
Homework 6

Stat 697U, Spring 2019

Instructor: Brian Van Koten

Due Wednesday, March 6

Here is a problem introducing branching processes, which are an important
class of Markov chain. The solution uses generating functions, which are the
subject of Section 1.5.1 in Brémaud’s book. You might consider whether it
would be feasible to solve the problem using the first-step analysis techniques
of Section 1.5 in Norris’s book.

Problem 1 (2+3+2+2 points). In 1874, preoccupied by the extinction of aris-
tocratic family names, Francis Galton and Henry William Watson proposed a
Markov chain of the form

Xn =

Xn−1∑
i=1

Zn,i,

where the Zn,i’s are i.i.d. random variables taking values in {0, 1, 2, . . . }. (The
case where Xn−1 = 0 may be confusing: We set Xn = 0 when Xn−1 = 0.) In
Galton and Watson’s model, Xn represents the number of men with a certain
family name in the n’th generation, and Zn,i represents the number of sons of
the i’th man in the (n− 1)’st generation.

1. Let {Yi}∞i=1 be i.i.d. random variables with values in {0} ∪ N. Let N be
another random variable with values in {0} ∪ N, and assume that N is
independent of {Yi}∞i=1. Let gY denote the common generating function
of the random variables {Yi}∞i=1. Define

W =

N∑
k=1

Yk.

Show that gW = gN ◦ gY .

2. Assume that X0 = 1. Let p = P[Xn = 0 for some n] be the extinction
probability. Let gZ denote the common generating function of the random
variables {Zn,i}∞n,i=1. Use part 1 of this problem to show that p = gZ(p).

Hint: Show that when X0 = 1, gXn
(z) = g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸

n times

(z). Now we have

gXn
(0) = P[XN = 0], and using a little measure theory, one can show
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that
p = lim

n→∞
P[Xn = 0].

(You may use this fact without proof.)

3. What is the extinction probability when E[Zn,i] ≤ 1?

4. Is the extinction probability, zero, one, or between zero and one when
E[Zn,i] > 1?

Hint: Are generating functions always convex?

The following problems establish some basic properties of the exponential
distribution which will be useful in understanding continuous time Markov
chains.

Problem 2 (4 points). Let S be a memoryless random variable with a cumula-
tive distribution function F such that F (0) = 0. Assume that F is differentiable.
Show that S ∼ Exponential(λ) for some rate λ > 0. (Recall that a random
variable is said to be memoryless if P[S > t + s|S > t] = P[S > s] for any
s, t ∈ [0,∞).)

Extra Credit: Prove the same thing without assuming that F is differentiable.
Note that you will not need to make any assumptions whatsoever about F , except
that F (0) = 0.

Note: Recall that a random variable G has the geometric distribution with
parameter p iff

P[G = k] = (1− p)(k−1)p for all k ∈ N.

Observe that the geometric distribution is also memoryless in a certain sense:
If G is geometric, then for all m,n ∈ {0} ∪ N,

P[G > m+ n|G > n] = P[G > m].

However, the geometric distribution is not memoryless in the sense of this class,
because the above relation does not hold for all m,n ∈ [0,∞), only integer valued
m,n. Think about what would happen for n = m = 1.1 to see why this is true.

Problem 3 (2+2+2 points). Let S ∼ Exponential(α) and T ∼ Exponential(β)
be independent exponential random variables.

1. What is the distribution of S ∧ T?

2. What is the probability that S ≤ T?

3. Show that the two events {S < T} and {S ∧ T ≥ t} are independent.

Here is a variation of the coupling argument that yields an estimate of the
rate of convergence to equilibrium.
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Problem 4 (2+3 points). Let P be an irreducible and aperiodic stochastic ma-
trix with invariant distribution π. Suppose that for some distribution ν and
constant α > 0,

Pij ≥ ανj for all i, j.

Let λ be a probability distribution.

1. Let Q be a stochastic matrix. Define a process Wn inductively as follows:
Draw W0 from the distribution λ. Now suppose that Wn has been com-
puted. To compute Wn+1, first draw a trial Bn+1 from the Bernoulli dis-
tribution with success probability α. If Bn+1 = 1, then draw Wn+1 from ν.
Otherwise, if Bn+1 = 0, draw Wn+1 with the distribution P[Wn+1 = j] =
QWnj. Assume that all of these various trials and draws are independent.
Show that for some stochastic matrix Q, we have Wn ∼ Markov(λ,P).

2. Let {Xn}∞n=0 ∼ Markov(λ,P). Show using a version of the coupling argu-
ment that

|P[Xn = i]− πi| ≤ (1− α)n

for all i ∈ E.

Hint: Define a coupled chain roughly as follows: Let X0 ∼ λ and Y0 ∼ π.
With probability α at each time step m, couple the chains by drawing a
state i from the distribution ν, setting Xm+1 = Ym+1 = i, and demanding
Xn = Yn for all n ≥ m+ 1. With the remaining probability (1−α), before
coupling has occurred, draw Xm+1 and Ym+1 independently according to
the matrix Q from Part 1. Now mimic the coupling argument in the text.

Finally, here is an exercise that I would solve using the ergodic theorem.

Problem 5 (4 points). Let {Xn}∞n=0 be an irreducible Markov chain with in-
variant distribution π on the state space E. Let {Yn}∞n=0 be the chain obtained
by observing Xn, when it is in J ⊂ E, cf. Homework 2.2, Problem 2. Show that
Yn is positive recurrent, and find a formula expressing its invariant distribution
in terms of π.
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