
Homework 3

Math 651
Fall 2019

Due October 4, 2019

The next problem concerns what would happen if p were less than one in
the definition of the p-norm.

Problem 1 (2+1+2 points). For any p ∈ (0,∞), x ∈ Rn, define the p-distance

(x)p =

(
n∑

k=1

|xk|p
)1/p

.

(Note that (·)p = ‖·‖p for p ∈ [1,∞), but here we allow p < 1.)

1. Draw graphs of the unit balls

Bp :=
{
x ∈ R2 : (x)p ≤ 1

}
⊂ R2

in the p-distance for p ∈ { 12 , 1, 2,∞}.

2. A subset U of a vector space is said to be convex if and only if x, y ∈ U
implies αx + (1 − α)y ∈ U for any α ∈ [0, 1]. Prove that the unit ball in
any normed vector space is convex.

3. Show that (·)p is not a norm for any p ∈ (0, 1).

You already have a formula expressing the `2 operator norm in terms of the
singular values of a matrix. This is not so nice, because to calculate the norm
you have to calculate the singular values, and this is not so easy. For many
purposes, it is better to consider `1 or `∞ operator norms, since these can be
evaluated explicitly, as you will now demonstrate.

Problem 2 (1+2+2 points). Let M ∈ Rn×n be a matrix. Let Mi: denote the
i’th row of M , and let M:j denote the j’th column.

1. Let v ∈ Rn. Show that

‖v‖1 = sup{〈w, v〉 : w ∈ Rn, ‖w‖∞ = 1}.

Also, show that

‖v‖∞ = max{〈w, v〉 : w ∈ Rn, ‖w‖1 = 1}.
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2. Prove that
‖M‖∞ = max

i=1,...,n
‖Mi:‖1.

3. Prove a similar formula for ‖M‖1.

Definition 1. Two norms ‖·‖ and |·| on a vector space V are said to be topo-
logically equivalent if and only if there exist constants c, C > 0 so that

c|u| ≤ ‖u‖ ≤ C|u|

for all u ∈ V .

As the language suggests, if two norms are topologically equivalent, they
share all topological properties. In particular, if a sequence converges with
respect to one of the norms, then it converges with respect to the other. It
is a famous theorem that all norms on a finite-dimensional vector space are
equivalent. (This is certainly not the case for infinite-dimensional vector spaces.)
I was going to have you prove that this is true, but then I decided it was more
important to have you work out the following problem, which is closely related.

Problem 3 (2+2+2 points). Let n ∈ N.

1. Find the greatest constant cn > 0 and smallest constant Cn > 0 so that

cn‖v‖1 ≤ ‖v‖∞ ≤ Cn‖v‖1

for all v ∈ Rn.

2. Find the greatest constant kn > 0 and smallest constant Kn > 0 so that

kn‖v‖1 ≤ ‖v‖2 ≤ Kn‖v‖1.

3. Define the L1 norm on C([0, 1]) by

‖f‖1 =

∫ 1

0

|f | dx.

Give an example of a sequence of functions fn in C([0, 1]) so that ‖fn‖1 = 1
for all n but limn→∞‖fn‖∞ = ∞. Observe that the existence of such a
sequence implies that the L1 and L∞ norms on C([0, 1]) are not equivalent.

You should have noticed that some of the equivalence constants above de-
pend on n. In fact, some of the constants tend to zero or infinity as n increases.
In numerical analysis we are almost always considering the limit of large n, and
so the theorem on equivalence of norms on a finite-dimensional space is not
often useful.

The following problem concerns the loose ends in our proof of the theorem
on condition numbers.
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Problem 4 (2+1 points). Let A ∈ L (Rn,Rn) be an invertible linear operator.
Let ‖·‖ denote both a norm on Rn and its induced operator norm on L (Rn,Rn).
Let Ã = A+ δA be a perturbation of A.

1. Show that if ‖A−1‖‖δA‖ < 1, then Ã is invertible and

‖Ã−1‖ ≤ ‖A−1‖
1− ‖A−1‖‖δA‖

.

2. Suppose that Ã is invertible. Let b̃, u ∈ Rn, let y solve Ãy = b̃ + u, and
let x̃ solve Ãx̃ = b̃. Show that

‖y − x̃‖ ≤ ‖Ã−1‖‖u‖.

3


