Midterm Exam Stat 697U, Spring 2019

Instructor: Brian Van Koten

Due Friday, March 29, in my mailbox or by email before 3:00pm

Please do not discuss the problems on this exam with anyone. You may consult any of the recommended texts, but please do not search the web for solutions.

Problem 1 (3+2 points). Let E be a countable set, and let X_0 be a random variable with values in E. Let $\{U_n\}_{n=1}^{\infty}$ be a sequence of independent, identically distributed uniform random variables on the interval [0,1]. Suppose that $G : E \times [0,1] \to E$, and define a discrete time process inductively by

$$X_{n+1} = G(X_n, U_{n+1}).$$

- 1. Show that X_n is a homogeneous discrete time Markov chain, and write down its transition matrix in terms of G.
- 2. Can every homogeneous discrete time Markov chain be written in this fashion for some function G?

Problem 2 (5 points). Let $\{D_n\}_{n=1}^{\infty}$ be the outcomes of independent rolls of a fair die. (That is, the D_n 's are i.i.d. uniform on $\{1, \ldots, 6\}$). Let

$$S_n = \sum_{k=1}^n D_k$$

be the sum of the first n rolls. Compute

$$\lim_{n \to \infty} \mathbb{P}[S_n \text{ is a multiple of } 13].$$

Hint: Is the remainder R_n of S_n on division by 13 a Markov chain?

Problem 3 (4+1 points). Let $\{X_n\}_{n=1}^{\infty}$ be a Markov chain on a finite state space E with transition matrix P. Fix $k \in E$, and let $H^k \in [0, \infty]^E$ be the first hitting time of k,

$$H^k := \inf\{n \ge 0 : X_n = k\}.$$

(Note that this is the first hitting time, not the first passage time.) Fix $j \in E$ with $j \neq k$, and define

$$g_i^{jk} = \mathbb{P}_i[H^k < H^j].$$

1. Find a system of linear equations analogous to [Norris, Theorem 1.3.2] whose solution is the vector $g^{jk} \in [0,1]^E$ whose i'th entry is g_i^{jk} .

Hint: You may use [Norris, Theorem 1.3.2] in the solution of this problem, but you will have to apply it to a modified version of the original Markov chain X_n . Otherwise, you can use a first-step analysis as in the proof of [Norris, Theorem 1.3.2].

2. Write the system of equations in the matrix form

$$Mg^{jk} = b$$

for some matrix M and vector b.

Problem 4 (3+2 points). Consider the infinite binary tree in the figure below:

This tree has a single vertex, called the root, with degree two. All other vertices have degree exactly three, and there are no cycles (closed loops) in the graph.

- Suppose that we define a random walk on the graph by starting at the root and at each step following one edge chosen uniformly at random. (See Homework 5 for a more precise description of the random walk on a graph.) Show that the random walk on the infinite binary tree is transient.
- 2. Suppose that instead of choosing an edge uniformly at random, we choose the edge that leads in the direction of the root with probability 1/2 and the edges that lead away from the root with probability 1/4 each. (At the root, we simply choose one of the edges leading away, each with probability 1/2.) Is this walk transient?