
Homework 8

Math 651
Fall 2019

Due Friday, November 22, 2019

Consider Newton’s equations

x′ = v, and

v′ = −∇V (x)

for some potential energy V : Rd → R. (Here, x : [0,∞)→ Rd, v : [0,∞)→ Rd.)
Newton’s equations model the motion of the planets, the vibrations of molecules,
and many other phenomena. The simplest example of a system governed by
Newton’s equations is the harmonic oscillator{

x′ = v, and

v′ = −x,

for which the potential energy is

V (x) =
1

2
x2.

Problem 1 (2+2+2 points).

1. Let x and v solve Newton’s equations with potential energy V . Define the
Hamiltonian

H(x, v) =
1

2
|v|2 + V (x).

Show that H(x(t), v(t)) = H(x(0), v(0)) for all t > 0. This property is of
extreme importance in physics: it is called conservation of energy.

Hint: What is d
dtH(x(t), v(t)) when x and v solve Newton’s equations?

2. Use Euler’s method to solve the initial value problem for the harmonic
oscillator with x0 = 1 and v0 = 0. Compute the numerical solution up to
time T = 30 using the time step ∆t = 0.02. Plot the numerical solution
(xn, vn) as a curve in the xv plane. You should see a spiral. Plot the
Hamiltonian as a function of time for the numerical solution. Observe
that the Hamiltonian is not conserved for Euler’s method!
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3. Define the Störmer–Verlet Method

vn+ 1
2

= vn −
1

2
∆t∇V (xn)

xn+1 = xn + ∆tvn+ 1
2

vn+1 = vn+ 1
2
− 1

2
∆t∇V (xn+1).

Observe that Störmer–Verlet is similar to Euler’s Method, except that the
update of the variable v is split into two pieces. Use Störmer–Verlet to
solve the initial value problem for the harmonic oscillator with x0 = 1 and
v0 = 0. Compute the numerical solution up to time T = 30 using the time
step ∆t = 0.02. Make the same plots as for Euler’s method. Observe that
the Hamiltonian is nearly conserved.

Remark 1. The Störmer–Verlet Method is a symplectic integrator. Symplec-
tic integrators preserve certain geometric properties of Newton’s equations. In
general, for symplectic integrators, the Hamiltonian is not exactly constant over
trajectories, but one can show that a slightly perturbed version of the Hamilto-
nian is very nearly constant. No such property holds for Euler’s method.

Problem 2 (3 points). Recall that the trapezoidal rule is the numerical inte-
grator defined by

xn+1 = xn +
∆t

2
(f(xn, n∆t) + f(xn+1, (n+ 1)∆t))).

Find the linear stability domain of the trapezoidal rule.

Problem 3 (2+2+4+2 points). Recall that the implicit Euler method is the
numerical integrator defined by

xn+1 = xn + ∆tf(xn+1, (n+ 1)∆t).

Assume that the right-hand-side f : Rn×[0,∞)→ Rn of the initial value problem
is globally Lipschitz with constant L. That is,

‖f(x, t)− f(y, t)‖ ≤ L‖x− y‖

for all x, y ∈ Rn. Let T > 0. Assume that ∆tL ≤ 1
2 .

1. Prove that the implicit Euler method is consistent of order one. That is,
show that for any t ∈ [0, T −∆t],

‖x(t+ ∆t)− x(t)−∆tf(x(t+ ∆t), t+ ∆t)‖≤ C∆t2,

where x(t) is the exact solution of the IVP and C is some constant that
may depend on x(t) but that does not depend on ∆t. You may assume
without comment that x(t) is twice continuously differentiable.
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2. To assist in your proof of stability below, show that whenever ∆tL ≤ 1
2 ,

we have
1

1−∆tL
≤ exp (2L∆t) .

3. Prove that the implicit Euler method is stable. To be more precise, suppose
that yn solves

yn+1 = yn + ∆tf(yn+1, (n+ 1)∆t) +Gn,

where ‖Gn‖ ≤ ε. Show that

max
n=0,...,b T

∆tc
‖yn − xn‖ ≤

ε

∆tL
exp (2LT ) .

4. Prove that the implicit Euler method is convergent of order one. That is,
show

max
n=0,...,b T

∆tc
‖xn − x(n∆t)‖ ≤ D∆t exp (2LT )

for some constant D that may depend on the exact solution x(t) of the
IVP but that does not depend on ∆t.

Problem 4 (5 points). Let f ∈ C([0, 1]), and let u ∈ C2([0, 1]) be a solution of
the boundary value problem

u′′(x) = f(x) for x ∈ (0, 1),

u(0) = 0,

u(1) = 0.

Show that

‖u‖∞ ≤
1

8
‖f‖∞.

Hint: Mimic the argument for the discrete analogue of this result. Use the
comparison function

φ(x) :=
1

2

(
x− 1

2

)2

.

Problem 5 (2+1+2 points). Define the forwards finite difference operator
D∆x : RN−1 → RN−1 by

(Dv)i =
vi+1 − vi

∆x
for i = 1, . . . , N − 1.

When i = N − 1 above, we set vN = 0. Recall that we adopted a similar
convention in defining the discrete Laplacian ∆∆x .
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1. Define the backwards difference

(D−∆xv)i :=
vi − vi−1

∆x
for i = 1, . . . , N − 1,

where again we take v0 = 0. Show that −Dt
∆x = D−∆x.

Hint: The right way to do this is to show 〈D∆xu, v〉 = −〈u,D−∆xv〉 for all
u, v ∈ RN−1. You don’t ever have to explicitly write the difference operator
as a matrix, and that makes everything easier.

2. What does the above have to do with integration by parts?

3. Show that ∆∆x = −Dt
∆xD∆x.

Hint: Again, the right way is to show that 〈∆∆xu, v〉 = −〈D∆xu,D∆xv〉.
You shouldn’t ever have to explicitly write down and multiply matrices.

The problem above will be continued next week—you’ll see the point even-
tually.
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