Homework 8

Math 651

Fall 2019
Due Friday, November 22, 2019

Consider Newton's equations

$$
\begin{aligned}
x^{\prime} & =v, \text { and } \\
v^{\prime} & =-\nabla V(x)
\end{aligned}
$$

for some potential energy $V: \mathbb{R}^{d} \rightarrow \mathbb{R}$. (Here, $x:[0, \infty) \rightarrow \mathbb{R}^{d}, v:[0, \infty) \rightarrow \mathbb{R}^{d}$.) Newton's equations model the motion of the planets, the vibrations of molecules, and many other phenomena. The simplest example of a system governed by Newton's equations is the harmonic oscillator

$$
\left\{\begin{array}{l}
x^{\prime}=v, \text { and } \\
v^{\prime}=-x
\end{array}\right.
$$

for which the potential energy is

$$
V(x)=\frac{1}{2} x^{2} .
$$

Problem 1 ($2+2+2$ points).

1. Let x and v solve Newton's equations with potential energy V. Define the Hamiltonian

$$
H(x, v)=\frac{1}{2}|v|^{2}+V(x)
$$

Show that $H(x(t), v(t))=H(x(0), v(0))$ for all $t>0$. This property is of extreme importance in physics: it is called conservation of energy.
Hint: What is $\frac{d}{d t} H(x(t), v(t))$ when x and v solve Newton's equations?
2. Use Euler's method to solve the initial value problem for the harmonic oscillator with $x_{0}=1$ and $v_{0}=0$. Compute the numerical solution up to time $T=30$ using the time step $\Delta t=0.02$. Plot the numerical solution $\left(x_{n}, v_{n}\right)$ as a curve in the xv plane. You should see a spiral. Plot the Hamiltonian as a function of time for the numerical solution. Observe that the Hamiltonian is not conserved for Euler's method!
3. Define the Störmer-Verlet Method

$$
\begin{aligned}
v_{n+\frac{1}{2}} & =v_{n}-\frac{1}{2} \Delta t \nabla V\left(x_{n}\right) \\
x_{n+1} & =x_{n}+\Delta t v_{n+\frac{1}{2}} \\
v_{n+1} & =v_{n+\frac{1}{2}}-\frac{1}{2} \Delta t \nabla V\left(x_{n+1}\right) .
\end{aligned}
$$

Observe that Störmer-Verlet is similar to Euler's Method, except that the update of the variable v is split into two pieces. Use Störmer-Verlet to solve the initial value problem for the harmonic oscillator with $x_{0}=1$ and $v_{0}=0$. Compute the numerical solution up to time $T=30$ using the time step $\Delta t=0.02$. Make the same plots as for Euler's method. Observe that the Hamiltonian is nearly conserved.

Remark 1. The Störmer-Verlet Method is a symplectic integrator. Symplectic integrators preserve certain geometric properties of Newton's equations. In general, for symplectic integrators, the Hamiltonian is not exactly constant over trajectories, but one can show that a slightly perturbed version of the Hamiltonian is very nearly constant. No such property holds for Euler's method.

Problem 2 (3 points). Recall that the trapezoidal rule is the numerical integrator defined by

$$
\left.x_{n+1}=x_{n}+\frac{\Delta t}{2}\left(f\left(x_{n}, n \Delta t\right)+f\left(x_{n+1},(n+1) \Delta t\right)\right)\right)
$$

Find the linear stability domain of the trapezoidal rule.
Problem $3(2+2+4+2$ points). Recall that the implicit Euler method is the numerical integrator defined by

$$
x_{n+1}=x_{n}+\Delta t f\left(x_{n+1},(n+1) \Delta t\right)
$$

Assume that the right-hand-side $f: \mathbb{R}^{n} \times[0, \infty) \rightarrow \mathbb{R}^{n}$ of the initial value problem is globally Lipschitz with constant L. That is,

$$
\|f(x, t)-f(y, t)\| \leq L\|x-y\|
$$

for all $x, y \in \mathbb{R}^{n}$. Let $T>0$. Assume that $\Delta t L \leq \frac{1}{2}$.

1. Prove that the implicit Euler method is consistent of order one. That is, show that for any $t \in[0, T-\Delta t]$,

$$
\|x(t+\Delta t)-x(t)-\Delta t f(x(t+\Delta t), t+\Delta t)\| \leq C \Delta t^{2}
$$

where $x(t)$ is the exact solution of the IVP and C is some constant that may depend on $x(t)$ but that does not depend on Δt. You may assume without comment that $x(t)$ is twice continuously differentiable.
2. To assist in your proof of stability below, show that whenever $\Delta t L \leq \frac{1}{2}$, we have

$$
\frac{1}{1-\Delta t L} \leq \exp (2 L \Delta t)
$$

3. Prove that the implicit Euler method is stable. To be more precise, suppose that y_{n} solves

$$
y_{n+1}=y_{n}+\Delta t f\left(y_{n+1},(n+1) \Delta t\right)+G_{n}
$$

where $\left\|G_{n}\right\| \leq \varepsilon$. Show that

$$
\max _{n=0, \ldots,\left\lfloor\frac{T}{\Delta t}\right\rfloor}\left\|y_{n}-x_{n}\right\| \leq \frac{\varepsilon}{\Delta t L} \exp (2 L T) .
$$

4. Prove that the implicit Euler method is convergent of order one. That is, show

$$
\max _{n=0, \ldots,\left\lfloor\frac{T}{\Delta t}\right\rfloor}\left\|x_{n}-x(n \Delta t)\right\| \leq D \Delta t \exp (2 L T)
$$

for some constant D that may depend on the exact solution $x(t)$ of the IVP but that does not depend on Δt.

Problem 4 (5 points). Let $f \in C([0,1])$, and let $u \in C^{2}([0,1])$ be a solution of the boundary value problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}(x)=f(x) \quad \text { for } x \in(0,1), \\
u(0)=0 \\
u(1)=0
\end{array}\right.
$$

Show that

$$
\|u\|_{\infty} \leq \frac{1}{8}\|f\|_{\infty}
$$

Hint: Mimic the argument for the discrete analogue of this result. Use the comparison function

$$
\phi(x):=\frac{1}{2}\left(x-\frac{1}{2}\right)^{2}
$$

Problem 5 ($2+1+2$ points). Define the forwards finite difference operator $D_{\Delta x}: \mathbb{R}^{N-1} \rightarrow \mathbb{R}^{N-1}$ by

$$
(D v)_{i}=\frac{v_{i+1}-v_{i}}{\Delta x} \text { for } i=1, \ldots, N-1
$$

When $i=N-1$ above, we set $v_{N}=0$. Recall that we adopted a similar convention in defining the discrete Laplacian $\Delta_{\Delta_{x}}$.

1. Define the backwards difference

$$
\left(D_{\Delta x}^{-} v\right)_{i}:=\frac{v_{i}-v_{i-1}}{\Delta x} \text { for } i=1, \ldots, N-1,
$$

where again we take $v_{0}=0$. Show that $-D_{\Delta x}^{\mathrm{t}}=D_{\Delta x}^{-}$.
Hint: The right way to do this is to show $\left\langle D_{\Delta x} u, v\right\rangle=-\left\langle u, D_{\Delta x}^{-} v\right\rangle$ for all $u, v \in \mathbb{R}^{N-1}$. You don't ever have to explicitly write the difference operator as a matrix, and that makes everything easier.
2. What does the above have to do with integration by parts?
3. Show that $\Delta_{\Delta x}=-D_{\Delta x}^{\mathrm{t}} D_{\Delta x}$.

Hint: Again, the right way is to show that $\left\langle\Delta_{\Delta x} u, v\right\rangle=-\left\langle D_{\Delta x} u, D_{\Delta x} v\right\rangle$. You shouldn't ever have to explicitly write down and multiply matrices.

The problem above will be continued next week-you'll see the point eventually.

