
Midterm Exam

Math 651
Fall 2019

Due Friday, November 1

1 Instructions

Please do not collaborate with your fellow students, and do not search the
internet for answers. You may refer to your course notes and the texts, and you
may ask me questions.

Problem 4 is open-ended. That is, it admits many different answers. I have
listed some questions that you may want to address as part of your own answer.
You should not feel that you have to address all of these questions. In fact,
you do not have to address any of the proposed questions—I encourage you to
develop your own. I only want you to think critically about what we have been
doing.

2 Exam

Problem 1 (10 points). Let f : R → R be four times continuously differen-
tiable. Assume that the fourth derivative of f is bounded. Show that∣∣∣∣f(x+ h)− 2f(x) + f(x− h)

h2
− f ′′(x)

∣∣∣∣ ≤ C‖f (4)‖∞h2
for some constant C > 0 that does not depend on f or h.

You might think that the determinant and the condition number of a ma-
trix are related, since the determinant is zero if and only if the matrix is not
invertible. In fact, the determinant and condition number are totally unrelated,
as you will show in this next problem.

Problem 2 (10 points). Find a sequence of square matrices Mn ∈ R5×5 so
that limn→∞ det(Mn) = 0 but κ2(Mn) = 1 for all n.

Define

x3+ :=

{
x3, x ≥ 0,

0, x < 0.
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Recall that the n+ 3 functions

uk(x) := (x− x0)k, for k = 0, . . . , 3,

vk(x) := (x− xk)3+, for k = 1, . . . , n− 1,

are a basis for the set S 3 of cubic splines on the knots x0 < x1 < · · · < xn.
Also, recall that the natural cubic interpolating spline of a function f : R→ R
is the unique cubic spline s ∈ S 3 so that

s(xi) = f(xi) for all i = 0, . . . , n, and (1)

s′′(x0) = s′′(xn) = 0.

To calculate the interpolating spline, one could use the basis {u0, . . . , u3, v1, . . . , vn−1}.
That is, one could write

s =

3∑
k=0

αkuk +

n−1∑
j=1

βjvj ,

and interpret (1) as a linear system determining the coefficients αk and βj . In
matrix form, the linear system reads

V (x0, . . . , xn)



α0

...α3

β1
...

βn−1

 =


f(x0)

...
f(xn)

0
0

 ,

where

V (x0, . . . , xn) =



u0(x0) . . . u3(x0) v1(x0) . . . vn−1(x0)
u0(x1) . . . u3(x1) v1(x1) . . . vn−1(x1)

...
...

u0(xn) . . . u3(xn) v1(xn) . . . vn−1(xn)
u′′0(x0) . . . u′′3(x0) v′′1 (x0) . . . v′′n−1(x0)
u′′0(xn) . . . u′′3(xn) v′′1 (xn) . . . v′′n−1(xn)


. (2)

Here, the first n + 1 rows of the matrix V correspond to the n + 1 conditions
s(xi) = f(xi), and the last two rows correspond to the natural boundary con-
dition s′′(x0) = s′′(xn) = 0.

Problem 3 (10+10+2+2 points). For each N ∈ N define a set of equally
spaced knots

xn0 = 0, xn1 = 1/n, . . . , xnn = 1

covering the interval [0, 1]. Let Vn = V (xn0 , . . . , x
n
n).
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1. Use the numerical SVD to estimate the condition number κ2(Vn) for

n ∈ {5, 10, 20, 50, 75, 100, 150}.

Report the following plots:

• κ2(vn) vs. n

• log10(κ2(vn)) vs. n

• log10(κ2(vn)) vs. log10(n)

You will see that κ2(Vn) increases with n. Do you think it increases poly-
nomially or exponentially? If polynomially, what is the exponent? If ex-
ponentially, what is the rate?

2. Define
f(x) = sin2(2x) + exp(x).

Calculate the coefficients αj and βk for the natural cubic interpolating
spline of f with n = 2000 using the QR-factorization and back substitu-
tion. (To perform back substitution in python, you can use the function
np.linalg.solve triangular.) Compute the error vector

err = V2000



α0

...α3

β1
...

βn−1

−

f(x0)

...
f(xn)

0
0

 .

Plot the entries of err. Report ‖err‖∞. Observe that ‖err‖∞ is actually
quite small, so even though V2000 is ill-conditioned, the coefficients com-
puted by inverting V2000 numerically yield a cubic spline that very nearly
interpolates f on the knots. Explain why this is the case. Your answer
should draw on concepts from class, e.g. backwards stability.

3. Since V2000 is ill-conditioned, the error in the calculated coefficients αj and
βk is probably very large. (You don’t have to try to demonstrate this.) But
which is more important, the error in the coefficients or the error vector
err?

4. Is it a bad idea to compute interpolating splines using this very ill-conditioned
basis? Why or why not?

Problem 4 (20 points). Please criticize and extend the analysis of finite dif-
ferences developed in Homework 5, Problem 2. (For your convenience, I have
included the statement of this problem below in Appendix A.) To get you started,
here are a few points that you might want to address:
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1. Carry out a floating point error analysis for the estimate of the second
derivative given in Problem 1 above. Does the error for the optimal value
of h decrease faster or slower than O(

√
εm) with machine precision?

2. The sum x + h is not necessarily a floating point number. How does the
analysis change if you take that into account?

3. The estimates in Homework 5, Problem 2 are not very precise. As an
alternative, one could develop an analysis based on asymptotic formulas
such as

f(x+ h)− f(x)

h
− f ′(x) = hf ′′(x) + o(h).

In what respects would an analysis based on asymptotics be better or worse
than one based on upper bounds?

4. In your homework you proved a theoretical result concerning the limit as
εm tends to zero. However, you only did calculations in 64-bit arithmetic,
which corresponds to taking εm = 2−53. It would have been better to do
calculations for a decreasing sequence of values of εm. How might you
simulate floating point of less than 64-bit precision? That is, given a
precision εm, can you come up with a “fake” version of floating point
arithmetic that satisfies the fundamental axiom of floating point? Are
there readily available software packages that actually perform arbitrary
precision floating arithmetic?

A Homework 5, Problem 2

I have included Homework 5, Problem 2 in this appendix for reference. You do
not have to turn in a solution to this problem.

Problem 5 (2+2+2+2 points).

1. Compute

d(h) :=
exp(h)− exp(0)

h

for h ∈ {2−k : k = 0, . . . , 60}. Now do the following:

• Plot − log10(h) vs. |d(h)− 1|.
• Plot − log10(h) vs. log10(|d(h)− 1|). (Most likely, when you generate

this plot, numpy.log10 will return an error message. Make sure to
understand and fix the error.)

• Compute and report

min
h∈{2−k:k=0,...,60}

|d(h)− 1|.
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2. Let f : R → R. Assume for convenience that f is bounded. Let x, h ∈ F,
and let εm denote machine precision. Assume that εm ≤ 1. Show that∣∣∣∣(fl(f(x+ h))	 fl(f(x)))� h− f(x+ h)− f(x)

h

∣∣∣∣ ≤ Cεm‖f‖∞
|h|

for some constant C > 0 that does not depend on εm or f . Hint: Use the
fundamental axiom of floating point. It is probably easiest to do a forwards
analysis instead of a backwards analysis.

3. Now let f ∈ C2. That is, assume that f is twice continuously differentiable
and that f , f ′, and f ′′ are bounded. Show that∣∣∣∣f(x+ h)− f(x)

h
− f ′(x)

∣∣∣∣ ≤ |h|‖f ′′‖∞.
.

4. Combining the results above, we see that

|(fl(f(x+ h))	 fl(f(x)))� h− f ′(x)| ≤ Cεm‖f‖∞
|h|

+ |h|‖f ′′‖∞.

Define

E(εm, h) :=
Cεm‖f‖∞
|h|

+ |h|‖f ′′‖∞.

Now let h(εm) be the value of h that minimizes E(εm, h) for fixed εm.
That is, define

h(εm) := argmin
h

E(εm, h).

Show that E(εm, h(εm)) = O(
√
εm) as εm → 0, so even in the best case the

error of the finite difference approximation decreases only like
√
εm with

machine precision. Do the computations in part 1 support this theoretical
result?
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