Homework 2.1
 Stat 697U, Spring 2019

Instructor: Brian Van Koten

Due Wednesday, February 6

The following is a variation of a problem in Markov Chains by Norris.
Problem 1 ($1+3+3$ points). A gambler begins with $\$ 2$ and needs to win $\$ 10$ in a hurry. She can play the following game: A fair coin is tossed. If a player bets on the correct side, she wins an amount equal to her bet. Otherwise, she loses her bet. The gambler decides to play the game by the following strategy: She bets her entire fortune when she has less than $\$ 5$, and if she has more than $\$ 5$ she bets just enough to increase her fortune to $\$ 10$. The gambler stops if her fortune reaches $\$ 0$ or $\$ 10$.

1. Write down the initial distribution and transition probability matrix of a homogeneous Markov chain X_{n} modeling the gambler's fortune after n coin flips. Draw the transition graph corresponding to this chain.
2. What is the probability that the gambler's fortune reaches $\$ 10$?

The following problem comes from Bremaud's book:
Problem 2 (3 points). The Markov property does not imply that the past and future are independent given any information concerning the present. Give an example of a HMC X_{n} with state space $\{1,2,3,4,5,6\}$ so that

$$
\mathbb{P}\left[X_{2}=6 \mid X_{1} \in\{3,4\}, X_{0}=2\right] \neq \mathbb{P}\left[X_{2}=6 \mid X_{1} \in\{3,4\}\right]
$$

