Homework 10
 Stat 697U, Spring 2019

Instructor: Brian Van Koten

Due Wednesday, May 1

Here is a basic problem on rejection sampling that I forgot to assign last week.

Problem 1 (3 points). Let $p(x)$ be a probability density on \mathbb{R}^{d}. Assume that it is not possible to compute $p(x)$, but that it is possible to compute a function $\ell(x)$ so that

$$
\ell(x)=c p(x)
$$

for some unknown constant c. Let g be a proposal density for use in the rejection sampling method, and suppose that the envelope condition

$$
M g(x) \geq \ell(x)
$$

holds with constant M for all x.
What is the distribution of the number of proposals required to generate one sample from p by rejection sampling with proposal density g ? What is the expected number of proposals?

Hint: The distribution depends only on c and M.
Problem 2 (3 points). Suppose that you want to generate an i.i.d. sample from the uniform distribution on the unit ball

$$
B_{d}:=\left\{x \in \mathbb{R}^{d} ;\|x\|_{2}=1\right\}
$$

in d-dimensions. One possibility is to perform rejection sampling with proposals from the uniform distribution on the cube

$$
C_{d}:=[-1,1]^{d}
$$

Is this a good method when d is large?
Hint: You will probably want to use the famous volume formula

$$
\left|B_{d}\right|=\frac{\pi^{d / 2}}{\Gamma(n / 2+1)},
$$

where

$$
\Gamma(n / 2+1)=\pi^{\frac{1}{2}}(n-1 / 2)(n-3 / 2) \ldots(1 / 2)
$$

The following problem illustrates how the bottleneck inequality may be used to verify that MCMC converges slowly for multimodal problems. Let

$$
E=\{-N+1,-N+2 \ldots, N\}
$$

choose $\beta>0$, and define the target distribution $\pi: E \rightarrow[0,1]$ by

$$
\pi(x)=Z^{-1} \exp (-\beta \cos (-2 \pi x / N)), \text { where } Z=\sum_{i \in E} \exp (-\beta \cos (-2 \pi x / N))
$$

To design a chain sampling π, we find it convenient to equip E with periodic boundary conditions, identifying $-N$ with N and $N+1$ with $-N+1$, for example. Now consider the transition matrix $P \in[0,1]^{E}$ with entries

$$
\begin{aligned}
P_{i i} & :=\frac{1}{2}\left(\frac{\pi(i)}{\pi(i)+\pi(i+1)}+\frac{\pi(i)}{\pi(i)+\pi(i-1)}\right) & & \text { for all } i \in E \\
P_{i, i+1} & :=\frac{1}{2} \frac{\pi(i+1)}{\pi(i)+\pi(i+1)} & & \text { for all } i \in E \\
P_{i, i-1} & :=\frac{1}{2} \frac{\pi(i-1)}{\pi(i)+\pi(i-1)} & & \text { for all } i \in E \\
P_{i j} & :=0 & & \text { if } j \notin\{i-1, i, i+1\} .
\end{aligned}
$$

It should seem roughly plausible that P samples π, since moves in the direction of higher values of π are favored.

Problem 3 (1+1+3 points). Consider the matrix P and distribution π defined above.

1. Show that P is in detailed balance with π.
2. Draw a picture showing the distribution π for two values of β, one large and one small.
3. Prove using the bottleneck inequality that $t_{\text {mix }}$ increases exponentially as β tends to infinity.

Next, I would like you to prove some of the basic results on the total variation distance and its relation to Markov chains.

Problem $4(2+2+0.5$ points). Recall the fundamental definition

$$
\|\mu-\nu\|_{\mathrm{TV}}=\max _{A \subset E}|\mu(A)-\nu(A)|
$$

1. Show that

$$
\|\mu-\nu\|_{\mathrm{TV}}=\frac{1}{2} \sum_{i \in E}\left|\mu_{i}-\nu_{i}\right|
$$

2. Show that

$$
\|\mu-\nu\|_{\mathrm{TV}}=\sum_{\substack{i \in E \\ \mu_{i} \geq \nu_{i}}} \mu_{i}-\nu_{i}
$$

3. Let P be a stochastic matrix on E, and let μ, ν be measures on E. You have already shown, more or less, that $\|\mu P-\nu P\|_{\mathrm{TV}} \leq\|\mu-\nu\|_{\mathrm{TV}}$. Which of your old homework problems implies this inequality and why?

Finally, here is a little problem related to a question from class.
Problem 5 (2 points). Let P be a stochastic matrix on E with invariant distribution π. Define the maximal distance at time t by

$$
d(t):=\max _{x \in E}\left\|\delta_{x} P^{t}-\pi\right\|_{\mathrm{TV}}
$$

Prove that

$$
d(t)=\max _{\lambda}\left\|\lambda P^{t}-\pi\right\|_{\mathrm{TV}}
$$

where the maximum above is over all probability distributions λ on E.

