Homework 9.1 Stat 605, Fall 2018

Instructor: Brian Van Koten

Due Thursday, November 15

Here is one last problem using the CLT:

Problem 1. Let $\{X_j\}_{j=1}^{\infty}$ be i.i.d. random variables having the double exponential distribution with parameter 1, i.e. the common density is $f(x) = \exp(-|x|)/2$. Show that

$$\sqrt{N}\left(\frac{\sum_{j=1}^{N} X_j}{\sum_{j=1}^{N} X_j^2}\right) \xrightarrow{\mathscr{D}} N\left(0, \frac{1}{2}\right).$$

Hint: Use Slutsky's theorem.

Problem 2 (3+3 points). Let X and Y be \mathbb{R} -valued random variables with joint density $f_{X,Y}$. Let f_X and f_Y denote the marginal densities of X and Y, respectively.

1. Prove that for any Borel set B,

$$\mathbb{P}[Y \in B | X = x] = \int_{y \in B} \frac{f_{X,Y}(x,y)}{f_X(x)} \, dy$$

for \mathbb{P}_X -almost all $x \in \mathbb{R}$.

2. Suppose that $\mathbb{E}[|Y|] < \infty$. Prove that

$$\int y \frac{f_{X,Y}(x,y)}{f_X(x)} \, dy$$

is one version of $\mathbb{E}[Y|X]$.