Homework 8

Math 651
Fall 2019

Due Friday, November 22, 2019

Consider Newton’s equations

for some potential energy V : R4 — R. (Here, z : [0,00) — R% v : [0,00) — R%.)
Newton’s equations model the motion of the planets, the vibrations of molecules,
and many other phenomena. The simplest example of a system governed by
Newton’s equations is the harmonic oscillator

7' = v, and
v = —x,
for which the potential energy is

V(z) = %:c%

Problem 1 (2+2+2 points).

1. Let x and v solve Newton’s equations with potential energy V. Define the
Hamiltonian

H(z,v) = %MZ + V(z).

Show that H(x(t),v(t)) = H(x(0),v(0)) for all t > 0. This property is of
extreme importance in physics: it is called conservation of energy.

Hint: What is & H(2(t),v(t)) when z and v solve Newton’s equations?

2. Use Fuler’s method to solve the initial value problem for the harmonic
oscillator with xg = 1 and vy = 0. Compute the numerical solution up to
time T = 30 using the time step At = 0.02. Plot the numerical solution
(Tn,vn) as a curve in the xzv plane. You should see a spiral. Plot the
Hamiltonian as a function of time for the numerical solution. Observe
that the Hamiltonian is not conserved for Euler’s method!



8. Define the Stormer—Verlet Method

1
Upyl =Un — iAtVV(xn)
Tp+1 = Tn + Atvn_;'_%

1
Un4+1 = Un+% — iAtVV(an)

Observe that Stormer—Verlet is similar to Fuler’s Method, except that the
update of the variable v is split into two pieces. Use Stérmer—Verlet to
solve the initial value problem for the harmonic oscillator with xo = 1 and
vg = 0. Compute the numerical solution up to time T = 30 using the time
step At = 0.02. Make the same plots as for Euler’s method. Observe that
the Hamiltonian is nearly conserved.

Remark 1. The Stormer—Verlet Method is a symplectic integrator. Symplec-
tic integrators preserve certain geometric properties of Newton’s equations. In
general, for symplectic integrators, the Hamiltonian is not exactly constant over
trajectories, but one can show that a slightly perturbed version of the Hamilto-
nian is very nearly constant. No such property holds for Euler’s method.

Problem 2 (3 points). Recall that the trapezoidal rule is the numerical inte-
grator defined by

tait = 2t S ([ nAD) + [, (0 DAD)).

Find the linear stability domain of the trapezoidal rule.

Problem 3 (2+2+4+2 points). Recall that the implicit Euler method is the
numerical integrator defined by

Tpt1 = Tp + Atf(Tpa1, (n+ 1)AL).

Assume that the right-hand-side f : R"x[0,00) — R™ of the initial value problem
1s globally Lipschitz with constant L. That is,

1f (@, t) = fly, )l < Lz -y
for all xz,y € R™. Let T > 0. Assume that AtL < %

1. Prove that the implicit Euler method is consistent of order one. That is,
show that for any t € [0,T — At],

llz(t + At) — x(t) — Atf(x(t + At), t + At)||< CAL?,

where x(t) is the exact solution of the IVP and C is some constant that
may depend on x(t) but that does not depend on At. You may assume
without comment that x(t) is twice continuously differentiable.



2. To assist in your proof of stability below, show that whenever AtL < %,
we have

1
— < .
T AL S OXP (2LAY)

3. Prove that the implicit Euler method is stable. To be more precise, suppose
that vy, solves

Yn+1 = Yn + Atf(yn-‘rla (n + 1)At) + G"’

where |G| < e. Show that

€
max ||y, — || < 5 exp (2LT).
n=0,...,| & AtL

4. Prove that the implicit Euler method is convergent of order one. That is,

show
max |z — z(nAt)|| < DAtexp (2LT)

n:O,A..,LA—t

for some constant D that may depend on the exact solution x(t) of the
IVP but that does not depend on At.

Problem 4 (5 points). Let f € C([0,1]), and let u € C?([0,1]) be a solution of
the boundary value problem

u’(z) = f(x) forxz e (0,1),

Show that 1
[ulloo < 2l1flloo-

Hint:  Mimic the argument for the discrete analogue of this result. Use the
comparison function

Problem 5 (24142 points). Define the forwards finite difference operator
Dpg : RN7E 5 RN by

(Dv)i:%forizl,...,N—l.

When i = N — 1 above, we set vy = 0. Recall that we adopted a similar
convention in defining the discrete Laplacian Aa, .



1. Define the backwards difference

(Dx,v)i ::%forizl,..wN—l,
T

where again we take vy = 0. Show that —D%, = D1 .

Hint: The right way to do this is to show (Dagzu,v) = —(u, Dy, v) for all
w,v € RV=L1. You don’t ever have to explicitly write the difference operator
as a matriz, and that makes everything easier.

2. What does the above have to do with integration by parts?

3. Show that Ap, = —D%,Day.
Hint: Again, the right way is to show that (Aazu,v) = —(Dagzu, Dagv).
You shouldn’t ever have to explicitly write down and multiply matrices.

The problem above will be continued next week—you’ll see the point even-
tually.



