Homework 6

Math 651 Fall 2019

Due Friday, November 1, 2019

In this homework, you will complete the proof of backwards stability for the solution of Ax = b via QR-factorization. Let \tilde{x} be the approximate solution computed using Householder QR-factorization and back substitution. Recall that for some $\Delta Q, \Delta R \in \mathbb{R}^{n \times n}$ with

$$\frac{\|\Delta Q\|_2}{\|\tilde{Q}(A)\|_2} = O(\varepsilon_m) \text{ and } \frac{\|\Delta R\|_2}{\|\tilde{R}(A)\|_2} = O(\varepsilon_m),$$

we have

$$(\tilde{R}(A) + \Delta R)\tilde{x} = (\tilde{Q}(A)^{t} + \Delta Q^{t})b.$$
(1)

Problem 1 (2+2+2+2 points). 1. Let $\tilde{Q}(A)$, $\tilde{R}(A)$ be the Householder QR-factorization of A computed in floating point arithmetic. Show that

$$\frac{\|\dot{R}(A)\|_2}{\|A\|_2} \le 1 + O(\varepsilon_m),$$

where the function $O(\varepsilon_m)$ above does not depend on A.

Hint: If Q is orthogonal, what is $||Q||_2$? Also, Householder QR-factorization is backwards stable.

2. Let ΔQ be as in (1). Show that

$$\frac{\|E_2\|_2}{\|A\|_2} := \frac{\|\Delta QR(A)\|_2}{\|A\|_2} \le O(\varepsilon_m),$$

where the function $O(\varepsilon_m)$ above does not depend on A. (Recall that $E_2 = \Delta Q \tilde{R}(A)$ is one of the error terms defined in class.)

3. Let ΔR be as in (1). Show that

$$\frac{\|E_3\|_2}{\|A\|_2} := \frac{\|Q(A)\Delta R\|_2}{\|A\|_2} \le O(\varepsilon_m),$$

where the function $O(\varepsilon_m)$ above does not depend on A.

4. Show that

$$\frac{\|E_4\|_2}{\|A\|_2} := \frac{\|\Delta Q \Delta R\|_2}{\|A\|_2} \le O(\varepsilon_m^2),$$

where the function $O(\varepsilon_m^2)$ above does not depend on A.

As a consequence of the first problem and the argument started in class, we have the error estimate

$$\frac{\|\tilde{x}(\hat{R}(A), \hat{Q}(A)^{t} \circledast b) - x\|_{2}}{\|x\|_{2}} \le (\kappa_{2}(A) + o(1))O(\varepsilon_{m}),$$

where again the function $O(\varepsilon_m)$ does not depend on A.

~

Problem 2 (up to 8 points, extra credit). Suppose that we want estimates in a norm other than $\|\cdot\|_2$. Answer some or all of the following questions: Is it still possible to get error estimates where the $O(\varepsilon_m)$ term does not depend on A? What do these estimates look like? Does the $O(\varepsilon_m)$ term depend on the dimension of A?