Homework 1 Stat 697U, Spring 2019

Instructor: Brian Van Koten

Due Wednesday, January 30

Recall the Markov property

$$
\mathbb{P}\left[X_{n+1}=i_{n+1} \mid X_{n}=i_{n}, \ldots, X_{0}=i_{0}\right]=\mathbb{P}\left[X_{n+1}=j \mid X_{n}=i\right]
$$

The Markov property may be extended in many ways - the following problem gives one obvious extension:
Problem 1 (2 points). Let X_{n} be a Markov chain. (Do not assume that X_{n} is homogeneous, only that the Markov property holds.) Prove that for any $n, m \in \mathbb{N}$ and $i_{0}, \ldots, i_{n+m} \in E$,

$$
\begin{aligned}
& \mathbb{P}\left[X_{n+m}=i_{n+m}, X_{n+m-1}=i_{n+m-1}, \ldots, X_{n+1}=i_{n+1} \mid X_{n}=i_{n}, \ldots, X_{0}=i_{0}\right] \\
& \quad=\mathbb{P}\left[X_{n+m}=i_{n+m}, X_{n+m-1}=i_{n+m-1}, \ldots, X_{n+1}=i_{n+1} \mid X_{n}=i_{n}\right]
\end{aligned}
$$

The next problem was left as an exercise in class:
Problem 2 (2 points). Let $\left\{X_{n}\right\}_{n=0}$ be a process taking values in a countable set E, and assume that for some probability vector $\lambda \in[0,1]^{E}$ and stochastic matrix $P \in[0,1]^{E \times E}$, we have

$$
\mathbb{P}\left[X_{0}=i_{0}, \ldots, X_{N}=i_{N}\right]=\lambda_{i_{0}} P_{i_{0} i_{1}} \ldots P_{i_{N-1} i_{N}}
$$

Prove that $X_{n} \sim \operatorname{Markov}(\lambda, P)$.
The following problem comes the book Markov Chains by J.R. Norris:
Problem 3 ($1+1+1+1$ points). Let $\left\{Z_{n}\right\}_{n=0}^{\infty}$ be i.i.d. Bernoulli random variables with $\mathbb{P}\left[Z_{i}=0\right]=p$ and $\mathbb{P}\left[Z_{i}=1\right]=1-p$. Define $S_{n}=Z_{0}+\cdots+Z_{n}$. Which of the following processes is a Markov chain?

1. $A_{n}=S_{n}$
2. $B_{n}=Z_{n}$
3. $C_{n}=S_{0}+\cdots+S_{n}$
4. $D_{n}=\left(S_{n}, S_{0}+\cdots+S_{n}\right)$

For each process that is a Markov chain, find its transition matrix. For each process $X_{n} \in\left\{A_{n}, B_{n}, C_{n}, D_{n}\right\}$ that is not a Markov chain, find a pair of states i and j so that $\mathbb{P}\left[X_{n+1}=i \mid X_{n}=j, X_{n-1}=k\right]$ depends on k.

