
Homework 2

Math 651
Fall 2019

Due September 27, 2019

Recall that a spline of order m with knots {x0, . . . , xn} is a function s : R→
R such that

1. s ∈ Cm−1, and

2. s|[xi,xi−1]
∈Pm for all i = 1, . . . , n.

Let S m denote the set of all order m splines with a given set of knots. In class, I
presented a heuristic argument based on counting degrees of freedom to suggest
that the dimension of S m is n + m. Now I would like you to give a rigorous
proof of this fact by constructing an explicit basis for the space of splines.

Problem 1 (5 points). Define

xm+ :=

{
xm, x ≥ 0,

0, x < 0,

for m ∈ N. Show that the m+ n functions

uk(x) := (x− x0)k, for k = 0, . . . ,m,

vk(x) := (x− xk)m+ , for k = 1, . . . , n− 1,

are a basis for S m. That is, show that these functions are linearly independent
and that every spline in S m can be expressed as a linear combination of them.

Recall that the cubic spline interpolating polynomial has an optimality prop-
erty. For u, v ∈ C2([a, b]), define the H2-seminorm and inner product by

(u, v)H2 :=

∫ b

a

u′′v′′ dx

|u|H2 := (u, u)
1
2

H2 =

(∫ b

a

(u′′)2 dx

) 1
2

.
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Now fix f ∈ C2. It turns out that the cubic spline S3f interpolating f is exactly
the minimizer of |·|H2 over the set of all functions g ∈ C2 sharing the values of f
at the knots. In class, I outlined a proof of optimality based on the Pythagoras
theorem. I would now like for you to fill in the details.

Problem 2 (4+1 points). Let s be the cubic spline interpolating polynomial
of the function f ∈ C2 on the knots {x0, . . . , xn} with the natural boundary
condition.

1. Show that (f − s, s)H2 = 0, i.e. the error f − s is orthogonal to s in H2.
Hint: Write the inner product as a sum of integrals over subintervals of
the form [x−1, xi]. Use integration by parts twice on each of the integrals
in the sum. Try to show that the various boundary terms cancel.

2. Use part 1 of this problem to prove

|s|2H2 + |f − s|2H2 = |f |2H2 ,

which is a version of the Pythagoras theorem. Since |f − s|2H2 ≥ 0, this
proves optimality.

In the usual (Lagrange) interpolation problem, the values of a certain func-
tion are specified on a set of nodes. In Hermite interpolation, we assume in
addition that the values of the derivative of the function are known at the
nodes. The following problems cover the basic facts on Hermite interpolation.

Let x0, . . . , xn be a set of n + 1 distinct nodes, and let {`k : k = 0, . . . , n}
be the Lagrange characteristic polynomials associated with these nodes. Define
the Hermite factors

H0
k(x) := [1− 2`′k(xk)(x− xk)]`k(x)2 and H1

k(x) := (x− xk)`k(x)2.

Problem 3 (3 points). Suppose that

f(xk) = yk and f ′(xk) = y′k for k = 0, . . . , n

Prove that the polynomial

Hnf =

n∑
k=0

ykH
0
k + y′kH

1
k ∈P2n+1

has Hnf(xk) = f(xk) and (Hnf)′(xk) = f ′(xk) for all k = 0, . . . , n.

The following problem will test that you understand the derivation of the
error formula for Lagrange polynomial interpolation. I have decided to make
this problem extra credit.

Problem 4 (8 points, extra credit). Let f ∈ C2n+2. Let Hnf denote the
Hermite interpolating polynomial of f on the nodes x0 < · · · < xn. Show that
for any x ∈ [x0, xn], there exists ξx ∈ [x0, xn] so that

f(x)−Hnf(x) =
f (2n+2)(ξx)

(2n+ 2)!

n∏
j=0

(x− xj)2.
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Hint: Mimic the proof of the error formula for Lagrange polynomial interpola-
tion.
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