Homework 4.1
Stat 697U, Spring 2019

Instructor: Brian Van Koten

Due Wednesday, February 20

Problem 1 (2 points). Let (V,€) be a finite, undirected, unweighted graph.
Here, V' denotes the set of vertices, and £ is the set of edges connecting the
vertices. To be precise, £ is a set of unordered pairs of elements of V. For each
vertex i € V', we define the valency v; of i to be the number of edges having i as
an element.

Corresponding to each graph is a random walk on the vertices V with the
transition probability

0 otherwise.
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Show that w; = = i Py is an invariant distribution for the random walk on the
JEV VI
graph.

Here is a related problem from Norris’s book:

Problem 2 (24242 points). A particle moves on the eight vertices of a cube.
At each step the particle is equally likely to move to any of the three adjacent
vertices, independently of its past motions. Let i be the initial vertex occupied by
the particle and o the vertex opposite i. (For example, if the cube is C = {0,1}3,
and i = (0,0,0), then o = (1,1,1).) Calculate each of the following quantities:

1. The expected number of steps until the particle returns to i.
2. The expected number of visits to o until the first return to i.
8. The expected number of steps until the first visit to o.

Note: If prefer, you may instead consider a knight starting from one corner of
a chessboard instead of a particle on a cube. Assume that at each time step
the knight makes one legal move uniformly at random. I don’t think it is much
harder to answer all the same questions in this case. For example, one may ask
how many moves it takes on average for the knight to return to the corner, how
many visits to the opposite corner before returning to the initial corner, etc.



Problem 3 (3 points). Let P be an irreducible stochastic matriz on o finite state
space E. Show that the invariant distribution © of P is unique, that m; > 0 for
alli € E, and that every state i € E is positive recurrent. Note: Don’t overthink
this problem. I just want you to recall the basic theorems from class, and think
about what they mean in the finite case. You may wish to use Theorem 1.7.6 in
Norris, which we will discuss in class on Monday.

Like the last problems on the previous homeworks, the following problems
develop properties of Markov chains from the perspective of linear algebra.

Problem 4 (2 points). Let P be a finite, irreducible, stochastic matriz. Show
that all eigenvalues A of P have |A| < 1 and that the eigenvalue 1 has multiplicity
one. Hint: Use the last problem together with the problems on the last home-
work. Note that the last problem only implies that there is a unique nonnegative
eitgenvector with eigenvalue one.

Problem 5 (1 point). Give an example of a finite, irreducible, stochastic matriz
P having multiple eigenvalues X so that |\| = 1.

Here is a method for computing an invariant distribution numerically. It is
important to note that although the invariant distribution is a left eigenvector
of P, it would be totally inappropriate to use numerical methods for computing
eigenvectors, e.g. the QR-algorithm, to compute the invariant distribution. (The
method based on QR-factorization below is not the QR-algorithm.) The issue
is that the eigenvlue corresponding to the invariant distribution is known to be
one, and need not be calculated. This simplifies the situation dramatically.

Problem 6 (5 points). Let P € R"*"™ be a finite, irreducible stochastic matriz.
Any real square matrix M admits a decomposition of the form

M = QR,

where Q is orthogonal and R is upper triangular. (This fact is extremely useful in
numerical linear algebra, since there are simple, stable algorithms for computing
Q@ and R. Because both orthogonal and triangular matrices are easy to invert,
once Q and R are known it is a simple matter to solve equations like Mx =b.)

Let I denote the identity matriz, and e the vector of all ones. Define A =
I — P. Suppose that A = QR for Q orthogonal and R upper triangular. Show

that
U —Ue
(o )
for some nonsingular upper triangular matriz U and that the last column q of

Q is an invariant measure for P. Thus, to compute the invariant distribution,
it suffices to compute the QR-factorization of A.



