
Homework 1

Math 651
Fall 2019

Due Friday, September 20

The following was left as an exercise in our development of adaptive quadra-
ture.

Problem 1 (3 points). Let f ∈ C4. Show using Taylor’s theorem that for any
x,

f ′′(x− h) + f ′′(x+ h)

2
= f ′′(x) +O(h2)

in the limit as h→ 0.

In general, quadratures take the form∫ 1

0

f dx ≈ Q[0,1]f :=

K∑
i=1

wif(xi), (1)

for some weights wi ∈ R and nodes xi ∈ [0, 1]. Given such a quadrature Q[0,1] for
the interval [0, 1], we define a corresponding quadrature Q[a,b] for the arbitrary
interval [a, b] by making the change of variable

u = (b− a)x+ a.

This yields ∫ b

a

f dx = (b− a)

∫ 1

0

f ◦ u dx

≈ (b− a)

K∑
i=1

wif ◦ u(xi)

= (b− a)

K∑
i=1

wif(xib+ (1− xi)a)

=: Q[a,b]f.

We also define a composite quadrature by

QN
[a,b]f =

N∑
i=1

Q[a+(i−1)h,a+ih]f,

1



where

h =
b− a
N

.

Quadratures are often compared based on their degree of precision: A quadra-
ture is said to have degree of precision k if it is exact for polynomials of degree
less than or equal to k; that is, if∫ 1

0

p dx = Q[0,1]p

for all polynomials p ∈ ∪m≤kPm. Quadratures with higher degree of precision
usually (but not always) perform better than quadratures with lower degree of
precision. The following problem explains why a high degree of precision might
be a good thing.

Problem 2 (4+3+2 points). Let Q[0,1] be a quadrature of form (1) with degree
of precision k. Define the error

E[a,b]f :=

∫ b

a

f dx−Q[a,b]f.

1. Let f ∈ Ck+1([0, 1]). Use Taylor’s Theorem to show that∣∣E[0,1]f
∣∣ ≤ C ∥∥∥f (k+1)

∥∥∥
L∞([0,1])

(2)

for some constant C depending on k and the weights wi but not on f .

Hint: The quadrature Q[0,1] integrates the polynomial part of a k + 1 term
Taylor expansion exactly.

2. Let g ∈ Ck+1([a, b]). Show by the change of variable u = (b− a)x+ a that∣∣E[a,b]g
∣∣ ≤ C(b− a)k+2

∥∥∥g(k+1)
∥∥∥
L∞([a,b])

.

3. Show that ∣∣∣EN
[a,b]f

∣∣∣ :=

∣∣∣∣∣
∫ b

a

f dx−QN
[a,b]f

∣∣∣∣∣
≤ C(b− a)hk+1

∥∥∥f (k+1)
∥∥∥
L∞([a,b])

=
C(b− a)k+2

∥∥f (k+1)
∥∥
L∞([a,b])

Nk+1
.

We have just seen the use of Lagrange interpolation to derive quadratures
with a high degree of precision. However, there are other ways to derive such
high order methods. For example, the following problem develops a special case
of a general technique called Richardson extrapolation.
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Problem 3 (3+2 points). In this problem, we use the notation introduced in
class for the composite midpoint rule. We let a = x0 < x1 < · · · < xN = b
be a partition of [a, b], and we define Ji = [xi−1, xi] and hi = xi − xi−1 for
i = 1, . . . , N .

1. Recall that if f ∈ C4, then∫
Ji

f(x) dx−MJi
f = Ch3i +O(h5i ), and∫

Ji

f(x) dx−M2
Ji
f =

C

4
h3i +O(h5i ),

where

C =
f ′′
(

xi+xi−1

2

)
24

.

Let

M̃Ji
f := MJi

f +
4

3
(M2

Ji
f −MJi

f).

Show that ∫
Ji

f(x) dx− M̃Ji
f = O(h5i ).

That is, M̃Ji
is fifth order accurate as hi tends to zero, whereas MJi

is
only third order accurate.

2. What are the weights and nodes corresponding to M̃[0,1]?

Problem 4 (2+2+5+1+1 points). Simpson’s rule is the quadrature

S[0,1]f =
1

6
f(0) +

2

3
f(1/2) +

1

6
f(1).

1. What is the maximal degree of precision of Simpson’s rule? Hint: Simply
check whether Simpson’s rule exactly integrates xk for each k = 0, 1, 2, . . .
in sequence. As you increase k, you will find a monomial xj for which
Simpson’s rule is not exact. The maximal degree of precision will be j−1.

2. Show that Simpson’s rule is the Newton–Cotes quadrature with n = 3.
Given this fact, do you find the maximal degree of precision of Simpson’s
rule surprising?

3. Perform a convergence study for the composite version of Simpson’s rule.
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To be precise, define

f(x) = exp(x),

g(x) =
√
x, and

q(x) =

{
0 if x ≤ π
x− π if x ≥ π.

r(x) =

{
0 if x ≤ π
(x− π)2 if x ≥ π.

Compute SN
[0,4]z for z ∈ {f, g, q, r} and N ∈ {2k; k = 0, . . . , 12}. Define

the error

EN
[0,4]z =

∫ 4

0

z(x) dx− SN
[0,4]z.

For each z ∈ {f, g, q, r}, plot log10(EN
[0,4]z) versus log10(N). Are the curves

in the plots roughly linear, and if so what are their slopes? Do your
observations agree with the theory developed in Problem 2?

Hint: If you like, you can imitate the example given at http://people.

math.umass.edu/~vankoten/2019-fall-math651/notebooks/python-examples.

html. This problem will be easy if you make a function that does the entire
convergence study, including the plots, for a given integrand.

4. You will have seen that Simpson’s rule does not converge at the predicted
rate for q(x) and also some of the other functions. Suppose you know
that a function w(x) is analytic on [0, π) and (π, 4] but has a jump in its
derivative at π. How would you implement the composite Simpson’s rule
for w(x) to get the rate of convergence predicted by the theory developed
in Problem 2?

5. How might you decide which of Simpson’s rule and M̃ is better? What
information do you need to have to make the decision? Hint: Think about
implementations. It turns out that S and M̃ have have the same degree
of precision. (You don’t have to prove this.) Do their composite forms
require the same number of function evaluations for a given N?

As we have seen, asymptotic expansions of the error yield practical error
estimates and efficient adaptive quadrature methods. However, since the error
estimates rely on asymptotics, one can only guarantee their validity in the limit
of small hi. Thus, while asymptotic estimates often work beautifully, one must
be skeptical. In Problem 5, I ask that you find an integrand f for which our
midpoint rule error estimate fails.
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Problem 5 (3 points). Find a function f ∈ C4([0, 1]) so that

M[0,1]f −M2
[0,1]f = 0,

but ∣∣∣∣∫ 1

0

f dx−M[0,1]f

∣∣∣∣ ≥ 1.

Note: You may simply draw the graph of such a function, provided that you
label the relevant features of the graph and offer a convincing explanation.
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