a bounded linear operator

Lm : Lm+k,p(E)→ Lm,p(F ),

because (1) there exists C > 0 such that ∀u ∈ C∞(E), ||Lu||m,p ≤ C||u||m+k,p, and
(2) C∞(E) ⊂ Lm+k,p(E) is a dense subspace. Note that ∀u ∈ Lm+k,p(E), Lu = v ∈
Lm,p(F ) as a Lp strong solution, and moreover, Lmu = Lu.
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The first goal of this section is to establish the Fredholm properties of Lm. The
proof is based on what we discussed in sections 1.2 and 1.3. First of all, we observe

Proposition 1.74. There exists C > 0 such that

||u||m+k,p ≤ C(||Lu||m,p + ||u||p), ∀u ∈ Lm+k,p(E).

Proof. Since M is compact, we can cover M by finitely many coordinate balls Bxν (R)
of radius R centered at xν ∈ M for some R > 0, ν = 1, 2, · · · , S. Furthermore, we
can assume Bxν (2R) of radius 2R is also a coordinate ball. By the interior elliptic
estimates, there exists C ′ > 0 such that for all ν,

||u||m+k,p,Bxν (R) ≤ C ′(||Lu||m,p,Bxν (2R) + ||u||p,Bxν (2R)), ∀u ∈ C∞(E).

This gives

||u||m+k,p ≤
S∑
ν=1

||u||m+k,p,Bxν (R) ≤ SC ′(||Lu||m,p + ||u||p)

for any u ∈ C∞(E). Taking C = SC ′, the proposition follows by the density of C∞(E)
in Lm+k,p(E). �

Recall that the kernel of Lm is kerLm := {u ∈ Lm+k,p(E)|Lu = 0 ∈ Lm,p(F )}.
The image of Lm is Im Lm := {v ∈ Lm,p(F )|v = Lu for some u ∈ Lm+k,p(E)} ⊂
Lm,p(F ). The cokernel of Lm is coker Lm := Lm,p(F )/Im Lm. Note that by the
elliptic regularity, kerLm = kerL, where L : C∞(E)→ C∞(F ). The main properties
(i.e. Fredholm) of Lm are listed in the following theorem.

Theorem 1.75. (1) kerLm = kerL and dim kerLm <∞.
(2) The image Im Lm ⊂ Lm,p(F ) is a closed subspace.
(3) The dual space of coker Lm is given by kerL∗ through the L2 inner product, where

L∗ : C∞(F )→ C∞(E) is the formal adjoint of L. In particular, dim coker Lm <∞.
(4) There is a decomposition Lm,p(F ) = kerL∗ ⊕ Im Lm, which is orthogonal with

respect to the L2 inner product.

Definition 1.76. (Fredholm Operators) A linear operator F : V → W between
Banach spaces is called Fredholm if (1) dim kerF < ∞, and Im F ⊂ W is closed, (2)
dim coker F <∞, where coker F := W/Im F . The index of F is defined to be

Index F := dim kerF − dim coker F.

Remark 1.77. (1) By Theorem 1.75, for any 1 < p < ∞ and m ≥ 0, Lm :
Lm+k,p(E) → Lm,p(F ) is a Fredholm operator. Moreover, Index Lm = dim kerL −
dim kerL∗, which is independent of p and m, and is simply defined to be the index of
L, i.e.,

Index L := Index Lm = dim kerL− dim kerL∗.
In fact, Index L may be computed in terms of topological invariants by the Atiyah-
Singer Index Theorem, cf. [1].

(2) By Theorem 1.75(3), a v ∈ Lm,p(F ) lies in Im Lm if and only if∫
M
〈v, φ〉FdV olg = 0, for any φ ∈ kerL∗ ⊂ C∞(F ).
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Now we give a proof for Theorem 1.75. For part (1), note that as a closed subspace,
kerLm ⊂ Lm+k,p(E) is a Banach space under the norm || · ||m+k,p. Let B ⊂ kerLm
be the unit ball, i.e., B = {u ∈ kerLm|||u||m+k,p ≤ 1}. We will show that B is a
compact subset, hence by the classical lemma of F. Riesz: the unit ball of an infinite
dimensional Banach space is not compact, we conclude that dim kerLm < ∞. To
see that B is compact, note that by the Rellich-Kondrachove compactness theorem,
B is precompact in the topology of Lp norm. But by Proposition 1.74, ||u||m+k,p ≤
C(||Lu||m,p + ||u||p) = C||u||p for any u ∈ kerLm, so that the precompactness in Lp-
topology implies precompactness in the original topology defined by || · ||m+k,p. Hence
B is compact.

For part (2), we consider the L2-orthogonal complement of kerLm in Lm+k,p(E),
i.e.,

(kerLm)⊥ := {u ∈ Lm+k,p(E)|
∫
M
〈u, φ〉EdV ol = 0, ∀φ ∈ kerLm}.

Lemma 1.78. (Poincaré inequality) There exists a constant C > 0 such that

||u||p ≤ C||Lu||m,p, ∀u ∈ (kerLm)⊥.

Proof. Suppose there exists no such constants. Then there is a sequence (un) ⊂
(kerLm)⊥ such that ||un||p = 1, ∀n, and limn→∞ Lun = 0 in Lm,p(F ). By the ellip-
tic estimate (Prop. 1.74), ||un||m+k,p ≤ C0(||Lun||m,p + ||un||p) ≤ C1, ∀n. Hence by
Rellich-Kondrachove, a subsequence of (un), still denoted by (un) for simplicity, con-
verges to a ū in the Lp-topology. Note that ||ū||p = limn→∞ ||un||p = 1. In particular,
ū 6= 0. We claim ū ∈ kerLm. To see this, note that for any φ ∈ C∞(F ),∫
M
〈Lū, φ〉FdV ol =

∫
M
〈ū, L∗φ〉EdV ol = lim

n→∞

∫
M
〈un, L∗φ〉EdV ol = lim

n→∞

∫
M
〈Lun, φ〉FdV ol = 0,

which shows that Lū = 0 weakly. By elliptic regularity, ū ∈ kerLm.
A contradiction is reached as follows. Since un ∈ (kerLm)⊥, we have

||ū||22 = −
∫
M
〈un − ū, ū〉EdV ol ≤ ||un − ū||p||ū||q, where q = p/(p− 1),

which implies ū = 0. �

With the above lemma, it follows immediately that Im Lm is closed. Suppose Lun
converges to v in Lm,p(F ) (without loss of generality we assume un ∈ (kerLm)⊥).
Then (Lun) is a Cauchy sequence in Lm,p(F ), which implies that (un) is Cauchy in
Lm+k,p(E) by Lemma 1.78 and Prop. 1.74. Hence un → u in Lm+k,p(E) and Lu = v.

For part (3) & (4), we first observe that the dual space of coker Lm = Lm,p(F )/Im Lm
can be identified with the subspace of (Lm,p(F ))∗ which vanishes on Im Lm. With this
understood, there is an embedding ι : kerL∗ → (Lm,p(F )/Im Lm)∗ via the L2 inner
product, i.e., ι(φ)(v) =

∫
M 〈v, φ〉FdV ol, ∀φ ∈ kerL∗, v ∈ Lm,p(F ). To see ι is onto,

we first assume m = 0. Then since (Lp(F ))∗ = Lq(F ) via the L2-product, where
q = p/(p− 1) > 1, we see in the case of m = 0, the dual space can be identified with
the space of v ∈ Lq(F ) such that L∗v = 0 weakly. By elliptic regularity, v ∈ C∞(F )
and v ∈ kerL∗.
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Before proceeding to the case of m > 0 in general, we note that kerL∗ is a subspace
of Lm,p(F ) which is L2-orthogonal to Im Lm. In particular, kerL∗ ∩ Im Lm = {0}.
We have shown that (coker Lm)∗ = kerL∗ for the case m = 0 above. This gives in
particular Lm,p(F ) = kerL∗ ⊕ Im Lm for m = 0. We claim it holds for m > 0 as well.
To see this, let v ∈ Lm,p(F ). Then as an element of Lp(F ), v = φ+Lu where φ ∈ kerL∗

and u ∈ Lk,p(E). Note that Lu = v − φ ∈ Lm,p(F ), so that by the elliptic regularity,
u ∈ Lm+k,p(E). This shows that Lm,p(F ) = kerL∗⊕Im Lm, which is part (4). Finally,
with the above decomposition, the embedding ι : kerL∗ → (Lm,p(F )/Im Lm)∗ must
be onto for any m ≥ 0 by a dimension counting, which is part (3).

Exercise 1.79. Show that for any 0 < α < 1, m ≥ 0, an elliptic p.d.o. L of order
k > 0 defines a Fredholm operator between the Hölder spaces Cm+k,α(E) and Cm,α(F ),
whose index is given by dim kerL− dim kerL∗.

As a corollary of Theorem 1.75, we obtain the following

Corollary 1.80. (Abstract Hodge Decomposition) Let L : C∞(E) → C∞(E) be a
formally self-adjoint elliptic p.d.o of order k > 0. There is an orthogonal decomposition

L2(E) = kerL⊕ Im L,

where L : Lk,2(E)→ L2(E).

Example 1.81. (Hodge Theory) (1) Let (M, g) be a compact, oriented Riemannian
manifold of dimension N . The Hodge-Laplacian ∆ = dd∗ + d∗d : Ωk(M) → Ωk(M),
0 ≤ k ≤ N , is a second order, formally self-adjoint, elliptic operator. By the Hodge
Decomposition, every k-form α of L2-class can be uniquely written as

α = α0 + ∆β = α0 + dβ1 + d∗β2 (an orthogonal decomposition).

Here α0 ∈ ker ∆ ⊂ Ωk(M) (called a harmonic k-form, which is equivalently charac-
terized by dα0 = d∗α0 = 0), β is a k-form of L2,2-class, and β1 = d∗β, β2 = dβ.
By elliptic regularity, both β1, β2 are smooth if α is smooth. As a consequence, one
obtains the following

Hodge Theorem: on a compact, oriented Riemannian manifold (M, g), every de
Rham cohomology class of degree k is uniquely represented by a harmonic k-form.

(2) Let M be a compact complex manifold of dimension n, and let g be a Hermitian
metric on M . For any 0 ≤ p ≤ n, consider the Dolbeault complex (which is elliptic)

0 → Ωp,0(M) ∂̄→ Ωp,1(M) ∂̄→ Ωp,2(M) → · · · → Ωp,n(M) → 0.

The Dolbeault cohomology group Hp,q(M) is defined (similarly as the de Rham coho-
mology group) to be

Hp,q(M) :=
ker{Ωp,q(M) ∂̄→ Ωp,q+1(M)}

Im {Ωp,q−1(M) ∂̄→ Ωp,q(M)}
Let ∂̄∗ : Ωp,∗+1(M)→ Ωp,∗(M) be the formal adjoint of ∂̄ (defined using the Hermitian
metric g), and let ∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄ be the associated Laplacian. Then similar to the
discussion in (1) above, the Hodge theory gives an identification of the Dolbeault
cohomology group Hp,q(M) with ker ∆∂̄ |Ωp,q(M). Now suppose (M, g) is Kähler, which
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means that the associated 2-form ω(·, ·) := −g(·, J(·)) is closed (here J is the complex
structure on M). Under this condition, one has the relation ∆∂̄ = 1

2∆d = 1
2(dd∗+d∗d)

between the corresponding Laplacians. As a consequence, the Hodge theory gives

Hk
dR(M)⊗ C = ⊕p+q=kHp,q(M), ∀0 ≤ k ≤ 2n.

Moreover, one has Hp,q(M) = Hq,p(M) (the complex conjugate). Note that a particu-
lar corollary of the above identities is the following topological constraint of compact
Kähler manifolds: the odd Betti numbers of a compact Kähler manifold must be even.

Example 1.82. (1) (The Euler Characteristic) Let (M, g) be a compact, oriented
Riemannian manifold. The Hodge-de Rham operator δ = d + d∗ : Ω∗(M) → Ω∗(M)
is formally self-adjoint, so its index is zero. To obtain something interesting, consider
the decomposition Ω∗(M) = Ωev ⊕ Ωodd into forms of even and odd degrees. Then
under this decomposition, δ = D⊕D∗, where D := δ|Ωev and D∗ is the formal adjoint
of D. Note that D∗ = δ|Ωodd . One can verify easily that D is an elliptic p.d.o. The
Atiyah-Singer index theorem computes the index of D, which gives

Index D = e(M)[M ].

Here e(M) is the Euler class of M , which via Chern-Weil theory can be expressed in
terms of the curvatures of (M, g). On the other hand, by Hodge theory,

Index D = dim δ|Ωev − dim δ|Ωodd =
∑
k=ev

dimHk
dR(M)−

∑
k=odd

dimHk
dR(M) = χ(M),

which is the Euler characteristic χ(M). Hence one obtains χ(M) = e(M)[M ]. This
formula predates the Atiyah-Singer, and is the higher-dimensional version of the clas-
sical Gauss-Bonnet Theorem: let Σ be a compact Riemann surface of genus gΣ, then
2− 2gΣ = 1

2π

∫
ΣKdA, where K is the Gaussian curvature and dA is the area form (of

any given metric).
(2) (The Signature) Let (M, g) be a compact, oriented Riemannian manifold of

dimension N = 4l. The cup product defines a symmetric bilinear form on the middle
dimensional cohomology H2l(M) = H2l

dR(M):

(·, ·) : H2l(M)×H2l(M)→ R, (α, β) := α ∧ β[M ].

The signature of (·, ·) is called the Signature of M , and is denoted by Sign (M), which
is a very important topological invariant of the manifold. Through Hodge theory, there
is a way to express Sign (M) as the index of a certain elliptic p.d.o. on M . To this end,
consider the involution τ : Ω∗(M)⊗C→ Ω∗(M)⊗C defined by τ(α) =

√
−1p(p−1)+l∗α,

∀α ∈ Ωp(M). The involution τ gives rise to a decomposition of Ω∗(M)⊗C = Ω+⊕Ω−

into the ±1 eigenspaces of τ . Moreover, τ anti-commutes with δ, so that under the
above decomposition, δ = D⊕D∗, where D = δ|Ω+ and its formal adjoint D∗ = δ|Ω− .
One can check that D is elliptic and Index D = Sign (M).

The Atiyah-Singer index theorem computes the index of D and gives

Sign (M) = L(M)[M ],

where L(M) is a certain characteristic class of M , called the L-genus, which is ex-
pressed in terms of the Pontrjagin classes of M . The above formula was previously
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known and was due to F. Hirzebruch, called the Hirzebruch Signature Theorem. When
dimM = 4, it gives

Sign (M) =
1
3
p1(M)[M ], where p1 is the first Pontrjagin class.

If furthermore, M is almost complex and let c1(M) be the first Chern class of the
complex tangent bundle of M . Then the Chern-Weil theory gives an identity c2

1(M) =
2e(M) + p1(M). By the above index formulas, one arrives at the following useful
topological relation:

c2
1(M)[M ] = 2χ(M) + 3 Sign (M), where M is an almost complex 4-manifold.

(3) (Riemann-Roch) Let E be a holomorphic vector bundle over a compact Riemann
surface Σ of genus gΣ. The Cauchy-Riemann operator ∂̄ : C∞(E)→ C∞(Λ0,1Σ⊗ E)
is a first order elliptic p.d.o. The Atiyah-Singer index theorem recovers, in this case,
a formula due to Riemann-Roch:

Index ∂̄ = n(1− gΣ) + c1(E)[Σ], where n = rank CE.

The Riemann-Roch formula will be used in the calculation of the dimension of the
moduli space of pseudo-holomorphic curves in Lecture 2.

The rest of this section will be devoted to the spectral theory of formally self-adjoint
elliptic p.d.o.-s on compact manifolds.

Let L : C∞(E) → C∞(E) be an elliptic p.d.o. of order k > 0 over M , which is
formally self-adjoint, i.e., L = L∗. As we have seen, L defines a Fredholm operator from
Lk,2(E) to L2(E), which is still denoted by L for simplicity. Note that Lk,2(E) ⊂ L2(E)
is a dense subspace. In fact, we shall consider L as an operator from L2(E) to L2(E),
but only defined on a dense subspace D(L) = Lk,2(E). In this sense, L is not a
bounded operator, but it is closed, meaning that its graph is closed. For simplicity,
we shall denote the norm of L2(E) by || · || and the inner product by 〈·, ·〉. With these
notations, note that L = L∗ implies

〈Lu, v〉 = 〈u, Lv〉, u, v ∈ D(L) = Lk,2(E).

First we recall some basic definitions. Let T be a closed linear operator defined on a
subspace D(T ) ⊂ X of a Banach space X into X itself. The resolvent set of T consists
of complex numbers λ ∈ C such that the operator λ− T is invertible with an inverse
which is a bounded linear operator on X. The complement of the resolvent set of T
is called the spectrum of T , denoted by spec (T ). A complex number λ ∈ C is called
an eigenvalue of T if ker(λ−T ) 6= 0. The space ker(λ−T ) is called the eigenspace for
λ and its dimension is called the multiplicity of λ, cf. [8].

Theorem 1.83. Let L : C∞(E) → C∞(E) be a formally self-adjoint elliptic p.d.o.
on a compact manifold. Then

(1) The spectrum spec (L) consists of eigenvalues of L, each of which has finite
multiplicity. Moreover, for each λ ∈ spec (L), the eigenspace ker(λ − L) consists of
smooth sections of E.

(2) The spectrum spec (L) is an unbounded subset of R with no accumulation points.
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(3) There exists an orthogonal decomposition

L2(E) = ⊕λ∈spec (L) ker(λ− L).

(4) Denote by Pλ the orthogonal projection onto ker(λ− L). Then

Lk,2(E) = {u ∈ L2(E)|
∑

λ∈spec (L)

λ2||Pλu||2 <∞}.

Note that in particular, (3), (4) imply that u =
∑

λ Pλu, ∀u ∈ L2(E), and Lu =∑
λ λPλu, ∀u ∈ D(L) = Lk,2(E).

Proof. Let λ ∈ C be an eigenvalue of L. Then there exists a 0 6= u ∈ D(L) such that
Lu = λu. Now

λ〈u, u〉 = 〈Lu, u〉 = 〈u, Lu〉 = λ̄〈u, u〉,
which implies λ ∈ R since u 6= 0. Furthermore, note that λ − L is a formally self-
adjoint elliptic p.d.o, so that by Corollary 1.80, λ − L is not surjective. This shows
that an eigenvalue of L lies in the spectrum spec (L). It follows from Theorem 1.75
that the space ker(λ− L) has finite dimension and consists of smooth sections of E.

To see that spec (L) consists entirely of eigenvalues, let λ ∈ C such that ker(λ−L) =
0. Then ker(λ− L)∗ = ker(λ̄− L) = 0 also. This implies by Theorem 1.75 that λ− L
is invertible. Moreover, let Tλ be the inverse of λ − L. Then by Lemma 1.78, since
ker(λ− L) = 0, Tλ : L2(E)→ L2(E) is a bounded operator. This shows that λ lies in
the resolvent set of L and our claim follows.

For (2) and (3), we note that the operator Tλ defined above is in fact a compact
operator, which exists, e.g., when λ is not a real number. To see Tλ is compact, note
that by Prop. 1.74 and Lemma 1.78, there exists a C(λ) > 0 such that ||Tλu||k,2 ≤
C(λ)||u||. This means that the image of a ball in L2(E) under Tλ has a bounded
Lk,2-norm so that by Rellich-Kondrachov, it must be precompact in L2(E). Hence Tλ
is compact. Furthermore, note that Tλ is normal, i.e., T ∗λTλ = TλT

∗
λ .

Now we recall the following result (cf. Theorem 6.26 in p. 185 and Theorem 2.10
in p. 260 of [8]) from functional analysis: Let T : V → V be a normal, compact linear
operator from a Hilbert space V into itself. Then the spectrum of T is a bounded,
countable subset of C which has no accumulation point different from zero. Moreover,
any µ ∈ spec (T ) \ {0} is an eigenvalue of T with finite multiplicity, and there is an
orthogonal decomposition V = ⊕µ∈spec (T )\{0} ker(µ− T )⊕ kerT .

With this understood, we pick a λ0 ∈ C \ spec (L). Then (2) and (3) follow imme-
diately, observing that kerTλ0 = 0,

spec (L) = {λ0 − µ−1|µ ∈ spec (Tλ0) \ {0}}, and ker(λ− L) = ker((λ0 − λ)−1 − Tλ0).

It remains to prove (4). First note that if u ∈ Lk,2(E), then Lu ∈ L2(E), so that∑
λ∈spec (L)

λ2||Pλu||2 = ||
∑
λ

λPλu||2 = ||Lu||2 <∞.

Conversely, if u ∈ L2(E) such that
∑

λ∈spec (L) λ
2||Pλu||2 < ∞, we consider the se-

quence of smooth sections vn :=
∑
|λ|≤n λPλu, which converges to v :=

∑
|λ λPλu in

L2(E). On the other hand, vn = Lun where un :=
∑
|λ|≤n Pλu, which converges to u
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in L2(E). By the elliptic estimate in Prop. 1.74, (un) is a Cauchy sequence in Lk,2(E).
It follows that u = limn→∞ un ∈ Lk,2(E). �

2. Non-linear Elliptic Equations

2.1. Banach manifolds and Fredholm operators. We begin by reviewing the
basic notions of Banach manifolds (cf. [9]). Let E,F be Banach spaces, and let
L(E,F ) denote the space of bounded linear operators from E to F , which is a Banach
space under the operator norm: for A ∈ L(E,F ), ||A|| = sup{x∈E,||x||=1} ||Ax||.

Definition 2.1. Let U ⊂ E be an open subset. A map f : U → F is differentiable at
x0 ∈ U if there exists a A ∈ L(E,F ) such that

lim
h→0

||f(x0 + h)− f(x0)−Ah||
||h||

= 0, ∀h ∈ E.

The operator A is called the derivative or differential of f at x0, which will be denoted
by Df(x0) or Dfx0 .

Suppose f is differentiable at every point in U . Then the map Df : U → L(E,F ),
x 7→ Df(x), is defined, which is a map from U to a Banach space L(E,F ). We define
the 2nd derivative of f to be the derivative of Df (if it exists), and denote it by
D2f ∈ L(E,L(E,F )). One can continue with this process and define inductively the
l-th derivative Dlf of f for any l ≥ 1. We say that f is of class C l on U if Dlf exists
and is continuous on U . We say f is smooth (or of class C∞) if it is of class C l for any
l ≥ 0.

Exercise 2.2. (1) Show that for any f ∈ L1,1(R2), f2 ∈ L1(R2), and moreover, show
that the map Φ : L1,1(R2) → L1(R2) sending f to f2 defines a smooth map between
the Banach spaces.

(2) Let p > 2. Show that for any f ∈ L1,p(R2), f2 ∈ L1,p(R2), and Ψ : L1,p(R2) →
L1,p(R2), Ψ(f) = f2, is a smooth map between the Banach spaces.

Proposition 2.3. Let σ(k, p) := k −N/p > 0 and let H ∈ C∞(R). Suppose D ⊂ RN

is a bounded domain. Then for any f ∈ Lk,p(D), the composition H ◦ f is also in
Lk,p(D), and moreover, the map Ψ : Lk,p(D)→ Lk,p(D) defined by Ψ(f) = H ◦ f is a
smooth map between the Banach spaces.

Proof. First we show that for any f ∈ Lk,p(D), H ◦ f ∈ Lk,p(D). We will only show
that H ◦ f ∈ Lp(D) and ∂i(H ◦ f) ∈ Lp(D), ∀1 ≤ i ≤ N . The higher derivatives of
H ◦ f can be done similarly and are left as exercises.

Since σ(k, p) > 0, the Morrey’s embedding theorem gives Lk,p(D) ↪→ C l(D) for some
integer l ≥ 0. In particular, we have supx∈D |f(x)| ≤ C||f ||k,p ≤ C1 < ∞ for some
constant C1 > 0. With this understood, supx∈D |H(f(x))| ≤ sup|t|≤C1

|H(t)| < ∞,
so that H ◦ f ∈ Lp(D). Similarly, ∂i(H ◦ f) = H ′(f)∂if , so that ||∂i(H ◦ f)||p ≤
sup|t|≤C1

|H ′(t)| · ||∂if ||p.
Next we show that Ψ is a smooth map. First we claim thatDΨ(f) ∈ L(Lk,p(D), Lk,p(D))

is given by the multiplication by H ′◦f . (We leave as an exercise to show that multipli-
cation by H ′ ◦ f indeed defines a linear operator from Lk,p(D) to itself, and moreover,
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its operator norm is bounded by a polynomial of degree at most k in ||f ||k,p.) The
point here is that if we write ∀g ∈ Lk,p(D), H(f + g)−H(f)−H ′(f) · g = R(g), then
||R(g)||k,p ≤ C||g||2k,p. (For example, R(g) satisfies that ∀x ∈ D, |R(g(x))| ≤ C|g(x)|2.
From this we get ||R(g)||p ≤ C||g||2p. ) One can similarly show that D2Ψ(f) ∈
L(Lk,p(D)× Lk,p(D), Lk,p(D)) is given by D2Ψ(f)(g, h) = H(2)(f)gh. �

Remark 2.4. Proposition 2.3 allows one to define the notion of locally Lk,p-maps from
a smooth manifold of dimension N into another smooth manifold whenever σ(k, p) =
k −N/p > 0. Note also that locally Lk,p-maps are continuous maps by the Morrey’s
embedding theorem (with the assumption that σ(k, p) := k −N/p > 0).

Definition 2.5. (1) (Banach manifolds modeled on a Banach space E) A topological
space X is called a smooth Banach manifold if the following are satisfied: (i) X is
Hausdorff, i.e., for any x, y ∈ X, there exist open sets U, V such that x ∈ U, y ∈ V
and U ∩ V = ∅; (ii) X is second countable, i.e., there exists a countable basis; (iii)
there exists a smooth atlas U = {(U, φ)}, where {U} is an open cover of X, and each
φ : U → E is a homeomorphism onto an open set φ(U) ⊂ E, such that for any U1, U2,
φ2 ◦ φ−1

1 : φ1(U1 ∩ U2) → φ2(U1 ∩ U2) is a smooth map (in fact a diffeomorphism).
Elements of U are called smooth charts. Without loss of generality, one assumes U is
maximal.

(2) (Tangent space) Let x ∈ X be any point. Denote by Ax the set of smooth charts
containing x. The tangent space at x, denoted by TxX, is the quotient Ax × E/ ∼,
where ((U, φ), v) ∼ ((V, ψ), w) if v = D(φ◦ψ−1)ψ(x)(w). We remark that as topological
spaces TxX is isomorphic to E, but TxX does not have an intrinsic norm to make it
into a Banach space, even though each smooth chart (U, φ) ∈ Ax gives rise to a specific
identification of TxX with E as Banach spaces.

(3) (Smooth maps between Banach manifolds) A map f : X → Y between two
Banach manifolds is said to be smooth at a point x ∈ X if there exists a smooth chart
(U, φ) containing x and a smooth chart (V, ψ) containing y = f(x) ∈ Y , such that the
composition ψ ◦ f ◦φ−1 : φ(U)→ ψ(V ) is a smooth map at φ(x) between open sets of
Banach spaces. A map f : X → Y is called smooth if it is smooth at every point in X.

(4) (Differential or linearization of a smooth map) Let X, Y be Banach manifolds
modeled by Banach spaces E,F respectively. Let f : X → Y be a map which is
smooth at x ∈ X, and let y = f(x). The differential of f at x, denoted by Dfx, is the
linear map Dfx : TxX → TyY , which for (U, φ) ∈ Ax, (V, ψ) ∈ Ay, Dfx is represented
by the bounded linear operator D(ψ ◦ f ◦ φ−1)φ(x) ∈ L(E,F ).

Definition 2.6. (1) (Banach bundles and fibrations) Let X be a Banach manifold
and E be a Banach space. A Banach bundle with typical fiber E is a Banach manifold
E together with a smooth, surjective map π : E → M such that (i) for any x ∈ X,
the fiber at x Ex := π−1(x) is a topological vector space isomorphic to E; (ii) for any
x ∈ X, there exists an open neighborhood U of x and a diffeomorphism of Banach
manifolds Φ : π−1(U) → U × E such that π = π1 ◦ Φ and Φ|Ex : Ex → E is a linear
isomorphism. Here π1 : U × E → U . Φ is called a local trivialization over U . If one
replaces the Banach space E by an arbitrary Banach manifold, one gets the notion of
a Banach fibration.
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(2) (Smooth sections of a Banach bundle) Let E → X be a Banach bundle over a
Banach manifold. A smooth map s : X → E is called a smooth section if π ◦ s = IdX .

Exercise 2.7. (Tangent bundle of a Banach manifold) Let X be a Banach manifold,
and let TX :=

⋃
x∈X TxX. Show that there is a natural Banach manifold structure

on TX such that together with the map π : TX → X, π(x, v) = x, ∀x ∈ X, v ∈ TxX,
TX is a Banach bundle over X.

Let E be a Banach space. Recall that a closed subspace F ⊂ E is said to split E
if there exists a closed subspace F1 ⊂ E such that E = F ⊕ F1. In this case, E is
naturally isomorphic to the product F × F1 by the Closed Graph Theorem (cf. [15]).

Definition 2.8. (1) (Submersions, immersions, and embeddings) Let f : X → Y be
a smooth map between Banach manifolds. (i) f is a submersion if for any x ∈ X,
Dfx : TxX → Tf(x)Y is surjective and kerDfx splits TxX. (ii) f is an immersion
if for any x ∈ X, Dfx : Tx → Tf(x)Y is injective and its image splits Tf(x)Y . (iii)
f is a smooth embedding if f is an immersion and a homeomorphism onto the image
f(X) ⊂ Y given with the subspace topology.

(2) (Embedded submanifolds) Let E be a Banach space and F be a closed subspace
which splits E. Let X be a Banach manifold modeled on E. A subset Y ⊂ X is called
an embedded submanifold modeled on F if for any y ∈ Y , there exists a smooth chart
(U, φ) of X containing y such that φ(Y ∩ U) = φ(U) ∩ (F × {0}) ⊂ E. (Note that Y
naturally becomes a Banach manifold and the inclusion map Y ↪→ X is naturally a
smooth embedding.)

Next we list a few fundamental theorems about Banach manifolds.

Theorem 2.9. (Banach contraction principle) Let BR ⊂ E be a (closed) ball of radius
R in a Banach space, and let T : BR → BR be a self-map which satisfies the following
contraction condition: there exists a λ ∈ [0, 1) such that ||Tx − Ty|| ≤ λ||x − y|| for
any x, y ∈ BR. Then there exists a unique x0 ∈ BR such that Tx0 = x0.

Proof. Let x1 ∈ BR be the center of BR and define inductively xn+1 = Txn, ∀n ≥ 1.
Then one easily sees that

||xn+1 − xn|| = ||Txn − Txn−1|| ≤ λ||xn − xn−1|| ≤ · · · ≤ λn−1||x2 − x1||.

Since λ < 1, it follows that (xn) ⊂ E is a Cauchy sequence. Let x0 = limn→∞ xn.
Then ||x0 − x1|| = limn→∞ ||xn − x1|| ≤ R, so that x0 ∈ BR. The relation Tx0 = x0

follows easily from the inductive relation xn+1 = Txn. For the uniqueness of x0,
suppose x′0 is another solution. Then ||x0 − x′0|| = ||Tx0 − Tx′0|| ≤ λ||x0 − x′0||, which
implies x0 − x′0 = 0 since λ ∈ [0, 1). �

The following theorem is a standard application of the Banach contraction principle.

Theorem 2.10. (Inverse function theorem) Let f : U ⊂ E → F be a smooth map
from an open set of a Banach space into another Banach space. If Df(x0) : E → F
is a bijection for some x0 ∈ U , then there exist neighborhood U0 of x0 and V0 of
y0 := f(x0), such that f |U0 : U0 → V0 is a diffeomorphism.
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Theorem 2.11. (Submersion theorem) Let f : X → Y be a submersion between two
Banach manifolds. Then for any y ∈ Y , the preimage f−1(y) := {x ∈ X|f(x) = y} ⊂
X is an embedded submanifold of X.

Proof. Suppose X,Y are modeled on Banach spaces E,F respectively. Let x ∈ f−1(y)
be any point. we pick a smooth chart (U, φ) of X containing x and a smooth chart
(V, ψ) of Y containing y. Note that this gives rise to an identification of TxX with
E and TyY with F respectively. Moreover, let E1 ⊂ E be the closed subspace which
corresponds to kerDf(x) under the identification, then by the definition of submer-
sions, E1 splits E. In particular, there exists a bounded linear map π : E → E1, the
projection onto E1.

With the preceding understood, consider the smooth map g : φ(U) ⊂ E → F ×E1,
where g(u) = ψ ◦ f ◦ φ−1(u) + π(u), ∀u ∈ φ(U). Without loss of generality, we
assume φ(x) = 0 and ψ(y) = 0. Then Dg(0) = D(ψ ◦ f ◦ φ−1)(0) + π, which is
easisly seen bijective. By the inverse function theorem, g is a local diffeomorphism.
Let Φ := g ◦ φ. Then Φ defines a smooth chart over a neighborhood U0 of x, and
moreover, Φ(f−1(y) ∩ U0) = Φ(U0) ∩ ({0} × E1). This proves that f−1(y) is an
embedded submanifold. �

Example 2.12. LetM,N be compact closed, oriented, smooth manifolds of dimension
m,n respectively. Consider the space X := Lk,p(M ;N) of locally Lk,p-maps from M
into N , where σ(k, p) = k −m/p > 0. We claim X is naturally a Banach manifold,
and moreover, at each u ∈ X, the tangent space TuX can be identified with the
Sobolev space Lk,p(u∗TN), where u∗TN →M is the pull-back of TN via u. (Suppose
X = tXα are the components of X. Then for each Xα, there is a unique isomorphism
class of pull-back bundles Eα = u∗TN , ∀u ∈ Xα, and Xα is modeled on the Banach
space Lk,p(Eα).)

To see that X is a Banach manifold, we first give a topology to X as follows. Pick a
smooth embedding N ↪→ Rl for some large l ≥ 0. Then we can regard X as the subset
of Lk,p(M ; Rl) (which is a Banach space) consisting of those u such that u(M) ⊂ N .
We give X the subspace topology, which is naturally Hausdorff and second countable.
It remains to prove the existence of a smooth atlas on X.

We give N the induced metric from Rl. Then each u∗TN has a metric and a
connection which is the pull-back of the Levi-Civita connection on N . We also fix a
metric on M . With these choices of data, we can define a norm || · ||k,p on Lk,p(u∗TN).
With this understood, since M is compact, there exists an ε0 = ε0(u) > 0, such that if
we let Bε0(u) ⊂ Lk,p(u∗TN) be the ball of radius ε0 (with respect to the norm || · ||k,p),
then the following map Φu : Bε0(u) → X, is defined, where Φu(ξ)(x) = expu(x) ξ(x),
∀x ∈M . Here we use the fact that supx |ξ(x)| ≤ C||ξ||k,p by the Morrey’s embedding
theorem. The fact is that {(Φu(Bε0(u)),Φ−1

u )} form a smooth atlas on X, i.e., Φu :
Bε0(u)→ X is a homeomorphism onto its image, and Φ−1

u ◦ Φv, ∀u, v ∈ X, is smooth
whenever it is defined. The formal follows from properties of the exponential map and
the latter uses Proposition 2.3. We leave the details as an exercise.

We end this section with a brief review on some fundamental properties of Fredholm
operators. Let E,F be Banach spaces, and let L(E,F ) be the Banach space of bounded
linear operators given with the operator norm. Recall that (cf. Def. 1.76) a L ∈
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L(E,F ) is called a Fredholm operator if dim kerL <∞, Im L ⊂ F is a closed subspace,
and coker L := F/Im L has finite dimension. The index of L is defined to be

Index L = dim kerL− dim coker L.

We denote by Fred (E,F ) the subset of Fredholm operators.
The proof of the following result can be found, for example, in [7, 10, 12].

Theorem 2.13. Suppose L ∈ Fred (E,F ). Then the following are true.
(1) There exists an ε > 0, such that if P ∈ L(E,F ) satisfies ||P || < ε, then L+P ∈

Fred (E,F ), and moreover, Index (L+ P ) = Index L.
(2) Suppose K ∈ L(E,F ) is a compact operator. Then L + K ∈ Fred (E,F ), and

moreover, Index (L+K) = Index L.

Remark 2.14. (1) Theorem 2.13(1) shows that Fred (E,F ) is an open subset of
L(E,F ) and the index of a Fredholm operator is a locally constant function.

(2) A basic example of Theorem 2.13(2): Let L0 be an elliptic p.d.o. on a compact
manifold and L = L0 + P be a p.d.o. where P has order ≤ k − 1. For any integer
m ≥ 0 and p > 1, the operator L : Lm+k,p → Lm,p is a compact perturbation of
L0 : Lm+k,p → Lm,p because by Rellich-Kondrachov, P : Lm+k,p → Lm,p is compact.

2.2. Moduli space of nonlinear elliptic equations. Recall that the idea of study-
ing an elliptic p.d.o. L : C∞(E)→ C∞(F ) is to take the completion of C∞(E), C∞(F )
under certain Sobolev norms and study the corresponding operator between the Sobolev
spaces. In particular, one derives the Fredholm properties of the operator. Note that
in this approach, the apriori estimates and elliptic regularity have played a fundamen-
tal role. Similarly, one can adapt this idea to study nonlinear elliptic equations in the
framework of Banach manifolds (which is the so-called (non-linear) Fredholm theory).

Example 2.15. (Pseudoholomorphic curves) Let (M,J) be a compact closed almost
complex manifold of dimension 2n (here J is a smooth endomorphism of TM such
that J2 = −Id), and let (Σ, j0) be a Riemann surface of genus 0, where j0 denotes the
unique complex structure on Σ. A smooth map u : Σ→M is called a J-holomorphic
curve if the following equation is satisfied

J ◦ du = du ◦ j0.
One is interested in the set of all such maps, i.e., the moduli spaceM of J-holomorphic
curves. To this end, we let B = C∞(Σ;M) be the space of all smooth maps from Σ
to M , and consider the vector bundle π : E → B, whose fiber Eu := π−1(u) at u ∈ B is
Ω0,1(u∗TM), the space of smooth (0, 1)-forms on Σ with values in the complex vector
bundle (u∗TM, u∗J). ThenM may be regarded as the zero set of a section s : B → E ,
s : u 7→ (u, ∂̄J(u)), where

∂̄J(u) =
1
2

(du+ J ◦ du ◦ j0), ∀u ∈ B.

(Note that ∂̄J(u) ∈ Ω0,1(u∗TM) exactly means that ∂̄J ◦ j0 = −J ◦ ∂̄J .)
In order to put this problem in the framework of Banach manifolds, we choose

k ∈ Z+, 1 < p < ∞, such that σ(k, p) := k − 2/p > 0, and consider the Banach
manifold Bk,p of locally Lk,p-maps from Σ to M , and the infinite dimensional vector
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bundle π : Ek,p → Bk,p whose fiber at u is the Sobolev space Lk−1,p(Λ0,1⊗u∗TM). We
claim that π : Ek,p → Bk,p is a Banach bundle, and that s = (Id, ∂̄J) defines a smooth
section of π : Ek,p → Bk,p.

To see that π : Ek,p → Bk,p is a Banach bundle, recall (from Example 2.12) that
Bk,p is given a smooth atlas {(Φu(Bε0(u)),Φ−1

u )}, where Bε0(u) ⊂ Lk,p(u∗TM) is
the ball of radius ε0, and Φu : Bε0(u) → X is defined by Φu(ξ)(z) = expu(z) ξ(z),
∀z ∈ Σ. Over each Φu(Bε0(u)), we identify π−1(Φu(Bε0(u))) ⊂ Ek,p with the product
Φu(Bε0(u))× Lk−1,p(Λ0,1 ⊗ u∗TM),

Ψu : π−1(Φu(Bε0(u)))→ Φu(Bε0(u))× Lk−1,p(Λ0,1 ⊗ u∗TM),

where the fiber over Φu(ξ), Lk−1,p(Λ0,1⊗(Φu(ξ))∗TM), is identified with Lk−1,p(Λ0,1⊗
u∗TM) by the isomorphism of Sobolev spaces induced by the isomorphism of the
corresponding bundles (Φu(ξ))∗TM → u∗TM given by the parallel transport along
the geodesics exp(tξ(z)), t ∈ [0, 1], z ∈ Σ. The transition maps for the trivializations
over different balls are smooth, which shows that π : Ek,p → Bk,p is a Banach bundle.

To see that s = (Id, ∂̄J) defines a smooth section of π : Ek,p → Bk,p, we need to
show that the local representatives of s over the smooth charts:

(Φ−1
u , Id) ◦Ψu ◦ (Id, ∂̄J) ◦ Φu : Bε0(u)→ Bε0(u)× Lk−1,p(Λ0,1 ⊗ u∗TM)

are smooth maps of Banach spaces. In order to do this, let’s compute ∂̄J in local
coordinates. Let z = s+ it be a local holomorphic coordinate over a neighborhood D
of a point z0 ∈ Σ, and let φ : U → R2n be a local smooth chart of M near u(z0). We let
v(z) := φ ◦ u(z) : D → R2n be the local representative of u in these local coordinates.
Then

∂̄J(v) =
1
2

(∂sv + J(v)∂tv)ds+
1
2

(∂tv − J(v)∂sv)dt.

Now if we choose D small enough, an element ξ ∈ Bε0(u) over D may be written as
(z, η(z)) for an η ∈ Lk,p(D; R2n). Moreover, if we choose φ to be the inverse of the
exponential map, then ξ 7→ ∂̄J ◦ Φu(ξ) may be expressed locally over D as

η 7→ 1
2

(∂sη + J(η)∂tη)ds+
1
2

(∂tη − J(η)∂sη)dt.

Since η ∈ Lk,p(D; R2n), we have both ∂sη, ∂tη ∈ Lk−1,p(D; R2n). Moreover, by Prop.
2.3, η 7→ J(η) is a smooth map from Lk,p(D; R2n) to itself. Hence the map above on
η is a smooth map from Lk,p(D; R2n) to Lk−1,p(D; R2n) if the product Lk,p(D; R2n)×
Lk−1,p(D; R2n)→ Lk−1,p(D; R2n) is smooth. If k = 1, this is certainly true by Morrey’s
embedding theorem Lk,p ↪→ C0 (by assumption σ(k, p) > 0). If k > 1, one may further
assume that σ(k−1, p) > 0 to ensure this. Finally, locally over D, the section s may be
expressed as ξ 7→ (ξ, P (∂̄J ◦ Φu(ξ))) where P is a certain isomorphism of the Sobolev
space Lk−1,p(D; R2n) induced by an isomorphism of R2n. This last map P corresponds
to Ψu and is resulted from the parallel transport. This proves that s is a smooth section
of the Banach bundle π : Ek,p → Bk,p, at least under assumption that σ(k, p) > 0 is
sufficiently large.

In fact, the section s is also what we will call a Fredholm section.
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Definition 2.16. Let π : E → B be a Banach bundle. A smooth section s : B → E is
called Fredholm if for any x ∈ s−1(0) in the zero set, when writing s locally as a gragh
of f , the derivative Df(x) : TxB → Ex is a Fredholm operator of Banach spaces.

Back to Example 2.15, in order to see that s is a Fredholm section, we will look at
the derivative of the following map, denoted by Dη, at η:

η 7→ 1
2

(∂sη + J(η)∂tη)ds+
1
2

(∂tη − J(η)∂sη)dt.

Let τ ∈ Lk,p(D; R2n). Here τ , as a Lk,p-section of the pull-back bundle u∗TM over D,
should be thought of as a Lk,p-vector field of M along the image u(D) ⊂ M . With
this understood, differentiating the above map in the direction of τ , we obtain the
derivative Dη which is

Dη(τ) =
1
2

(∂sτ + J(η)∂tτ + (∂τJ)(η)∂tη)ds+
1
2

(∂tτ − J(η)∂sτ − (∂τJ)(η)∂sη)dt.

If we set ∂̄J,uv := 1
2(dv+ J(u) ◦ dv ◦ j0) and ∂J,uv := 1

2(dv− J(u) ◦ dv ◦ j0), then u is a
J-holomorphic curve means that ∂̄J,uu = 0, hence ∂J,uu = −J(u) ◦ du ◦ j0. With these
relations, we can write Dη as

Dητ = ∂̄J,ητ −
1
2
J(η)(∂τJ)(η)∂J,ηη,

assuming η ∈ s−1(0). At this point, we need the following regularity result.

Theorem 2.17. (Regularity of J-holomorphic curves, cf. [10], Thm B.4.1.) Fix l ≥ 1
and p > 2. If u is of L1,p-class and satisfies the J-holomorphic curve equation ∂̄Ju = 0
for an almost complex structure J of C l-class, then u is of Ll+1,p class. In particular,
if J is smooth, so is u.

With this regularity result, we see that Dη is a first order p.d.o. (with smooth
coefficients !). Moreover, one can check that Dη is a generalized Cauchy-Riemann
operator, henec elliptic. By Theorem 1.75, s is a Fredholm section. Note also that if
we setMk,p := s−1(0) to be the zero set of the section s : Bk,p → Ek,p, thenMk,p =M
by Theorem 2.17, which is independent of k, p as long as k ≥ 1 and p > 2.

Exercise 2.18. Prove the regularity of J-holomorphic curves under the following
stronger assumption: if u is of Lk,p-class and J-holomorphic for a smooth J , where
σ(k, p) := k − 2/p > 1, then u is smooth.

Example 2.19. (Seiberg-Witten equations, cf. [11]) Let (X, g) be a compact closed,
oriented 4-dimensional Riemannian manifold. A SpinC-structure on (X, g) is given by
a pair of rank 2 Hermitian vector bundles, S+, S−, with the same determinant line
bundle L := det S+ = det S−. Furthermore, the bundle of traceless endomorphisms
of S+ is identified via the Clifford multiplication with the bundle of complex valued
self-dual 2-forms on X. This being said, if we let ψ∗ be the dual of ψ ∈ S+ via the
Hermitian metric, then q(ψ) := ψ⊗ ψ∗ − 1

2 |ψ|
2Id is a traceless endomorphism of S+1,

hence defines a self-dual 2-form on X, which can be easily seen to be purely imaginary
valued. On the other hand, let A be any U(1)-connection on the Hermitian line bundle
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L. Together with the Levi-Civita connection on (X, g), A determines a Dirac operator
DA : C∞(S+)→ C∞(S−) (a first order elliptic p.d.o.).

The Seiberg-Witten equations are the following equations for a pair (A,ψ), where
A is a smooth U(1)-connection on L and ψ ∈ C∞(S+) (called a spinor field):{

F+
A = q(ψ)
DAψ = 0

Here F+
A denotes the self-dual part of the curvature FA of A, which is a purely imag-

inary valued self-dual 2-form. The space of solutions of the Seiberg-Witten equations
carries nontrivial information about the smooth structure of X (which is used to define
the so-called Seiberg-Witten invariants of X). We shall explain below how to study
the Seiberg-Witten solution space in the framework of Banach manifolds.

The first observation is that the Seiberg-Witten equations are not elliptic. One way
to understand this is that there is an infinite dimensional group of gauge transforma-
tions acting on the space of pairs (A,ψ) such that the Seiberg-Witten equations are
invariant under gauge transformations. More precisely, let G be the space of smooth
circle valued functions on X, which is an infinite dimensional abelian Lie group under
the pointwise multiplication. For any σ ∈ G, σ−1dσ is a purely imaginary valued 1-
form. The action of G is given by σ · (A,ψ) = (A−σ−1dσ, σψ). With this understood,
if we define a map F : (A,ψ) 7→ (F+

A −q(ψ), DAψ) and let G act on the first component
of the target trivially and on the second component by pointwise multiplication, then
F is a G-equivariant map.

Even though the Seiberg-Witten equations are not elliptic, they are elliptic modulo
the action of G. This suggests one should consider the Seiberg-Witten equations as
defined on the quotient space of the action of G.

With the preceding understood, the Banach manifold setup goes as follows. Let

C := {(A,ψ)|A is of L2,2 class and ψ ∈ L2,2(S+)},
and C̃ := L1,2(Λ2,+ ⊗ iR) × L1,2(S−). Then by the Sobolev embedding theorem and
Hölder inequality that F : C → C̃, (A,ψ) 7→ (F+

A − q(ψ), DAψ), is a smooth map. If
we consider the L3,2-completion of the group of gauge transformations, which is still
denoted by G for simplicity, then G acts on C and C̃ smoothly. Set B := C/G and let
π : E → B be the bundle which is the descendant of the trivial bundle C×C̃ → C under
the action of G, then F descends to a section F̃ : B → E . Let B∗ ⊂ B be the subspace
which consists of gauge equivalence classes of (A,ψ) where ψ is not identically zero.

Proposition 2.20. (cf. [11]) B∗ is naturally a Banach manifold and π : E → B∗ a
Banach bundle. Moreover, F̃ : B∗ → E is a smooth, Fredholm section.

In the rest of this section, we shall present a few basic results concerning the zero
set of a smooth, Fredholm section of a Banach bundle. First, we observe

Lemma 2.21. Let E1 ⊂ E be a closed subspace of a Banach space. Then E1 splits E if
one of the following conditions are satisfied: (1) dim(E/E1) <∞, or (2) dimE1 <∞.

Proof. Consider case (1) that dim(E/E1) = n <∞. Let e′1, · · · , e′n be a basis of E/E1

and let e1, · · · , en be the lift to E, then E2 := span (e1, · · · , en) is a n-dimensional
closed subspace of E, and E = E1 ⊕ E2.
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Consider case(2) that dimE1 = n < ∞. Let e1, · · · , en be a basis of E1 and let
f1, · · · , fn ∈ E∗ be its dual, i.e., fi(ej) = δij . We define a bounded linear operator
P : E → E1 by Pu =

∑n
i=1 fi(u) · ei. (Note that ||P || ≤

∑n
i=1 ||fi|| · ||ei||.) Then one

can check easily that P is a projection, i.e., P 2 = P . Let E2 := kerP , then E2 is a
closed subspace and E = E1 ⊕ E2. �

Let E,F be Banach spaces and U ⊂ E be an open set. A smooth map f : U → F
is called a Fredholm map if for any x ∈ U , Df(x) : E → F is a Fredholm operator.
A smooth map between Banach manifolds is Fredholm if its local representatives are
Fredholm. Fredholm maps admit a useful finite dimensional reduction called Kuranishi
model.

Theorem 2.22. (Kuranishi Model) Let f : U ⊂ E → F be a Fredholm map such that
f(0) = 0. Set D := Df(0) : E → F . Then there exist an open neighborhood U0 of 0,
a diffeomorphism g : U0 → U0 and a smooth map f0 : U0 → coker D, such that

f ◦ g(x) = f0(x) +Dx, ∀x ∈ U0,

where g(0) = 0, Dg(0) = IdE, f0(0) = 0, and Df0(0) = 0. In particular, U0 ∩ f−1(0)
is identified under g with the zero set of a smooth map between finite dimensional
spaces, (f0|kerD)−1(0).

Proof. By Lemma 2.21, kerD splits E and Im D splits F , so that we may write
E = E1 × kerD and F = F1 × coker D, where D|E1 : E1 → F1 is a bijection. We
define a bounded linear operator T : F → E1 ⊂ E, which is the projection onto F1

followed by D−1.
Consider the smooth map φ : U → E, where φ(x) = x + T (f(x) − Dx). Then

Dφ(0) = IdE so that by the inverse function theorem, there exists an open neighbor-
hood U0 of 0 such that φ is a diffeomorphism from U0 onto itself. We set g := φ−1,
f0 := (IdF − DT ) ◦ f ◦ g : U0 → coker D (note that by definition of T , IdF − DT
is the projection onto coker D). Then one can check that Dφ(x) = DTf(x), so that
D = DT ◦ (f ◦ g). This gives

f ◦ g = (IdF −DT ) ◦ (f ◦ g) +D = f0 +D.

�

Note that in the above theorem, if D = Df(0) is surjective, then coker D = 0 and
U0 ∩ f−1(0) is identified under g with U0 ∩ kerD.

Definition 2.23. Let s : B → E be a smooth Fredholm section of a Banach bundle
π : E → B. We say s is transverse to the zero section if, when writing s locally as a
gragh of f , the derivative Df(x) : TxB → Ex is surjective for all x ∈ s−1(0).

Theorem 2.24. Let s : B → E be a smooth Fredholm section of a Banach bundle
π : E → B which is transverse to the zero section. Then the zero set M = s−1(0) is a
smooth, finite dimensional submanifold of B, where for any x ∈ M, the dimension of
M at x is given by the index of Df(x). (Here s is the graph of f near x.)
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2.3. The Sard-Smale theorem and transversality. The nonlinear elliptic prob-
lems we encounter often naturally come in families. For example, the J-holomorphic
curve equation (cf. Example 2.15) depends on the choice of almost complex structure
J , and the Seiberg-Witten equations (cf. Example 2.19) depend on the choice of the
Riemannian metric g. On the other hand, in order to achieve transversality, one often
consider perturbed equations. For instance, in the Seiberg-Witten theory, one adds a
perturbation term η to the right hand side of the first equation in the Seiberg-Witten
equations. With this understood, one is led to the consideration of the following prob-
lem: s : B → E is a smooth section of a Banach bundle π : E → B, and there is a
Banach manifold Λ with a Banach fibration pr : B → Λ such that for each λ ∈ Λ, if we
let Bλ := pr−1(λ), Eλ := E|Bλ , and sλ := s|Bλ , then sλ is a Fredholm section. In the
J-holomorphic curve example, Λ will be a certain Banach completion of the space of
J ’s, and in the Seiberg-Witten example, Λ will be a certain Banach completion of the
space of pairs (g, η). The purpose of this section is to present some techniques, which
in particular allow us to show that for a generic choice of λ ∈ Λ, sλ is transverse to the
zero section. The key ingredient of this approach is the so-called Sard-Smale theorem,
a generalization by S. Smale of the classical Sard’s theorem concerning critical values
of a smooth function between finite dimensional spaces to the infinite dimensional
setting (cf. [14]).

Theorem 2.25. (Sard’s Theorem) Let U be an open set of Rp and f : U → Rq be
a Cs-map where s > max(p − q, 0). Then the set of critical values of f in Rq has
measure zero.

Theorem 2.26. (The Baire-Hausdorff Theorem, cf. [15]) A nonempty complete met-
ric space can not be expressed as the union of a countable number of non-dense subsets.
(A subset is called non-dense if its closure does not contain any nonempty open sub-
sets.)

Definition 2.27. A subset of a topological space is said of Baire’s second category if
it can be expressed as the intersection of a countable number of open, dense subsets.

Note that the Baire-Hausdorff theorem implies that a subset of Baire’s second
category of a (nonempty) Banach manifold is everywhere dense; in particular, it is
nonempty.

Theorem 2.28. (Sard-Smale) Let f : X → Y be a smooth, Fredholm map between
Banach manifolds. Then the set of regular values

Yreg(f) := {y ∈ Y |f−1(y) = ∅, or Df(x) is surjective, ∀x ∈ f−1(y)}
is a subset of Y of Baire’s second category. (In particular, Yreg(f) 6= ∅.)

Proof. For every point x ∈ X, there is a local Kuranishi model of f , where f : Ux → Y ,
such that f = f0 +D for a smooth map f0 : Ux → Rq and a linear map D whose image
is complement to Rq. Since X is second countable, we can cover X by a countable
collection of such Ux’s. In fact, the following can be arranged: there is a countable
set of open subsets Ui, such that (1) X = ∪iVi where Vi ⊂ Ui is a closed ball, (2) on
each Ui, f = f0 +D as we described above. To see this, for each x ∈ X we fix a local
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Kuranishi model as above and also choose a closed ball Vx ⊂ Ux. Now let B := {Bi}
be the subset of the countable basis where each Bi is contained in the interior of one
of the Vx’s. It follows easily that B covers X. Now for each Bi ∈ B, pick a Vx whose
interior contains it and call it Vi. Then X = ∪iVi. Name the Ux to be Ui.

We set

Yreg(f, Vi) := {y ∈ Y |f−1(y) ∩ Vi = ∅, or Df(x) is surjective, ∀x ∈ f−1(y) ∩ Vi},
then Yreg(f) = ∩iYreg(f, Vi) because X = ∪iVi. So it suffices to show that Yreg(f, Vi)
is open and dense.

Let’s consider Yreg(f, Vi). Let Wi×Ei be an open set in Y where f0(Vi) ⊂Wi ⊂ Rq

and D(Vi) ⊂ Ei. Let Ki := kerD∩Vi, and Fi ⊂ Vi such that D−1 : Ei → Fi. Without
loss of generality, assume Vi = Ki×Fi. Then one can check easily that for any e ∈ Ei,
(w, e) ∈ Y lies in Yreg(f, Vi) if and only if w is not a critical value of f0|Ki×{D−1(e)}.
By Sard’s theorem, Wi \ { critical values of f0|Ki×{D−1(e)}} is dense. It follows easily
that Yreg(f, Vi) is dense.

To see Yreg(f, Vi) is open, let (wn, en) ∈Wi×Ei be a sequence of critical values of f ,
and let (kn, fn) ∈ Ki × Fi be the corresponding critical points. If (wn, en) converges,
then so does fn = D−1(en), and since Ki is compact, kn also converges after passing
to a subsequence. Hence a subsequence of (kn, fn) converges to a critical point of f ,
which lies in Vi because Vi is closed. This shows that the complement of Yreg(f, Vi) is
closed, hence it is open. �

With these preparations, let us consider a given family of Fredholm sections s : B →
E , s = {sλ}, parametrized by λ ∈ Λ, where pr : B → Λ is a Banach fibration.

Theorem 2.29. Suppose s : B → E is transverse to the zero section. Then (1)
M := s−1(0) is an embedded submanifold of B such that pr|M :M→ Λ is a Fredholm
map; (2) there exists a subset Λreg ⊂ Λ of Baire’s second category, such that for any
λ ∈ Λ0, sλ is transverse to the zero section, in particular, Mλ := s−1

λ (0) is a smooth
finite dimensional submanifold of Bλ.

Proof. Suppose x0 ∈ M be any point, and let λ0 = pr(x0) be the image in Λ under
the map pr. Since pr is a fibration, at least locally we can write a neighborhood of
x0 in B as a product U × V , where U is a neighborhood of x0 in Bλ0 and V is a
neighborhood of λ0 in Λ. Suppose s is given by the graph of f over U × V , and let
fλ be the restriction of f to Bλ. Set D := Df(x0), D1 = Dfλ0(x0). Note that we can
write D = D1 +D2 by the decomposition Tx0B = Tx0Bλ0 × Tλ0Λ. Set K := kerD.

Lemma 2.30. The kernel of D(pr)(x0)|K : K → Tλ0Λ is given by the subspace
kerD1 ⊂ K, and the cokernel of D(pr)(x0)|K is identified via D2 to the coker D1.
Moreover, K splits Tx0B.

Proof. Let u ∈ K. We write u = (v, w) according to the decomposition Tx0B =
Tx0Bλ0×Tλ0Λ. Then D1v+D2w = 0. Now u is sent to w under D(pr)(x0)|K , so u lies
in the kernel of D(pr)(x0)|K iff w = 0, which means u = (v, 0) with v ∈ kerD1. This
proves our claim that the kernel of D(pr)(x0)|K is given by the subspace kerD1 ⊂ K.
Concerning the cokernel of D(pr)(x0)|K , note that the above argument also shows
that w ∈ Tλ0Λ lies in the image of D(pr)(x0)|K iff there exists a v ∈ Tx0Bλ0 such that
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D1v +D2w = 0, which implies that D2 induces an injective map from the cokernel of
D(pr)(x0)|K to coker D1. To see this map is also surjective, we recall the assumption
that s is transverse to the zero section, which means that D is surjective. Therefore
for any ξ ∈ Ex0 , there is a u = (v, w) such that ξ = Du = D1v + D2w. This shows
that the class of w in the cokernel of D(pr)(x0)|K is sent to the class of ξ in coker D1

under D2, which is exactly the surjectivity we claimed. This proves that the cokernel
of D(pr)(x0)|K is identified via D2 to the coker D1.

It remains to show that K splits Tx0B. We let E := D(pr)(x0)−1(Im D(pr)(x0)|K).
Since D(pr)(x0) is surjective and the cokernel of D(pr)(x0)|K is finite dimensional,
Tx0B/E is finite dimensional, hence by Lemma 2.21(1), E splits Tx0B. Note that
K ⊂ E, so it suffices to show that K splits E. To see this, note that by Lemma
2.21(2), kerD1 splits Tx0Bλ0 since dim kerD1 < ∞. Hence there is a decomposition
Tx0Bλ0 = F × kerD1. Now for any (v, w) ∈ E, where v ∈ Tx0Bλ0 and w ∈ Tλ0Λ, there
is a v1 ∈ Tx0Bλ0 such that D1v1 + D2w = 0, where v1 is uniquely determined up to
adding an element of kerD1. There is a unique choice of v1 such that v − v1 ∈ F
under the decomposition Tx0Bλ0 = F × kerD1. This gives a decomposition of E as
(F × {0}) ×K, where (v, w) is identified with ((v − v1, 0), (v1, w)). This proves that
K splits Tx0B. �

With Lemma 2.30 at hand, we go back to the proof of Theorem 2.29. It follows
immediately that M := s−1(0) is an embedded submanifold of B because D is sur-
jective by assumption and K splits Tx0B (cf. Theorem 2.11). Furthermore, pr|M is
Fredholm because both the kernel and cokernel of D(pr)(x0)|K are finite dimensional
by Lemma 2.30. For part (2), we let Λreg := Λreg(pr|M). Then by Sard-Smale, Λreg
is of Baire’s second category. By Lemma 2.30, λ ∈ Λreg iff sλ is transverse to the zero
section (because the cokernel of D(pr)(x0)|K is identified via D2 to the coker D1). �

Suppose λ0, λ1 ∈ Λreg, and γ : [0, 1] → Λ is a smooth path such that γ(i) = λi,
i = 0, 1. We set

Wγ := {(x, t) ∈M× [0, 1]|pr(x) = γ(t)}.
It is well-known from the finite dimensional transversality theory that in the case
pr :M→ Λ is between finite dimensional spaces, one can perturb γ slightly to make
it transverse to pr, so that Wγ is a smooth submanifold with boundary in M× [0, 1],
providing a ”cobordism” between pr−1(λ0) and pr−1(λ1). This is continue to be true
in the present infinite dimensional setting.

Theorem 2.31. Suppose γ0 is a smooth path connecting λ0, λ1 ∈ Λreg. Then one
can slightly perturb γ0 to a smooth path γ connecting λ0, λ1 such that Wγ is a smooth,
finite dimensional submanifold with boundary in M× [0, 1].

Exercise 2.32. Prove Theorem 2.31.
Hint: Find an appropriate, finite dimensional space of perturbations P for γ0 in the

following sense: there is p0 ∈ P and a smooth map Γ : [0, 1] × P → Λ such that (1)
Γ|[0,1]×{p0} = γ0, (2) Γ is transverse to pr :M→ Λ. Then prove that

WΓ := {(x, t, p) ∈M× [0, 1]× P |pr(x) = Γ(t, p)}
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is a smooth, finite dimensional submanifold with boundary inM× [0, 1]×P . Finally,
apply Sard’s theorem to the projection WΓ → P . (cf. [3], section 4.3.)

2.4. Determinant line bundles and orientations. Suppose we are given a pair of
Banach bundles E ,F → B and a continuous family of Fredholm operators parametrized
by B,

L := {Lx ∈ Fred (Ex,Fx)|x ∈ B},
where for each x ∈ B, Ex,Fx are real Banach spaces (i.e., over R). Note that one
can regard L as a continuous section of the associated Banach bundle L(E ,F) → B,
where L(E ,F) is the bundle whose fiber at x ∈ B is L(Ex,Fx), the Banach space of
bounded linear operators from Ex to Fx. The purpose of this section is to construct a
real topological line bundle over B, called the determinant line bundle of L, which will
be denoted by detL.

Let V be a real vector space of dimension n. We denote by ΛmaxV = ΛnV the n-th
exterior power of V , which is a 1-dimensional real vector space. If V ∗ denotes the
dual space of V , then one has a canonical isomorphism (ΛmaxV )∗ = ΛmaxV ∗. With
this understood, for each x ∈ B, since Lx is Fredholm, both kerLx and coker Lx are
finite dimensional real vector spaces. The determinant line bundle detL is defined by
setting the fiber at x to be

(detL)x := Λmax(kerLx)⊗ (Λmax(coker Lx))∗.

Theorem 2.33. (cf. Donaldson-Kronheimer [3]) Let L be a continuous family of
Fredholm operators parametrized by B. Then detL forms a topological line bundle
over B.

Proof. Let x0 ∈ B be any point. There exists a neighborhood U of x0 such that
E|U ,F|U are trivial. After fixing a trivialization U×E, U×F of E|U ,F|U respectively,
we may regard Lx is a continuous family of Fredholm operators from fixed Banach
spaces E to F , x ∈ U . We shall first consider the simplified situation where Lx0 is
surjective (for all x0). In this case, since kerLx0 is finite dimensional, there exists
a closed subspace E1 of E such that E can be written as kerLx0 × E1. We let
P : E → E1 be the projection, and T : F → E1 be the bounded linear operator such
that Lx0 ◦ T = Id, T ◦ Lx0 = P . Then we have, for any u ∈ kerLx,

0 = T ◦ Lxu = T ◦ Lx0u+ T (Lx − Lx0)u = Pu+Q(x)u,

where Q(x) := T (Lx − Lx0) : E → E1 ⊂ E such that ||Q(x)|| can be made arbitrarily
small when x is sufficiently close to x0. This implies that the projection onto kerLx0 ,
Id−P = Id+Q, when restricted to kerLx, is an isomorphism when x is sufficiently close
to x0. Let us denote its inverse by fx : kerLx0 → kerLx. Then for any given basis
v = (v1, v2, · · · , vn) (here n = dim kerLx0) of kerLx0 , there is an element fx(v) :=
fx(v1) ∧ · · · ∧ fx(vn) ∈ (detL)x. If we call the fixed trivializations of E ,F over U
collectively by φ, then this construction gives us a bijective map which is linear over
each fiber:

Ψx0,v,φ : detL|U → U × R, tfx(v) 7→ (x, t), ∀x ∈ U.
By the ”Vector Bundle Construction Lemma”, our claim that detL is a line bundle
over B follows immediately if any transition maps Ψx0,v,φ ◦Ψ−1

y0,w,ψ
are continuous, i.e.,
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Ψx0,v,φ ◦Ψ−1
y0,w,ψ

: (x, t) 7→ (x, ρ(x)t) for some continuous function ρ(x), which can be
easily verified.

In the general case where Lx0 is not necessarily surjective for every x0 ∈ B, we
employ the idea of ”stabilization”. We need the following lemma first.

Lemma 2.34. (1) Let W be a finite dimensional vector space and V ⊂ W be a
subspace. Then there is a canonical isomorphism ΛmaxW = ΛmaxV ⊗ Λmax(W/V ).

(2) Let 0 → E1
i→ E2

j→ E3
k→ E4 → 0 be an exact sequence of finite

dimensional vector spaces. Then there is an canonical isomorphism (determined by
i, j, k)

ΛmaxE1 ⊗ (ΛmaxE4)∗ = ΛmaxE2 ⊗ (ΛmaxE3)∗.

Proof. (1) Let dimW = n, dimV = m. Let V1 ⊂ W be any subspace such that
W = V ⊕V1. Then there is an embedding V ⊗m⊗V ⊗(n−m)

1 ↪→W⊗n, which induces an
isomorphism ΛmV ⊗Λ(n−m)V1 → ΛnW . Now by identifying W/V with V1, we obtain
an isomorphism ΛmV ⊗Λ(n−m)(W/V )→ ΛnW , which is canonical because it does not
depend on the choice of V1.

(2) Since i : E1 → E2 is injective, we can regard E1 as a subspace of E2 via i.
Likewise, since k : E3 → E4 is surjective, we can regard E∗4 as a subspace of E∗3 via
k∗. By part (1) of the lemma, we obtain isomorphisms

ΛmaxE2 = ΛmaxE1 ⊗ Λmax(E2/E1), ΛmaxE∗3 = ΛmaxE∗4 ⊗ Λmax(E∗3/E
∗
4).

Now E∗3/E
∗
4 is naturally identified with the dual space of the image of j : E2 → E3,

which via j, is identified to the dual space of E2/E1. Hence

ΛmaxE2 ⊗ ΛmaxE∗3 = ΛmaxE1 ⊗ Λmax(E2/E1)⊗ ΛmaxE∗4 ⊗ Λmax(E2/E1)∗

= ΛmaxE1 ⊗ ΛmaxE∗4 ⊗ Λmax(E2/E1)⊗ Λmax(E2/E1)∗

= ΛmaxE1 ⊗ ΛmaxE∗4 ⊗ R
= ΛmaxE1 ⊗ ΛmaxE∗4 .

�

Now back to the proof of Theorem 2.33. For any x0 ∈ B, since coker Lx0 is finite
dimensional, there exists a linear map ξ : RN → F for some N such that Lx0 ⊕ ξ :
E ⊕ RN → F is surjective. Since surjectivity is an open condition, there exists a
neighborhood U of x0 such that Lx⊕ ξ : E⊕RN → F is surjective for all x ∈ U . Now
consider the exact sequence

0 → kerLx
i→ ker(Lx ⊕ ξ)

j→ RN k→ coker Lx → 0,

where i is the inclusion induced by E ↪→ E⊕RN , j is the inclusion ker(Lx⊕ξ) ⊂ E⊕RN

followed by the projection onto RN , and k is ξ : RN → F followed by the projec-
tion from F onto coker Lx. By Lemma 2.34(2), there is an canonical isomorphism
Ix,ξ : Λmax ker(Lx⊕ ξ)⊗ (ΛmaxRN )∗ → Λmax(kerLx)⊗ (Λmax(coker Lx))∗. Apply the
previous construction to the family of Fredholm operators Lx ⊕ ξ : E ⊕ RN → F , we
obtain a trivialization

Ψx0,v,φ,ξ : detL|U → U × R, tIx,ξ(fx(v)) 7→ (x, t), ∀x ∈ U.



PART 1: ELLIPTIC EQUATIONS 49

The claim that detL is a topological line bundle over B follows by verifying that the
transition maps Ψx0,v,φ,ξ ◦Ψ−1

y0,w,ψ,η
are continuous. �

Remark 2.35. (1) If L is a smooth family of Fredholm operators parametrized by B,
then detL is a smooth line bundle over B.

(2) If the fibers of E ,F are the underlying real Banach spaces of a complex Banach
space, and each Lx is complex linear, then the determinant line bundle detL → B
must be trivial, and moreover, there is a canonical trivialization of detL coming from
the complex structures, cf. [10], p. 500.

(3) Let s : B → E be a family of Fredholm sections, s = {sλ : Bλ → Eλ},
parametrized by λ ∈ Λ. Then for any x ∈ M := s−1(0), suppose x ∈ Bλ for some λ,
there is a Fredholm operator Ds(x) : TxBλ → Eλ|x, which is given by Df(x) if sλ is
locally given by the graph of f . Note that the well-definedness of Ds(x) (i.e., indepen-
dent of the choice of f) requires the fact that x ∈ s−1(0). We thus have a smooth family
of Fredholm operators Ds = {Ds(x)} parametrized by x ∈ M = s−1(0), and corre-
spondingly the determinant line bundle det(Ds)→M. Now assume det(Ds)→M is
trivial and s is transverse to the zero section. Then by Theorem 2.29,M is an embed-
ded submanifold of B and for any λ ∈ Λreg (a subset of Λ of Baire’s second category),
Mλ := s−1

λ (0) is a finite dimensional smooth manifold. The key fact is that for any
x ∈Mλ, det(Ds)|x = ΛmaxTxMλ, so that the triviality of det(Ds)→M implies that
Mλ is orientable for any λ ∈ Λreg. Moreover, a fixed trivialization of det(Ds) →M
gives rise to a coherent orientation to each Mλ, λ ∈ Λreg, in the following sense: for
any λ0, λ1 ∈ Λreg, suppose γ : [0, 1] → Λ is a smooth path connecting λ0, λ1 such
that Wγ := {(x, t) ∈ M× [0, 1]|pr(x) = γ(t)} is a smooth embedded submanifold of
boundary in M× [0, 1] (cf. Theorem 2.31). Then there is an orientation on Wγ such
that the induced orientation on the boundary ∂Wγ =Mλ0 tMλ1 coincides with the
orientation obtained from the determinant line bundle det(Ds)→M.

(4) Let s : B → E be a family of Fredholm sections, s = {sλ : Bλ → Eλ},
parametrized by λ ∈ Λ. In the situations which we will encounter, Ds(x) : TxBλ →
Eλ|x can be defined for any x ∈ B and is Fredholm. This gives rise to a determinant
line bundle det(Ds) → B which restricts to det(Ds) →M. The point of introducing
this line bundle on the larger space B is that, in general, one knows nothing about
the topology of M but often has a good grasp of the topology of B, hence it is often
much easier to show that det(Ds)→ B is trivial. The triviality of det(Ds)→ B then
implies the triviality of det(Ds)→M, which implies that each Mλ, λ ∈ Λreg, can be
coherently oriented.

Exercise 2.36. Work out the details of the claims in Remark 2.35(1), (2), (3).
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