
Homework 5

Math 651
Fall 2019

Due Monday, October 21, 2019

Problem 1 (1+2+1+2 points).

1. Suppose that for some reason you wish to compute exp(−20). Formu-
late this task precisely as a numerical analysis problem. That is, spec-
ify a space X of data, a space Y of solutions, and a problem mapping
f : X → Y . What are the relative and absolute condition numbers of the
problem? Would you say that the problem is well-conditioned?

2. Define

S(x, n) :=

n∑
k=0

xk

k!
.

Recall that limn→∞ S(x, n) = exp(x). Compute S(−20, n) in in floating
point arithmetic for n = 1, . . . , 100. Plot the logarithm of the relative error

log10

(
|S(−20, n)− exp(−20)|

exp(−20)

)
against n.

3. You should have observed above that S(x, n) does not converge to exp(−20)
when calculated in floating point arithmetic. Why not?

4. Now plot

log10

(
|1/S(20, n)− exp(−20)|

exp(−20)

)
against n.

Computing finite difference approximations to derivatives in floating point
arithmetic is notoriously unstable. In the following problem, you will show that
the errors of a naive approximation to the derivative cannot decrease faster than√
εm as εm tends to 0.

Problem 2 (2+2+2+2 points).
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1. Compute

d(h) :=
exp(h)− exp(0)

h

for h ∈ {2−k : k = 0, . . . , 60}. Now do the following:

• Plot − log10(h) vs. |d(h)− 1|.
• Plot − log10(h) vs. log10(|d(h)− 1|). (Most likely, when you generate

this plot, numpy.log10 will return an error message. Make sure to
understand and fix the error.)

• Compute and report

min
h∈{2−k:k=0,...,60}

|d(h)− 1|.

2. Let f : R → R. Assume for convenience that f is bounded. Let x, h ∈ F,
and let εm denote machine precision. Assume that εm ≤ 1. Show that∣∣∣∣(fl(f(x+ h))	 fl(f(x)))� h− f(x+ h)− f(x)

h

∣∣∣∣ ≤ Cεm‖f‖∞
|h|

for some constant C > 0 that does not depend on εm or f . Hint: Use the
fundamental axiom of floating point. It is probably easiest to do a forwards
analysis instead of a backwards analysis.

3. Now let f ∈ C2. That is, assume that f is twice continuously differentiable
and that f , f ′, and f ′′ are bounded. Show that∣∣∣∣f(x+ h)− f(x)

h
− f ′(x)

∣∣∣∣ ≤ |h|‖f ′′‖∞.
.

4. Combining the results above, we see that

|(fl(f(x+ h))	 fl(f(x)))� h− f ′(x)| ≤ Cεm‖f‖∞
|h|

+ |h|‖f ′′‖∞.

Define

E(εm, h) :=
Cεm‖f‖∞
|h|

+ |h|‖f ′′‖∞.

Now let h(εm) be the value of h that minimizes E(εm, h) for fixed εm.
That is, define

h(εm) := argmin
h

E(εm, h).

Show that E(εm, h(εm)) = O(
√
εm) as εm → 0, so even in the best case the

error of the finite difference approximation decreases only like
√
εm with

machine precision. Do the computations in part 1 support this theoretical
result?
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Problem 3 (1+1 points).

1. Compute a random matrix with known QR factorization using the follow-
ing python code:

import numpy as np

np.random.seed(123)

R=np.triu(np.random.randn(50,50))

Q,foo=np.linalg.qr(np.random.randn(50,50))

A=np.dot(Q,R)

Now compute the QR factorization of the matrix A by Householder or-
thogonalization using the code

Q2,R2=np.linalg.qr(A).

Of course, the computed Q2 and R2 are not the same as the exact Q and
R, but the size of the difference may surprise you. Compute the relative
errors in the `∞ operator norm using the code

infty_err=lambda A,B: np.linalg.norm(A-B,ord=np.inf)/np.linalg.norm(B,ord=np.inf)

err_Q=infty_err(Q2,Q)

err_R=infty_err(R2,R)

err_A=infty_err(np.dot(Q2,R2),A)

(The function np.linalg.norm computes the operator norm using exactly
the formula that you proved on the homework.) Report the values of errQ,
errR, and errA. How is it possible that errA is roughly machine precision,
but the other two are many orders of magnitude larger?

2. Use google to look up how to compute the SVD in numpy. (For any rea-
sonable query, the first search result will be on the scipy documentation
website, and this is what you want.) Compute the SVD of A, and use the
computed SVD to estimate the condition number

κ2(A) = ‖A‖2‖A−1‖2.

Report the value of the condition number.
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