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Abstract. We give a conjectural description for the cone of e¤ective divisors of the
Grothendieck–Knudsen moduli space M0;n of stable rational curves with n marked points.
Namely, we introduce new combinatorial structures called hypertrees and show that they
give exceptional divisors on M0;n with many remarkable properties.
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1. Introduction

A major open problem inspired by the pioneering work of Harris and Mumford
[HM] on the Kodaira dimension of the moduli space of stable curves, is to understand the
geometry of its birational models, and in particular to describe its cone of e¤ective divisors
and a decomposition of this cone into Mori chambers [HK], encoding ample divisors on
birational models.
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Here we study the genus zero case. The moduli spaces M0;n parametrize stable ratio-
nal curves, i.e., nodal trees of P1’s with n marked points and without automorphisms. For
any subset I of marked points, M0;n has a natural boundary divisor dI whose general ele-
ment parametrizes stable rational curves with two irreducible components, one marked by
points in I and another marked by points in I c. We will introduce new combinatorial ob-
jects called hypertrees with an eye towards the following

Conjecture 1.1. The e¤ective cone of M0;n is generated by boundary divisors and by

divisors DG (defined below) parametrized by irreducible hypertrees.

Definition 1.2. A hypertree G ¼ fG1; . . . ;Gdg on a set N is a collection of subsets
of N such that the following conditions are satisfied:

� any subset Gj has at least three elements,

� any i A N is contained in at least two subsets Gj,

� (convexity axiom)

���� S
j AS

Gj

����� 2f
P
j AS

ðjGjj � 2Þ for any S H f1; . . . ; dg;ðzÞ

� (normalization)

jNj � 2 ¼
P

j A f1;...;dg
ðjGjj � 2Þ:ðyÞ

A hypertree G is irreducible if ðzÞ is a strict inequality for 1 < jSj < d.

Remark 1.3. The most common hypertrees are composed of triples. In this case, ðyÞ
becomes d ¼ n� 2 and ðzÞ becomes

���� S
j AS

Gj

����f jSj þ 2 for any S H f1; . . . ; n� 2g;

i.e., G is su‰ciently capacious. If we consider pairs instead of triples, and change 2 to 1 in
ðyÞ and ðzÞ, then it is easy to see that G will be a connected tree on vertices f1; . . . ; ng. This
explains our term ‘‘hypertree’’.

Definition 1.4. For any irreducible hypertree G on the set f1; . . . ; ng, let DG HM0;n

be the closure of the locus in M0;n obtained by

� choosing a planar realization of G: a configuration of di¤erent points p1; . . . ; pn A P
2

such that, for any subset S H f1; . . . ; ng with at least three points, fpigi AS are collinear if
and only if S HGj for some j,

� projecting p1; . . . ; pn from a point p A P2 to points q1; . . . ; qn A P1,
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� representing the datum ðP1; q1; . . . ; qnÞ by a point of M0;n.

If G is an irreducible hypertree on a subset K H f1; . . . ; ng, we abuse notation and let
DG HM0;n be the pull-back of DGHM0;K with respect to the forgetful map M0;n !M0;K .

n ¼ 6 n ¼ 7 n ¼ 8

n ¼ 9

Figure 1. Irreducible hypertrees for n < 10. Points correspond to elements of N and lines correspond to

G1; . . . ;Gd .

4 5

2
planar realization

1 3
6

projection

1 4 3 2 5 6
point in M0; 6

Figure 2. Hypertree divisor as the locus of projections.

Here is our first result:

Theorem 1.5. For any irreducible hypertree G, the locus DG HM0;n is a non-empty

irreducible divisor, which generates an extremal ray of the e¤ective cone of M0;n. Moreover,
this divisor is exceptional: there exists a birational contraction

M0;n dXG

onto a normal projective variety XG (see Theorem 1.10), and DG is the irreducible component

of its exceptional locus that intersects M0;n.
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Notice that a priori it is not at all clear that an irreducible hypertree has a planar re-
alization, but we will show that this is always the case. Moreover, any irreducible hypertree
on any subset K HN gives rise, by pull-back via the forgetful map pK , to an e¤ective divi-
sor which generates an extremal ray of the e¤ective cone of M0;n (see Lemma 7.8).

1.6. Spherical hypertrees. We discovered that any even (i.e., bicolored) triangula-
tion of a 2-sphere gives a hypertree. Any such triangulation has a collection of ‘‘black’’ faces
and a collection of ‘‘white’’ faces. We will show that each of these collections is a hypertree.

3
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1 2

black hypergraph

white hypergraph
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8 10 5
6
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These spherical hypertrees are irreducible unless the triangulation is a connected sum of two
triangulations obtained by removing a white triangle from one triangulation, a black trian-
gle from another, and then gluing along the cuts.

One can ask if di¤erent hypertrees can give the same divisor of M0;n. This turns out
to be a di‰cult question. We can prove the following

Theorem 1.7. Let G and G 0 be gener i c hypertrees (see Definition 7.6). Then

DG ¼ DG 0

if and only if G and G 0 are the black and white hypertrees of an even triangulation of a sphere

that is not a connected sum.

Roughly speaking, the map G! DG is generically injective, and a pair fG1;G2g such
that DG1

¼ DG2
is associated to a bicolored triangulation of the 2-sphere. Outside of

this ‘‘generic locus’’, the map G! DG can be more complicated. For example, in Section
9 we study the triangulation of a bipyramid, when many hypertrees give the same divi-
sor. This is an interesting case because the corresponding divisor DG is a pull-back of
the classical Brill–Noether ‘‘gonality’’ divisor on M2kþ1 used by Harris and Mumford
[HM].

We would like to explain why the divisors DG are exceptional, i.e., how to construct a
contracting birational map f : M0;n dXG in Theorem 1.5. The map is called contracting

if for one (and hence for any) resolution
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Z

M0;n ������! XG

g h

�����!  ���
��

g-exceptional divisors are also h-exceptional. A typical example is a composition of a small
modification and a morphism.

To explain the idea, take a general smooth curve S of genus g. By Brill–Noether
theory [ACGH], the variety G1

gþ1, parameterizing pencils of divisors of degree gþ 1 on S,
is smooth. We have a natural morphism

v : G1
gþ1 !W 1

gþ1 FPicgþ1ðSÞ;

which assigns to a pencil of divisors its linear equivalence class. By Brill–Noether theory, v

is birational, and has an exceptional divisor D over

W 2
gþ1 ¼ fL A Picgþ1ðSÞ j h0ðLÞf 3g;

which is non-empty and has codimension 3 in Picgþ1ðSÞ. So, for example, it is immediately
clear that D is an extremal ray of E¤ðG1

gþ1Þ.1)

Generically, G1
gþ1 parameterizes globally generated pencils, i.e., it contains a scheme

of degree gþ 1 morphisms S! P1 (modulo automorphisms) as an open subset. So D ge-
nerically parameterizes pencils that can be obtained by choosing a ‘‘planar realization’’,
i.e., a morphism S! P2, and then taking composition with the projection from a general
point.

Next we degenerate a smooth curve to a union of rational curves with combinatorics
encoded in a hypertree.

Definition 1.8. We work with schemes over an algebraically closed field k. A curve
SG of genus

g ¼ d � 1

is called a hypertree curve if it has d irreducible components, each isomorphic to P1 and
marked by Gj, j ¼ 1; . . . ; d. These components are glued at identical markings as a
scheme-theoretic push-out: at each singular point i A N, SG is locally isomorphic to the
union of coordinate axes in Avi , where vi is the valence of i, i.e., the number of subsets Gj

that contain i. We consider SG as a marked curve (by indexing its singularities).

The most common case is when all Gj are triples. If this is not the case, then hypertree
curves have moduli, namely

MG :¼
Q

j¼1;...;d

M0;Gj
:

1) Other extremal rays can be found using methods of Bauer–Szemberg [BS].
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Then we have to adjust our construction a little bit: SG will be the universal curve over the
moduli space MG.

By the definition of push-out, M0;n can be identified with the variety of morphisms
f : SG ! P1 (modulo the free action of PGL2) that send singular points p1; . . . ; pn of SG

to di¤erent points q1; . . . ; qn A P1. This gives a morphism

v : M0;n ! Pic1; f 7! f �OPð1Þð1:8:1Þ

from M0;n to the (relative over MG) Picard scheme Pic1 of line bundles on S of degree 1 on
each irreducible component. This is the analogue of the map G1

gþ1 ! Picgþ1 in the smooth
case. The locus DGHM0;n defined above corresponds to the divisor D in the smooth
case.

We have to compactify the source and the target of the map v.

Definition 1.9. A nodal curve Ss
G, called a stable hypertree curve, is obtained by in-

serting a P1 with vi markings instead of each singular point of SG with vi > 2. If vi > 3,

S n ¼ 11 d ¼ 9 g ¼ 8 stable S s

then we do not allow extra moduli, instead we arbitrarily fix the cross-ratios of the marked
points on the inserted P1’s. Let Pic1 be the Picard scheme of invertible sheaves on Ss of
degree 1 on each irreducible component coming from S and degree 0 on each component
inserted at a non-nodal point of S.

Theorem 1.10. Let G be an irreducible hypertree. Any sheaf in Pic1 is Gieseker-stable

w.r.t. the dualizing sheaf oS s . Let XG be the normalization of the main component in the com-

pactified Jacobian of Ss relative over

MG ¼
Q

j¼1;...;d

M0;Gj
:

The map v of (1.8.1) induces a contracting birational map v : M0;n dXG and DG is the only

component of the exceptional locus that intersects M0;n.

Remarks 1.11. (a) A stable hypertree curve is a special case of a graph curve of
Bayer and Eisenbud [BE].
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(b) All irreducible hypertrees for small n were found by Scheidwasser [S] using com-
puter search. Up to the action of Sn, there are 93 hypertrees for n ¼ 10, 1027 hypertrees for
n ¼ 11, and so on. See Figure 1 for all hypertrees for n < 10.

(c) There are no irreducible hypertrees for n ¼ 5. This reflects the fact that the e¤ec-
tive cone of M0;5 FBl4 P

2 is generated by boundary divisors alone, i.e., by the ten ð�1Þ-
curves.

(d) The first proofs that E¤ðM0;6Þ is not generated by boundary divisors were found
by Keel and Vermeire [V]. (In particular, this shows that, for any nf 6, E¤ðM0;nÞ is not
generated by boundary divisors.) Their description of an extremal divisor is very di¤erent
from ours, which perhaps explains why it was not generalized to all n before. We will com-
pare the two approaches in Section 9.

(e) Hassett and Tschinkel [HT] proved that E¤ðM0;6Þ is generated by boundary and
Keel–Vermeire divisors. So Conjecture 1.1 is true for n ¼ 6. It was proved by the first au-
thor [C] that in fact the Cox ring of M0;6 is generated by boundary and hypertree divisors.
A pipe dream would be to prove an analogous statement for any n.

(f) The existence of the birational contractions XG supports the conjecture of Hu and
Keel [HK] that M0;n is a Mori dream space. The map v of (1.8.1) is the first example of
a birational contraction of M0;n whose exceptional locus intersects the interior M0;n.
Birational contractions whose exceptional locus lies in the boundary have been previously
constructed by Hassett [Has]. In particular, the map v gives a (hypothetical) new Mori
chamber of M0;n. It would be interesting to factor M0;n dXG through a small Q-factorial
modification, which perhaps has a functorial meaning.

(g) We take only irreducible hypertrees in Theorem 1.5 because if G is not irreduc-
ible, then if we define DG as above, any component of DG will be equal to p�1ðDG 0 Þ, where
p : M0;n !M0;k is a forgetful map and G 0 is an irreducible hypertree on a subset K HN

(see Lemma 4.11).

(h) As Figure 1 suggests, the number of new extremal rays grows rapidly with n.
One reason for this is the existence of spherical hypertrees, another reason is a ‘‘Fibo-
naccian’’ inductive construction (Theorem 7.18) that multiplies irreducible non-spherical
hypertrees.

(i) Keel and McKernan [KM] proved that the e¤ective cone of the symmetrization
M0;n=Sn is generated by boundary divisors for any n. So in some sense, our hypertree divi-
sors reflect Sn-monodromy.

Let us explain the layout of the paper. We start in Section 2 by introducing Brill–
Noether loci of hypertree curves and use a trick to show that a hypertree divisor (if non-
empty) generates an extremal ray of the e¤ective cone of M0;n. In Section 3 we introduce
capacity, which measures how far is a collection of subsets from being a hypertree. We re-
late capacity to the dimension of the image of a product of linear projections. In Section 4
we use calculations with discrepancies to show that a hypertree divisor is non-empty and
irreducible. We also (partially) compute its class. In Section 5 we study the compacti-
fied Jacobian of a hypertree curve and show that M0;n is birationally contracted to it. In
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Section 6 we prove the characterization of DG via projections of points given in the Intro-
duction: in the previous sections we define DG in a somewhat weaker fashion as a Brill–
Noether locus. In Section 7 we study spherical and generic hypertrees. In particular, we
show that if a hypertree is generic, then the hypertree divisor uniquely determines the
hypertree, except in the case when the hypertree is spherical (in which case the divisor
uniquely determines the triangulation). We also give an inductive construction of many
non-spherical generic hypertrees. Section 8 is very elementary: we use basic linear algebra
to find determinantal equations for hypertree divisors. As a corollary, we show that black
and white hypertrees of a triangulated sphere give the same divisors on M0;n. In Section 9
we relate hypertree divisors to gonality divisors on Mg via various gluing maps M0;n!Mg.
Finally, in Section 10 we use the program Macaulay to give several examples of moving di-
visors on M0;n which are pull-backs of extremal divisors on Mg;k via maps M0;n !Mg;k

(n ¼ 2gþ k) obtained by gluing pairs of markings. These divisors on M0;n are linearly
equivalent to sums of boundary (thus, at least in our examples, this construction does not
lead to any new interesting divisors on M0;n).

Acknowledgment. We are grateful to Sean Keel for teaching us Mg, to Valery
Alexeev and Lucia Caporaso for answering our questions about compactified Jacobians,
to Igor Dolgachev, Gabi Farkas, János Kollár, and Bernd Sturmfels for useful discussions.

Hypertrees for ne 11 were classified by Ilya Scheidwasser during an REU directed
by the second author. He also performed the most di‰cult combinatorial calculations in
Section 5. We are grateful to Ilya for the permission to reproduce his results and for the
beautiful pictures he made. The ‘‘Fibonacci’’ construction of Theorem 7.18 was suggested
to us by Anna Kazanova.

2. Brill–Noether loci of hypertree curves

We fix a hypertree G ¼ fG1; . . . ;Gdg and consider a hypertree curve S.

Definition 2.1. A linear system on S is called admissible if it is globally generated
and the corresponding morphism S! Pk sends singular points of S to distinct points. An
invertible sheaf L is called admissible if the complete linear system jLj is admissible.

We define the Brill–Noether loci W r and Gr (cf. [ACGH]) as follows. First suppose
that G consists of triples. Then S has genus g ¼ n� 3 and the Picard scheme Pic1 of line
bundles of degree 1 on each irreducible component is isomorphic to Gg

m (not canonically).
The Brill–Noether locus W r parametrizes admissible line bundles L A Pic1 such that

h0ðS;LÞf rþ 1:

The locus Gr parametrizes admissible pencils on SG such that the corresponding line bundle
is in W r. So we have a natural forgetful map

Gr !v W r:

If G contains not just triples, things get a little bit more complicated. Let us give
a functorial definition that works in general. The space MG defined in the Introduction

128 Castravet and Tevelev, Hypertrees, projections, and moduli of stable rational curves



represents a functor

MG : schemes! sets

that sends a scheme S to the set of isomorphism classes of flat families S! S with reduced
geometric fibers isomorphic to hypertree curves. A hypertree curve is connected and it is
easy to compute its genus

g ¼ n� 3� dim MG ¼ d � 1:ð2:1:1Þ

Consider the relative Picard functor

Pic1 : schemes! sets

that sends a scheme S to an object S of MGðSÞ equipped with an invertible sheaf on S of
multi-degree ð1; . . . ; 1Þ modulo pull-backs of invertible sheaves on S. This functor is repre-
sented by a Gg

m-torsor over MG. This torsor is in fact trivial. Notice that the dimension of
Pic1 is always equal to n� 3. Let

G1 : schemes! sets

be a functor that sends a scheme S to the set of isomorphism classes of

(1) a family fp : S! Sg in MGðSÞ,

(2) a morphism f : S! P1
S such that (a) images of irreducible components of Ssing

are disjoint and (b) each irreducible component of S maps isomorphically onto P1
S.

Here two morphisms are considered isomorphic if they di¤er by isomorphisms of
S-schemes both on the source and the target. Let

v : G1 ! Pic1

be the natural transformation such that

ðS! S; f : S! P1
SÞ 7!

�
S! S; f �OP1

S
ð1Þ

�
:

We will see below that G1 is represented by M0;n. For any rf 2, let Gr HG1 be the closed
subset (with the induced reduced scheme structure) of points where p�

�
f �OP1

G1
ð1Þ

�
has rank

at least rþ 1 (where ðp; f Þ is the universal family of G1). We define W r HPic1 as a scheme-
theoretic image of Gr.

Definition 2.2. Let f : X ! Y be a quasiprojective morphism of Noetherian
schemes. The exceptional locus Excð f Þ is the complement to the union of points in X iso-
lated in their fibers. Excð f Þ is closed ([G], Section 4.4.3).

Definition 2.3. An extremal ray R of a closed convex cone CHRs is called an edge

if the vector space R?H ðRsÞ� (of linear forms that vanish on R) is generated by support-
ing hyperplanes for C. This technical condition means that C is ‘‘not rounded’’ at R.
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Theorem 2.4. The functor G1 is represented by M0;n. The map

v : M0;n FG1 ! Pic1

is birational. Its exceptional locus is G2. The map v induces an isomorphism

M0;nnG2 F vðM0;nnG2Þ ¼W 1nW 2 HPic1:ð2:4:1Þ

Any irreducible component of G2 is a divisor whose closure in M0;n generates an edge of

E¤ðM0;nÞ. The closure of the pre-image of G2 in M0;nþ1 with respect to the forgetful map

M0;nþ1 !M0;n is contracted by a birational morphism

Qd
j¼1

pGjWfnþ1g : M0;nþ1 !
Qd
j¼1

M0;GjWfnþ1g:ð2:4:2Þ

All other exceptional divisors of this morphism belong to the boundary.

Remark 2.5. In the subsequent sections we will show that if a hypertree is irreduc-
ible, then G2 is non-empty and irreducible. By definition, a point in G2 can be obtained by
mapping a hypertree curve to P2 and projecting its singular vertices from a point. The def-
inition of the divisor DG in the Introduction is stronger, but eventually we will show that
DG ¼ G2.

Remark 2.6. If we consider collections G satisfying only the first two conditions in
Definition 1.2 (i.e., the convexity and normality axioms may fail), one may similarly define
hypertree curves and Brill–Noether loci. The map v may not be birational anymore, but
parts of Theorem 2.10 still hold: the functor G1 is represented by M0;n and the exceptional
locus of the map v is G2. In Section 3 we will give conditions under which the map v is
birational onto its image (see Remark 3.3).

Proof of Theorem 2.4. We proceed in several steps.

2.7. Each datum ðS! S; f : S! P1
SÞ A G1ðSÞ gives rise to an isomorphism class of

a flat family over S with reduced geometric fibers given by P1 and with n disjoint sections
given by images of irreducible components of Ssing. This gives a natural transformation
G1 !M0;n which is in fact a natural isomorphism: given a flat family of marked P1’s, we
can just push-out d copies of P1

S along sections in each Gi. This gives a flat family of hyper-
tree curves over S with a map to P1

S, i.e., a datum in G1ðSÞ.

2.8. Next we define two auxiliary Brill–Noether loci, C r and ~GGr. We call an e¤ec-
tive Cartier divisor admissible if it does not contain singular points. On the level of geomet-
ric points,

C r ¼ fa curve S; an admissible divisor D on S such that OðDÞ A W rg;

~GGr ¼ fðL;VÞ A Gr; an admissible D A jV jg:
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These loci fit in a natural commutative diagram of forgetful maps

~GGr ���! C r???y
???yD 7!OðDÞ

Gr ���! W r:

On a scheme-theoretic level, let Ssm be the smooth locus of the universal family
S!MG with irreducible components Ssm

1 ; . . . ;Ssm
d . Let

C0 ¼ Ssm
1 �MG

� � � �MG
Ssm

d

and let

u : C0 ! Pic1

be the Abel map that sends ðp1; . . . ; pdÞ A C0ðSÞ to OSðp1 þ � � � þ pdÞ. The geometric fi-
bers of u are open subsets of admissible divisors in complete linear systems on Pic1ðSkÞ.
Let

Cr :¼ u�1ðWrÞHC0:

Finally, we define ~GG1 as a functor schemes! sets that sends S to the datum

ðS! S; f : S! P1
SÞ A G1ðSÞ

and a section s : S ! P1
S disjoint from the images of irreducible components of SnSsm.

We define ~GGr as the preimage of Gr for the forgetful map ~GGr ! Gr. We also have the nat-
ural transformation ~GGr ! C0 that sends ðS! S; f : S! P1

S; sÞ to f �1
�
sðSÞ

�
. It factors

through Cr. The same argument as above shows that ~GG1 is isomorphic to M0;nþ1 and that

C0 is isomorphic to
Qd
j¼1

M0;GjWfnþ1g.

2.9. To summarize, we have the following commutative diagram,

~GG1 C1 C0�����
G1 W1 Pic1����

M0;nþ1

Qd
j¼1

M0;GjWfnþ1g

M0;n MG;

����������!V �����������!

��������!v ������������!

��������������!
Qd
j¼1

pGjWfnþ1g

�������������������������!
Qd
j¼1

pGj

�����������
������������

???????????y

 ���
���

 ���
��

 ���
����

 ���
���

 ���
����

u

pN

Qd
j¼1

pGj
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where, for any subset I HN with jI jf 4,

pI : M0;n !M0; I

is the morphism given by dropping the points of NnI (and stabilizing).

2.10. It is clear from the definition that the exceptional locus of v is exactly G2 and
that v is birational if and only if G1 3G2. This is equivalent to ~GG1 3 ~GG2, which is equiv-
alent to V being birational. This is proved in Theorem 3.2.

2.11. Finally, we note that ~GG2 is the preimage of G2. Since the closure of ~GG2 is in the
exceptional locus of the regular morphism (2.4.2), Lemma 2.12 below shows that the clo-
sure of any irreducible component of G2 in M0;n is a divisor that generates an edge of
E¤ðM0;nÞ.

This finishes the proof of the theorem. r

Lemma 2.12. Consider the diagram of morphisms

X ���!f Y

p

???y
Z

of projective Q-factorial varieties. Suppose that f is birational and that p is faithfully flat.

Let D be an irreducible component of Excð f Þ. If pðDÞ3Z and a generic fiber of p along

pðDÞ is irreducible, then pðDÞ is a divisor that generates an extremal ray (in fact an edge)
of E¤ðZÞ.

Proof. By van der Warden’s purity theorem (see [GD], Section 21.12.12), D is a di-
visor. It is well known that it generates an edge of E¤ðX Þ. Since p is flat and pðDÞ3Z,
pðDÞ is an irreducible divisor. Since p�1

�
pðDÞ

�
is irreducible (e.g. by [T], Lemma 2.6),

p�1
�

pðDÞ
�
¼ D. It follows that pðDÞ generates an edge of E¤ðZÞ because E¤ðZÞ injects

in E¤ðXÞ by the pull-back p�. r

Remark 2.13. An interesting feature of this argument is that we study divisors
G2 HM0;n by pulling them to M0;nþ1 and then contracting the preimage by a birational
morphism. This gives a method of proving extremality of divisors by a flat base change.
In Section 5 we will contract G2 by a contracting birational map (but not a morphism)
from M0;n to the compactified Jacobian of the stable hypertree curve Ss.

3. Capacity and products of linear projections

Definition 3.1. Let G ¼ fGag be an arbitrary collection of subsets of the set
N ¼ f1; . . . ; ng such that each subset has at least three elements. We define its capacity as

capðGÞ ¼ max
G 0

�P
b

ðjG 0bj � 2Þ
�
;
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where G 0 runs through all sub-collections of G that satisfy the convexity axiom ðzÞ. Here
G 0 ¼ fG 0bg is a sub-collection of G if each G 0b is a subset of some G 0a. For example, if G is a
hypertree, then

capðGÞ ¼ n� 2

by the convexity and normalization axioms.

Theorem 3.2. Let G ¼ fGag be an arbitrary collection of subsets of the set

N ¼ f1; . . . ; ng such that each subset has at least three elements and Ga SGb if a3 b. The

capacity of G is equal to the dimension of the image of the map

pGWfnþ1g :¼
Qd
j¼1

pGjWfnþ1g : M0;nþ1 !
Qd
j¼1

M0;GjWfnþ1g:ð3:2:1Þ

Moreover, pGWfnþ1g is birational onto its image if and only if G has maximum capacity n� 2.

In particular, pGWfnþ1g is birational onto its image if and only if G satisfies ðzÞ and ðyÞ.

Remark 3.3. Let G be an arbitrary collection of subsets of the set N ¼ f1; . . . ; ng,
satisfying the first two conditions in Definition 1.2 (see Remark 2.6). If G has maximum
capacity n� 2, by Theorem 3.2 the map pGWfnþ1g is birational onto its image and it follows
that G2 is a proper subset of G1.

To prove Theorem 3.2, we need two lemmas on linear projections.

Definition 3.4. For a projective subspace U HPr, let

pU : Pr dP lðUÞ

be a linear projection from U , where lðUÞ ¼ codim U � 1.

Lemma 3.5. Let U1; . . . ;Us HPr be subspaces such that Ui SUj when i3 j. Then:

(a) the rational map

p ¼ pU1
� � � � � pUs

: Pr dP lðU1Þ � � � � � P lðUsÞ

is dominant if and only if

l

�T
i AS

Ui

	
f

P
i AS

lðUiÞ for any S H f1; . . . ; sg:ð3:5:1Þ

(b) If r ¼ lðU1Þ þ � � � þ lðUsÞ and p is dominant, then p is birational.

Proof. Let li :¼ lðUiÞ. The scheme-theoretic fibers of the morphism

Prn
S
i

Ui ! P l1 � � � � � P ls
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are open subsets of projective subspaces. This implies (b). Now assume that p is domi-
nant but (3.5.1) is not satisfied, for example we may assume that W ¼ U1 X � � �XUm has
dimension

wf r� ðl1 þ � � � þ lmÞ:ð3:5:2Þ

The projections pUi
for i ¼ 1; . . . ;m factor through the projection pW : Pr dPr�w�1. It

follows that the map

p 0 ¼ pU1
� � � � � pUm

: Pr dP l1 � � � � � P lm

factors through pW . If p is dominant, then so is p 0, and therefore the induced map

Pr�w�1 dP l1 � � � � � P lm

is dominant, which contradicts (3.5.2).

Assume (3.5.1). We will show that p is dominant. We argue by induction on r.
Let H be a general hyperplane containing Us. It su‰ces to prove that the restriction of
pU1
� � � � � pUs�1

to H is dominant. The subspaces U 0i :¼ Ui XH have codimension li þ 1
in H and, therefore, by the induction assumption, it su‰ces to prove that

dim
T

i AS

U 0i < ðr� 1Þ �
P
i AS

li for any S H f1; . . . ; r� 1g:ð3:5:3Þ

Let W :¼
T

i AS

Ui. Let L :¼
P
i AS

li. By (3.5.1), dim W < r� L and, therefore,

dim H XW < r� L� 1

(i.e., we have (3.5.3)) unless W HUs. But in the latter case

dim
T

i AS

U 0i ¼ dimðUs XWÞ < r� ðls þ LÞ

by (3.5.1). r

We would like to work out the case when all subspaces U1; . . . ;Us are intersections of
subspaces spanned by subsets of points p1; . . . ; pn A Pn�2 in linearly general position. Let
N ¼ f1; . . . ; ng. For any non-empty subset I HN, let HI ¼ hpiii B I .

Lemma 3.6. The rational map

p ¼ pHG1
� � � � � pHGl

: Pn�2 dPjG1j�2 � � � � � PjGl j�2

is dominant if and only if ðzÞ holds. It is birational if and only if ðzÞ and ðyÞ hold.

Proof. For any S H f1; . . . ; lg, let eS be the number of connected components of N

(with respect to fGigi AS) that have at least two elements. Let

HS ¼
T

i AS

HGi
:
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Let W HAn
x1;...;xn

be a hyperplane
P

xi ¼ 0. In appropriate coordinates, PðWÞ is a
projective space dual to Pn�2 and subspaces HI HPn�2 are projectively dual to projectiv-
izations of linear subspaces hxi � xjii; j A I . It follows that HS is projectively dual to a sub-
space hei � ejibk AS:i; j AGk

, which implies that

lðHSÞ ¼
���� S
i AS

Gi

����� eS � 1:

By Lemma 3.5, it follows that p is dominant if and only if

���� S
i AS

Gi

����� eS � 1f
P
i AS

ðjGij � 2Þ for any S H f1; . . . ; lg:ð3:6:1Þ

It remains to check that (3.6.1) and ðzÞ are equivalent. It is clear that (3.6.1) implies
ðzÞ. Now assume ðzÞ. Let I1; . . . ; IeS

be the connected components of N (with respect to
fGigi AS) that have at least two elements. This gives a partition S ¼ S1 t � � � t SeS

such
that Ik ¼

S
j ASk

Gj for any k. Applying ðzÞ for each Sk gives

���� S
i AS

Gi

����� eS � 1f
P
k

����� S
i ASk

Gi

����� 2

	
f

P
k

P
i ASk

ðjGij � 2Þ ¼
P
i AS

ðjGij � 2Þ

and this is nothing but (3.6.1). r

Proof of Theorem 3.2. Let p1; . . . ; pn A Pn�2 be general points. We have a birational
morphism

C : M0;nþ1 ! Pn�2

(the Kapranov blow-up model), which is an iterated blow-up of Pn�2 along the points
p1; . . . ; pn, the proper transforms of lines connecting these points, and so on. Moreover,
we have a commutative diagram of rational maps

M0;nþ1 ���!C Pn�2

pSWfnþ1g

???y
???ypS

M0;kþ1 ���!C Pk�2

for each subset S HN with k elements, where pS is a linear projection away from the linear
span of points pi for i B S, see [K]. It follows that the ‘‘moreover’’ part of the theorem is
just a reformulation of Lemma 3.6.

Let

Z HMGWfnþ1g :¼
Qd
j¼1

M0;GjWfnþ1g

be the image of pGWfnþ1g. Notice that pG 0Wfnþ1g factors through pGWfnþ1g for any sub-
collection G 0. So it follows from Lemma 3.6 that

dim Z f capðGÞ
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and that, to prove an opposite inequality, it su‰ces to show the following. Suppose
that Z 3MGWfnþ1g. We claim that one can choose a proper sub-collection G 0 such that
dim pðZÞ ¼ dim Z, where

p : MGWfnþ1g !MG 0Wfnþ1g

is an obvious projection. Consider all possible maximal sub-collections, i.e., let J be an in-
dexing set obtained by taking jGaj for each Ga. For each j A J, let G 0j be a sub-collection
obtained by removing the corresponding index from the corresponding Ga. Let z A Z be a
general smooth point. Notice that z projects into M0;GaWfnþ1g for each a, and so for each
j A J, the fiber of pj : MGWfnþ1g !MG 0jWfnþ1g passing through z is a smooth rational curve.
Moreover, it is easy to see that tangent vectors to these rational curves at z generate the
tangent space to MGWfnþ1g at z. Since Z is smooth at z, it follows that pjjZ is generically
finite for one of the projections. r

We have to refine Theorem 3.2 to see how the map

p : M0;nþ1 !MGWfnþ1g :¼
Q
Ga

M0;GaWfnþ1gð3:6:2Þ

a¤ects the divisors of M0;nþ1. We borrow a definition from matroid theory.

Definition 3.7. Let I HN be any subset. We define the contracted collection GI to be
the collection of subsets of I W fpg obtained from G by replacing all the indices in I c with p

(and removing all subsets with less than three elements). We define the restricted collection

G 0I to be the collection of subsets in I c given by intersecting each Ga with I c (and removing
subsets with less than three elements).

Lemma 3.8. For any hypertree G we have

codim pðdIWfnþ1gÞ � 1 ¼ n� 3� capðGIÞ � capðG 0I Þ:

Proof. For I HN, consider the products of forgetful maps

pI : M0; IWfp;nþ1g !
Q

GaHI

M0;GaWfnþ1g �
Q

GaXI c3j; jGaXI jf2

M0; ðGaXIÞWfp;nþ1g;

p 0I : M0; I cWfpg !
Q

jGaXI cjf3

M0; ðGaXI cÞWfpg;

By Theorem 3.2, we have

dim ImðpIÞ ¼ capðGI Þ and dim Imðp 0IÞ ¼ capðG 0I Þ:

Note that

dIWfnþ1gFM0; IWfp;nþ1g �M0; I cWfpg

and the restriction of the map p to dIWfnþ1g factors as the product pI � p 0I followed by a
closed embedding. r
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Lemma 3.9. Let G be an irreducible hypertree and let I HN be a subset such that

2e jI je n� 2 and either I c LGb for some b, or jI cj ¼ 2. Then

capðGI Þ ¼ jI W fpgj � 2:

Proof. We construct a sub-collection G 0 of GI that satisfies the convexity axiom andP
a

ðjG 0aj � 2Þ ¼ jI j � 1. Without loss of generality, we may assume I c ¼ f1; . . . ; lg. We de-

fine G 0 as follows:

(i) If I c kGb, let G 0 ¼ GI .

(ii) If I c ¼ Gb or if jI cj ¼ l ¼ 2 and I c ƒGa for any a: we may assume that 1 A G1

(note that G1 X I c ¼ f1g). Let G 01 ¼ G1nf1g if jG1jf 4 (omit G 01 otherwise), G 0a ¼ ðGI Þa for
all a3 1.

Note that in all the cases
P
a

ðjG 0aj � 2Þ ¼ jI j � 1. Hence, the condition ðzÞ holds for

the set of all indices a that appear in G 0. Assume that ðzÞ fails for a proper subset T of
indices a:

���� S
a AT

G 0a

����e P
a AT

ðjG 0aj � 2Þ þ 1e
P
a AT

ðjGaj � 2Þ þ 1:ð3:9:1Þ

Let k ¼
����
� S

a AT

Ga

	
X I c

����e l. Then we have

���� S
a AT

G 0a

����f
���� S
a AT

Ga

����� k þ 1:ð3:9:2Þ

Since G is an irreducible hypertree, we have

���� S
a AT

Ga

����f P
a AT

ðjGaj � 2Þ þ 3:ð3:9:3Þ

By (3.9.1), (3.9.2), (3.9.3) we have k f 3. This is a contradiction if jI cj ¼ 2.

Assume now that I c HGb. Let k 0 ¼
����
� S

a AT

Ga

	
XGb

����. Then k e k 0. Consider the case

when b B T . Since G is an irreducible hypertree, we have:

���� S
a AT

Ga

����þ jGbj � k 0 ¼
���� S
a AT

GaWGb

����f P
a AT

ðjGaj � 2Þ þ ðjGbj � 2Þ þ 3:ð3:9:4Þ

By (3.9.1), (3.9.2), (3.9.4) it follows that

P
a AT

ðjGaj � 2Þ þ 1f
P
a AT

ðjGaj � 2Þ þ k 0 � k þ 2;

which is a contradiction, since k 0 � k f 0.
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Consider the case when b A T (only possible in case (i)). As ðzÞ fails,

���� S
a AT

G 0a

����e P
a AT

ðjGaj � 2Þ þ 1e
P

a AT ;a3b

ðjGaj � 2Þ þ ðjGbj � l � 1Þ þ 1:ð3:9:5Þ

It follows from (3.9.5), (3.9.2), (3.9.3) that

P
a AT

ðjGaj � 2Þ � l þ 2f
P
a AT

ðjGaj � 2Þ � l þ 4;

which is a contradiction. This finishes the proof. r

Lemma 3.10. For any hypertree G (not necessarily irreducible), the collection G 0I sat-

isfies the convexity axiom ðzÞ. In particular,

capðG 0I Þ ¼
P

jGaXI cjf3

ðjGa X I cj � 2Þ:ð3:10:1Þ

If moreover, G is an irreducible hypertree and if jI cj ¼ 2 or if I c LGa for some a, then

capðG 0I Þ ¼ jI cj � 2. Otherwise,

capðG 0IÞ < jI cj � 2:

Proof. Arguing by contradiction, let S HG 0I be a subset such that

���� S
j AS

ðG 0IÞj
����� 2 <

P
j AS

�
jðG 0IÞjj � 2

�
:

Let Il ¼ f1; . . . ; lg. After renumbering, we can assume that I ¼ Ik. Since G 0I0
¼ G 0j ¼ G,

which satisfies ðzÞ, there exists l such that

���� S
j AS

ðG 0Il
Þj
����� 2f

P
j AS

�
jðG 0Il
Þjj � 2

�
ð3:10:2Þ

but

���� S
j AS

ðG 0Ilþ1
Þj
����� 2 <

P
j AS

�
jðG 0Ilþ1

Þjj � 2
�
:ð3:10:3Þ

It follows that some subsets ðG 0Il
Þj contain l þ 1, and so the left-hand side in (3.10.3) is equal

to the left-hand side in (3.10.2) minus 1. However, the right-hand side in (3.10.3) is equal to
the right-hand side in (3.10.2) minus the number of subsets ðG 0Il

Þj that contain l þ 1. This is
a contradiction. This proves that G 0I satisfies the convexity axiom ðzÞ.

Clearly, if jI cj ¼ 2 or if I c LGa for some a, then capðG 0I Þ ¼ jI cj � 2. Assume now that
jI cj > 2 and I c ƒGa for any a. We argue by contradiction: assume that jI cj � 2 ¼ capðG 0I Þ.
If jG 0I j ¼ 0, then it follows that jI cj ¼ 2. Similarly, if jG 0I j ¼ 1, it follows that I c HGa, for
the unique a giving G 0I . Hence, we can assume that jG 0I j > 1.
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If jSj3 0; 1; d, the same proof as above shows that we have

���� S
j AS

ðG 0IÞj
����� 2 >

P
j AS

�
jðG 0IÞjj � 2

�
:

Hence, if jG 0I j3 d, then capðG 0I Þ < jI cj � 2.

Assume now that jG 0I j ¼ d. We have

jI cj � 2 ¼ capðG 0IÞ ¼
Pd

a¼1

ðjGa X I cj � 2Þ:

It follows that

jI j ¼
Pd

a¼1

ðjGa X I jÞ:

It follows that the subsets Ga X I , for all a, are disjoint. This is a contradiction since
every i A I belongs to at least two subsets Ga. r

Lemma 3.11. The following conditions are equivalent:

� A boundary divisor dIWfnþ1g is not contracted by p.

� n� 3 ¼ capðGI Þ þ capðG 0I Þ.

� jI cj ¼ 2 or I c HGa for some a.

Proof. The equivalence of the first two conditions follows from Lemma 3.8.

If jI cj ¼ 2 or I c HGa for some a, then capðGIÞ ¼ jI j � 1 by Lemma 3.9 and
capðG 0I Þ ¼ jI cj � 2 by Lemma 3.10. It follows that codim pðdIWfnþ1gÞ ¼ 1 by Lemma 3.8.

Assume that jI cj > 2 and I c ƒGa for any a. Then capðG 0I Þ < jI cj � 2 by Lemma 3.10.
Since capðGI Þe jI j � 1, it follows by Lemma 3.8 that codim pðdIWfnþ1gÞ > 1. r

4. Irreducibility of DG and its class

In this section we define DG as the closure of G2 HM0;n in M0;n. We will show in
Section 6 that this coincides with a stronger definition of DG given in the Introduction.
Rather than computing the class of DG directly, we (partially) compute the class of its
pull-back p�NDG, where pN : M0;nþ1 !M0;n is the forgetful map. We will use the fact that
p�NDG is one of the divisors in the exceptional locus of the map p of (3.6.2) with other pos-
sible exceptional divisors all listed in Lemma 3.11.

Notation 4.1. One advantage of M0;nþ1 over M0;n is that Pic M0;nþ1 has an equivar-
iant basis with respect to permutations of the first n indices. Let C : M0;nþ1 ! Pn�2 be the
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Kapranov iterated blow-up of Pn�2 along points p1; . . . ; pn and proper transforms of sub-
spaces hpiii A I for jI je n� 3. Let EI be the exceptional divisor over this subspace. Recall
that Pic M0;nþ1 is freely generated by H :¼ C�Oð1Þ and by the classes EI .

We denote as usual by vi the valence of i A N.

Theorem 4.2. Let G ¼ fG1; . . . ;Gdg be an irreducible hypertree on N. Then DG is

non-empty, irreducible, and vðDGÞ ¼W 2 HPic1 has codimension 3. We have

p�NDG @ ðd � 1ÞH �
P

IHN
1ejI jen�3

mI EI ;

where

mI f jI j � 1þ jfGa jGa H I cgj � capðGI Þ;ð4:2:1Þ

mfig ¼ d � vi;ð4:2:2Þ

mNnGa
¼ 1;ð4:2:3Þ

mGa
¼ d þ jGaj �

P
i AGa

vi:ð4:2:4Þ

If I is properly contained in Ga, then

mNnI ¼ 0;ð4:2:5Þ

mI ¼ d þ jI j � 1�
P
i A I

vi:ð4:2:6Þ

Proof. By Theorem 3.2, the map p of (3.6.2) is a birational morphism. By Theorem
2.4, its exceptional locus consists of E :¼ p�NDG and the boundary divisors dIWfnþ1g con-
tracted by p (where I HN, 1e jI je n� 2).

Lemma 4.3. DG is non-empty and irreducible.

Proof. It su‰ces to show that p�NDG is non-empty and irreducible. We compare
ranks of the Neron–Severi groups and use the fact that

rðM0;nþ1Þ � r

�Q
Ga

M0;GaWfnþ1g

	

is equal to the number of irreducible components in ExcðpÞ. We have

rðM0;nþ1Þ ¼ 2n � 1� nðnþ 1Þ
2

and

r

�Q
Ga

M0;GaWfnþ1g

	
¼

Pd

a¼1

2jGaj � 1� jGajðjGaj þ 1Þ
2

� 	
:
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The total number of boundary divisors of M0;nþ1 is 2n � n� 2. By Lemma 3.11, the num-
ber of boundary components not contracted by p is

nðn� 1Þ
2

þ
Pd

a¼1

2jGaj � 1� jGaj �
jGajðjGaj � 1Þ

2

� 	
:

It follows after some simple manipulations that the number of irreducible components of E
is exactly one. r

4.4. Next we compare the canonical classes. We have

KM0; nþ1
� p�KMGWfnþ1g

¼ cEþ
P

dIWfnþ1g AExcðpÞ
aIdIWfnþ1g ¼ cEþ

P
IHN

1ejI jen�3

aI EI ;ð4:4:1Þ

for some positive integers aI and c, see [KoM], p. 53. Here we use the fact that if
jI j ¼ n� 2, then dIWfnþ1g is not an exceptional divisor in the Kapranov model, but a proper
transform of the hyperplane in Pn�2 that passes through all pi, i A I . These divisors are not
in ExcðpÞ by Lemma 3.11.

4.5. We use the following basic property of discrepancies:

cf codim pðEÞ � 1 and aI f codim pðdIWfnþ1gÞ � 1:

By Lemma 3.8, it follows that

aI f n� 3� capðGIÞ � capðG 0I Þ:ð4:5:1Þ

4.6. Next we compute the canonical classes. Standard calculations give

KM0; nþ1
¼ �ðn� 1ÞH þ

P
I

ðn� 2� jI jÞEI

and

p�GaWfnþ1gKMGaWfnþ1g
¼ �ðjGaj � 1Þ

�
H �

P
IXGa¼j

EI

	

þ
P

I 0HGa

1ejI 0jejGaj�3

ðjGaj � 2� jI 0jÞ
P

I 00HNnGa

EI 0WI 00 :

Combining these formulas together gives

mI f jI j � 1� capðGIÞ � capðG 0I Þ þ
P

IXGa¼j
ðjGaj � 1Þ þ

P
1ejGaXI jejGaj�3

ðjGaj � 2� jGa X I jÞ:

This formula along with (3.10.1) imply formula (4.2.1).

Lemma 4.7. Formulas (4.2.2)–(4.2.6) hold.
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Proof. Using (4.2.1) it is easy to see that the left-hand side of any of these formulas
is greater than or equal to the right-hand side.

Since the boundary divisors dNWfnþ1gnGa
and dNWfnþ1gnI are not in the exceptional

locus of p, formulas (4.2.3) and (4.2.5) follow from (4.4.1) and from the calculations of
the canonical classes above.

By the projection formula, p�NDG � C ¼ 0 for any curve C in the fiber of pN . Let C be
a general fiber. Then CðCÞ is a rational normal curve in Pn�2, and therefore H � C ¼ n� 2.
We have Ei � C ¼ di;nþ1 � C ¼ 1 and any other boundary divisor EI intersects C trivially. It
follows that

0 ¼ p�NDG � C ¼ ðn� 2Þðd � 1Þ �
Pn

i¼1

mi e ðn� 2Þðd � 1Þ �
Pn

i¼1

ðd � viÞ

¼ ðn� 2Þðd � 1Þ � nd þ
Pn

i¼1

vi ¼ ðn� 2Þðd � 1Þ � nd þ ðn� 2Þ þ 2d ¼ 0:

It follows that mi ¼ d � vi for any i.

Now let C be the curve in the fiber of pN over a general point in dGa
such that the

ðnþ 1Þ-st marked point moves along the component with points marked by I HGa. Then
H � C ¼ jI j � 1, di;nþ1 � C ¼ 1 if i A I and 0 otherwise,

dIWfnþ1g � C ¼ �1; dNWfnþ1gnI � C ¼ 1;

and other boundary divisors intersect C trivially. Since we already know that mi ¼ d � vi

by the above, and that mNnI ¼ 1 (if I ¼ Ga) and 0 otherwise by (4.2.3) and (4.2.5), a simple
calculation gives mI . r

Finally, we claim that

c ¼ 1; codim pðEÞ ¼ 2; and codim vðDGÞ ¼ 3:

Indeed, c obviously divides all coe‰cients mI but some of them are equal to 1 by (4.2.3). So
c ¼ 1. Since E is exceptional and cf codim pðEÞ � 1, we have codim pðEÞ ¼ 2. It follows
by Theorem 2.4 that the map E! pðEÞ is generically a P1-bundle, i.e., W2 3W3. Since
G2 !W 2 has 2-dimensional fibers outside of W 3, we have the formula codim vðDGÞ ¼ 3.

r

The reader is perhaps disappointed that we do not give a closed formula for the class
of a hypertree divisor DG. The di‰culty in computing this class stems from the fact that p
has (exponentially) many exceptional boundary divisors and the discrepancy of a boundary
divisor dI HM0;nþ1 for the map p (3.6.2) is not always equal to codim pðdI Þ � 1. However,
there is one case when they are equal, namely when codim pðdI Þ ¼ 2. This happens quite
often: see for example Lemma 7.12, which is used in Theorem 7.7 to recover the hypertree
from its class.
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Definition 4.8. A triple fi; j; kgHN is called a wheel of an irreducible hypertree G if
it is not contained in any hyperedge, but there are hyperedges Ga1

, Ga2
, Ga3

of G such that
fi; jgHGa1

, f j; kgHGa2
, fi; kgHGa3

.

Lemma 4.9. Suppose G contains only triples, with fi; j; kg not one of them and not a

wheel, with the property that

capðGNnfi; j;kgÞ ¼ n� 4

(which is equivalent to codim pðdijkÞ ¼ 2). Then we have equality in (4.2.1).

Proof. We know that codim pðdijkÞ ¼ 2 and we are claiming that the discrepancy of
p at dijk is equal to 1. It will be enough to show that no other divisor of M0;nþ1 has the same
image as dijk under p. Indeed, then we can cut by hypersurfaces in a very ample linear
system on the target of p to reduce the discrepancy calculation to the case of a birational
morphism of smooth surfaces with a unique exceptional divisor over a point, in which case
the discrepancy is equal to 1 by standard factorization results for birational morphisms of
smooth surfaces [Ha], Section 5.3.

We write a$ b if vertices a; b A N belong to some Ga. Up to symmetries, there are
three possible cases:

(X) i$ j and j $ k.

(Y) i$ j but i 6$ k and j 6$ k.

(Z) i 6$ j, j 6$ k, and i 6$ k.

Notice that pðdijkÞ belongs to the boundary MGWfnþ1gnMGWfnþ1g in cases (X) and (Y).
So in these cases pðdijkÞ cannot be equal to pðEÞ, where E ¼ p�NðDGÞ is the only exceptional
divisor of p intersecting the interior M0;nþ1. In case (Z), the image of dijk intersects the in-
terior MG, but we claim that in this case pðdijkÞ3 pðEÞ as well. Arguing by contradiction,
suppose pðdijkÞ ¼ pðEÞ. Notice that the rational map v : M0;n dGn�3

m of Theorem 2.4 is
defined at the generic point of dijk HM0;n in case (Z): just take a map S! P1 that collap-
ses points i, j, k to the same point and pull-back OP1ð1Þ (a similar analysis will be given
below, see Lemma 4.10). Since W 2 HGn�3

m has codimension 3, a generic line bundle in
W 2 has h0 ¼ 3 (see Theorem 4.2). Passing to an open subset in M0;n containing the generic
point of dijk, we have that vðdijkÞ ¼W 2. But this implies that, in a planar realization that
corresponds to a generic line bundle in W 2, points i, j, k are collinear. We will show in
Theorem 6.1 that this is not the case.

So it remains to check the statement for boundary divisors only, i.e., to show that if
pðdijkÞ ¼ pðdIÞ and nþ 1 B I , then I ¼ fi; j; kg. Let G 0HG be a subset of all triples other
than the triple containing fi; jg (in cases (X) and (Y)) and the triple containing f j; kg (in
case (X)). Consider the morphism

p 0 : M0;nþ1 !MG 0Wfnþ1g :¼
Q

Ga AG
0
MGaWfnþ1g:

Then we have that p 0ðdijkÞ ¼ p 0ðdIÞ has dimension n� 4 and intersects the interior MG 0 .
So I has the following properties:
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� i; j; k A I in case (X); i; j A I in case (Y).

� I contains s whole triples from G 0 and q ‘‘separate’’ points in N not related by$ to
any other point in I .

From dI FM0; jI jþ1 �M0; ðnþ1Þ�jI jþ1 we have the following easy estimate,

n� 4 ¼ dim p 0ðdI Þe sþ dim M0; ðnþ1Þ�jI jþ1 ¼ n� jI j þ s� 1;

and therefore

jI je sþ 3:ð4:9:1Þ

Consider the case (X). Since

n� 4 ¼ dim pðdijkÞ ¼ cap
�
ðG 0ÞNnfi; j;kg

�
;

it follows that for any subset T (jT jf 2) of triples from G 0,

���� S
a AT

Ga

����f jT j þ 4;

if i; j; k A
S
a AT

Ga.

Assume sf 2. If i; j; k A
S

GaHI

Ga, then we have

jI j � qf

���� S
GaHI

Ga

����f sþ 4;

which contradicts (4.9.1).

If one of i, j, k, say i, is not in
S

GaHI

Ga, then

jInfigj � qf

���� S
GaHI

Ga

����f sþ 3;

which again contradicts (4.9.1).

Assume s ¼ 1. Let G1 be the unique triple in G 0 contained in I . We have jI j ¼ qþ 3
and by (4.9.1), jI je 4. It follows that q ¼ 0 or 1. Since i; j; k A I , it follows that at least two
of the indices i, j, k are in G1, which is a contradiction.

Consider now the cases (Y), (Z). We have a usual diagram of morphisms,

M0;nþ1 ���!p 0 MG 0Wfnþ1g

pN

???y
???yD 7!OðDÞ

M0;n Pic1ðS 0Þ:����!v
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Lemma 4.10. The morphism v can be extended to the generic points of dijk and dI as

follows: Let C be a fiber of the universal family over a general point of dijk (resp., dI ). On one

component C1 we have points i, j, k (resp., I ) and the attaching point p, while on the other

component C2 we have points Nnfi; j; kg (resp., NnI ) and the attaching point q. This gives

a morphism f : S 0 ! P1 obtained by sending points in Nnfi; j; kg (resp., NnI ) to the corre-

sponding points of the second component of C and by sending points in i, j, k (resp., I ) to the

point q. Consider the line bundle L ¼ f �OP1ð1Þ. The line bundle L has degree 0 on the com-

ponents Ga H I . Each such component Ga can be identified with C1, thus we can twist L by

OS 0 ðpÞ, which gives a line bundle in ~LL A Pic1ðSÞ.

Proof. Take jG 0j copies of the universal family M0;nþ1 over M0;n, indexed by triples
in G 0. Let X be the push-out of these families, glued along sections, as prescribed by G 0.
(The fiber of X over a point in M0;n is S.) Let U be the open in M0;n which is the union
of M0;n and dijk (resp., dI ), not containing any other boundary strata. Let X0 be the pre-
image of U in X.

There are maps u : X0 ! U � S (given by stabilization) and f : X0 ! U � P1 (ob-
tained by contracting the points in I ). Let M ¼ f �OP1ð1Þ and L ¼ u�ðMÞ. It follows from
a local calculation in [F] that L is invertible and for m A U we have Lm A Pic1ðSÞ satisfying
the lemma. r

After shrinking M0;n to an open subset containing the generic points of dijk and dI ,
this gives

vðdijkÞ ¼ vðdI Þ:

In case (Z), vðdijkÞSW 2, i.e., a general line bundle L in vðdijkÞ has h0 ¼ 2 and it
induces a map f : S! P1 that collapses only the points i, j, k to the point q. Since
vðdijkÞ ¼ vðdIÞ, the map f collapses the points in I to the point q. It follows that
I ¼ fi; j; kg. This finishes case (Z).

In case (Y), since p 0ðdijkÞ has codimension 1, the map p 0jdijk
generically has

1-dimensional fibers, this implies that vðdijkÞSW 3, i.e., a general line bundle in vðdijkÞ has
h0 ¼ 3 and gives an admissible map f : S 0 ! P2 such that points i, j, k belong to a line
H HP2. The corresponding point of M0;n is obtained by projecting S 0 from a general point
of H. Note that the points in Nnfi; j; kg will be mapped to distinct points via this projec-
tion, hence no points in Nnfi; j; kg will lie on the line H.

The same analysis for dI combined with the fact that vðdijkÞ ¼ vðdI Þ shows that via the
map f the points in I are collinear. Since in case (Y) we have i; j A I , it follows that the
points in I lie on H. This implies I ¼ fi; j; kg. r

Finally, we analyze hypertrees that are not irreducible. Recall that we denote by DG

the closure of G2ðGÞ in M0;n.

Lemma 4.11. If G is not irreducible and DG3j, then for every irreducible D compo-

nent of DG there exists an irreducible hypertree G 0 on a subset N 0HN such that

D ¼ p�1ðDG 0 Þ;

where p : M0;n !M0;N 0 is the forgetful map.

145Castravet and Tevelev, Hypertrees, projections, and moduli of stable rational curves



Proof. If G 0 is an irreducible hypertree, then DG 0 is an irreducible divisor in M0;N 0

intersecting the interior. Since p is flat with irreducible fibers along points in M0;N 0 , p
�1ðD 0GÞ

is irreducible. Hence, it is enough to prove DH p�1ðDG 0 Þ. Note, since DG3j, we have
G2ðGÞ3j.

We argue by induction on d. Let S H f1; . . . ; dg be a subset such that ðzÞ is an equal-
ity. We may assume that S is minimal with this property. Let d 0 ¼ jSj, let G 0 be a collection
of Gi for i A S. Let N 0 ¼

S
i AS

Gi. Then G 0 is almost a hypertree: all axioms are satisfied ex-

cept possibly for the second axiom: it could happen that there exists an index i A N 0 that
belongs to only one subset G 0j . In this case we can remove i from N 0 (and remove G 0j from

G 0 if jG 0j j ¼ 3). Continuing in this fashion, we get a subset N 0HN and a hypertree G 0 on it.
By minimality of S, G 0 is irreducible.

Let D be a component of DG (i.e., the closure of a component of G2ðGÞ). If D satisfies
DL p�1ðDG 0 Þ, then we are done. Assume now that D is not contained in p�1ðDG 0 Þ. Then a
dense open in D is disjoint from p�1

�
G2ðG 0Þ

�
; hence, a general element in DXG2ðGÞ is

obtained via projection from a map S! Pr (rf 2) that maps S 0 to a line. Let

G 00 ¼ ðGnG 0ÞW fG0g; where G0 ¼
S

Gi AG
0
Gi:

If there exists an index i A N that belongs to only one subset G 00i , we remove it. Let N 00

be the remaining set of indices. It is easy to check that G 00 is a hypertree on N 00. Moreover,
our assumptions imply that DL p�1ðDG 00 Þ. By our induction assumption, any component
of D 00G is the preimage by a forgetful map of some D~GG for some irreducible hypertree ~GG. r

5. Compactified Jacobians of hypertree curves

Our goal in this section is to prove Theorem 1.10: if G is an irreducible hypertree, then
the hypertree divisor DG HM0;n is contracted by a contracting birational map to the com-
pactified Jacobian.

We start by considering any hypertree, not necessarily irreducible. We extend the uni-
versal stable hypertree curve Ss=MG to a curve over MG in an obvious way. Let Ss

W be one
of the geometric fibers.

Definition 5.1. A coherent sheaf on Ss
W is called Gieseker semi-stable (resp., Gieseker

stable) if it is torsion-free, has rank 1 at generic points of Ss
W, and is semi-stable (resp.,

stable) with respect to the canonical polarization oS s
W
.

The compactified Jacobian ([OS], [C]) Pic=MG parametrizes gr-equivalence classes of
Gieseker semi-stable sheaves. By [Si], it is functorial: consider the functor

Pic : schemes! sets

that assigns to a scheme S the set of coherent sheaves on Ss
S flat over S and such that the

restriction to any geometric fiber Ss
W is Gieseker semi-stable. Then there exists a natural
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transformation Pic! h
Pic

which has the universal property: for any scheme T , any natural
transformation Pic! hT factors through a unique morphism Pic! T .

Over each geometric point of MG, Pic is a stable toric variety of Pic0ðSWÞ and its nor-
malization is a disjoint union of toric varieties.

Proposition 5.2. The pull-back of an invertible sheaf in Pic1ðSWÞ is Gieseker stable

on Ss
W.

Proof. Let X ¼ Ss be a stable hypertree curve. We call an irreducible component of
X black if it is the proper transform of a component of S. Otherwise we call it white. It is
well known that slope stability on reducible curves reduces to the following Gieseker’s basic

inequality. For any proper subcurve Y HX , we have

bðY Þ � bðXÞmðYÞ
mðXÞ

����
����< 1

2
KY :ð5:2:1Þ

Here,

bðSÞ ¼ deg LjS; mðSÞ ¼ degoS s jS; and KY :¼ jY XXnY j:

In our case, bðSÞ is just the number of black components in S, and we have

mðXÞ ¼ 2g� 2 ¼ 2d � 4:

We denote m :¼ mðYÞ, b ¼ bðYÞ, and have to show that

jð2d � 4Þb� dmj < ðd � 2ÞKY :ð5:2:2Þ

5.3. It is easy to see that the complementary subcurve Y c :¼ XnY satisfies (5.2.1) if
and only if Y does. Hence, by interchanging Y with Y c, we can assume that

dm� ð2d � 4Þbf 0ð5:3:1Þ

and try to show that

dm� ð2d � 4Þb� ðd � 2ÞKY < 0:ð5:3:2Þ

5.4. Consider a white component w1 of Ss which is not in Y but such that at least
one adjacent black component is in Y . Enumerate the black components in Y intersecting
w1 as b1; b2; . . . ; bi, and the rest as biþ1; . . . ; bk, with 1e ie k (and k f 3). We claim that
adding w1 to Y does not decrease the left-hand side in (5.3.2) and increases the left-hand
side in (5.3.1). We only need to show that dm� ðd � 2ÞKY increases. Adding w1 to Y in-
creases m by k � 2. If the original value of KY is xþ i, where i is the contribution from w1

intersecting b1 through bi, then the value after adding w1 to Y is xþ k � i. Hence, KY in-
creases by k � 2i. Then the di¤erence of values of the left-hand side is

dðk � 2Þ � ðd � 2Þðk � 2iÞ ¼ ðd � 2Þi þ k � d f ðd � 2Þ þ 3� d > 0:
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Hence we can assume that all white lines hit by a black component in Y are also in Y : by
showing (5.3.2) in this situation, we show (5.3.2) in general.

5.5. Let Pi be the number of singular points of S of valence i. Then

P
Pi ¼ n and

P
iPi ¼ 2d þ n� 2:

This is because
P

iPi is the total number of times a singular point is hit by a component in
S. This is equal to

P
jGaj, which by the normalization axiom equals 2d þ n� 2. So we have

P
ði � 1ÞPi ¼ 2d þ n� 2� n ¼ 2d � 2:ð5:5:1Þ

Let pi be the number of singular points of S of valence i hit by the image of Y . Then
(5.5.1) implies that

P
i

ði � 1Þpi e 2d � 2ð5:5:2Þ

with strict inequality if Y does not cover all the points in N.

Let bi be the number of black components in Y with i singular points. By the con-
vexity axiom, we have

P
i

pi f
P

i

ði � 2Þbi þ 2. If Y covers all the points in N, then we

claim that this inequality is strict: otherwise, as Y is a proper subcurve of X , the convexity
axiom would be violated when we consider the components of Y and one extra component
that is not in Y . This inequality together with (5.5.2) (at least one being strict) implies that

P
i

ði � dÞpi þ ðd � 1Þ
P

i

ði � 2Þbi < 0:ð5:5:3Þ

Let l 0i be the number of isolated white components with i singularities (i.e., those not
hit by any black components in Y ). Since we obviously have

P
ði � dÞl 0i e 0, (5.5.3) implies

that

P
i

ði � dÞpi þ
P

i

ði � dÞl 0i þ ðd � 1Þ
P

i

ði � 2Þbi < 0:ð5:5:4Þ

We claim that this inequality is equivalent to (5.3.2). Let li be the number of white
components in Y with i singular points. Then

m ¼
P
ði � 2Þbi þ

P
ði � 2Þli ¼

P
ði � 2Þbi þ

P
ði � 2Þl 0i þ

P
ði � 2Þpi;

since
P
ði � 2Þl 0i is the contribution to

P
ði � 2Þli by isolated white components in Y andP

ði � 2Þpi is the contribution by white components hit by black components in Y , which
we can assume are all in Y . We also have

KY ¼
P

il 0i þ
P

ipi �
P

ibi;ð5:5:5Þ

where
P

il 0i is the contribution toKY by isolated white components in Y ,
P

ipi is the total
number of times a point in the image of Y in S is hit by a black component (not necessarily
in Y ) and

P
ibi is the total number of times a black component in Y hits one of these
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points, so their di¤erence is the contribution to KY by everything except isolated white
components.

So we have

dm� ð2d � 4Þb� ðd � 2ÞKY ¼ 2
P
ði � dÞpi þ 2

P
ði � dÞl 0i þ 2ðd � 1Þ

P
ði � 2Þbi < 0

by (5.5.4). r

Corollary 5.6. Pic1 HPic.

5.7. Let Pic1 be the normalization of the closure of Pic1 in Pic. It compactifies the
Gg

m-torsor Pic1 over MG by adding boundary divisors of two sorts, vertical and horizontal.
Vertical boundary divisors are divisors over the boundary of MG. The boundary divisors of
MG are parametrized by subsets I HGa with jI j, jGanI j > 1. The corresponding hypertree
curve S 0 generically has d þ 1 irreducible components, with the a’s component broken into
a nodal curve with two components, C1

a (with singular points indexed by I ) and C2
a (with

singular points indexed by GanI ). There could be two corresponding vertical boundary di-
visors. Generically they parametrize line bundles on S 0 that have degree 1 on C1

a and degree
0 on C2

a (resp., degree 0 on C1
a and degree 1 on C2

a ) and degree 1 on the remaining compo-
nents. Notice that a priori it is not clear that these loci are non-empty divisors: one has to
check that these line bundles are Gieseker semi-stable.

Horizontal boundary divisors are toric (over a geometric point of MG) and can be
described as follows. Choose a node in Ss and let ŜS be a curve obtained from Ss by insert-
ing a strictly semistable P1 at the node. Start with the multidegree 1 and choose a multi-
degree d̂d on ŜS such that the degree on the extra P1 is 1 and the degree on one of the
neighboring black components is lowered from 1 to 0 (lowering the degree on a white com-
ponent would lead to an unstable sheaf). The corresponding Gieseker semi-stable sheaves
on Ss are push-forwards of invertible sheaves F̂F on ŜS of a given Gieseker semi-stable multi-
degree with respect to the stabilization morphism ŜS! Ss. Note that this creates a sheaf
which is not invertible at the node. An easy count shows that potentially this gives as
many as 2d � 2þ n horizontal divisors.

Lemma 5.8. If G is an irreducible hypertree, then Pic1 has a maximal possible number

of horizontal ð2d � 2þ nÞ and vertical boundary divisors.

Proof. This is a numerical question: one has to check that the corresponding multi-
degrees are Gieseker-stable. The proof is parallel to the proof of Proposition 5.2: a stronger
(by 1) inequality satisfied by an irreducible hypertree compensates for the di¤erence (by 1)
in the multidegree. We omit this calculation. r

Example 5.9. The papers [OS] and [A] contain a recipe for presenting the polytope
of Pic1 as a slice of the hypercube. We will not go into the details here, but let us give our
favorite example. Let S be the Keel–Vermeire curve with 4 components indexed by
f1; 2; 3; 4g. Then the polytope is the rhombic dodecahedron of Figure 3. The normals to
its faces are given by roots aij ¼ fei � ejg of the root system A3, where i; j A f1; 2; 3; 4g,
i3 j. To describe a pure sheaf from the corresponding toric codimension 1 stratum, con-
sider a quasi-stable curve Sij obtained by inserting a P1 at the node of S where i-th and j-th
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components intersect. Now just pushforward to S an invertible sheaf that has degree 1 on
this P1 and at any component of Sij other than the proper transform of the i-th component
of S (where the degree is 0).

Now we can prove Theorem 1.10.

Proof. Our proof is parallel to the proof of irreducibility of DG in Lemma 4.3. Con-
sider the birational map v : M0;n dPic1. Note that Pic1 is in general not Q-factorial. The
map v contracts only one divisor intersecting M0;n, namely DG. The map v is necessarily
contracting if

rðM0;nÞ � r 0ðPic1Þ ¼ 1þ jfboundary divisors contracted by vgj:

(Here r 0ðX Þ denotes the rank of the class group ClðXÞ). Computation of this number shows
that it su‰ces to check that the following boundary divisors are not contracted by v:

� dij for fi; jgSGa,

� dI for I HGb.

We use the commutative diagram of rational maps (with v and the Abel map not
everywhere defined)

M0;nþ1 ���!p Q
a

M0;GaWfnþ1g

pN

???y
???yu

M0;n Pic1:�������!v

We lift the boundary divisors of M0;n defined above to the boundary divisors dij and
dI of M0;nþ1, respectively. By Lemma 3.11, these divisors are not contracted by p. Notice
that pðdijÞ and pðdGb

Þ are not boundary divisors of MGWfnþ1g and are therefore mapped to

Figure 3. Compactified Jacobian of the Keel–Vermeire curve.
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Pic1. We will prove in Lemma 5.10 that vðdijÞ and vðdGb
Þ are divisors in Pic1 (but not

boundary divisors).

Next we consider dI such that 1 < jI j < jGaj � 1. This divisor is mapped to the divisor

fdI HM0;GaWfnþ1gg �
Q
b3a

M0;GbWfnþ1gHMGWfnþ1g:

Note that the Abel map can be extended to the interior of this divisor and maps it to the
corresponding vertical boundary divisor of Pic1. By Lemma 5.10 (iii), this map is domi-
nant.

Finally, consider dGanfig. This divisor is mapped to the divisor

fdi;nþ1 HM0;GaWfnþ1gg �
Q
b3a

M0;GbWfnþ1gHMGWfnþ1g:

This divisor maps onto the horizontal boundary divisor that corresponds to the i-th node of
the a-th irreducible component (use Lemma 5.10 (iv)).

Lemma 5.10. The Abel map restricted to pðdI Þ generically has one-dimensional fibers

if I is one of the following:

(i) I ¼ fi; jg for fi; jgSGa for any a,

(ii) I ¼ Gb,

(iii) I HGb, 2e jI j < jGbj � 1,

(iv) I ¼ Gbnfig, for i A Gb.

Proof. Let N ¼ ðNnIÞW fpg. Denote by do
I the interior of the boundary dI :

do
I GM0; IWfpg �M0;NWfpg:

Let G be the collection of subsets of N obtained by identifying the points in I with p

(and throwing away any subsets with fewer than three elements). Note that G has maxi-
mum capacity (moreover, in the cases (ii), (iii), (iv) G is a hypertree on N) and therefore,
Remark 3.3 applies.

We denote by S the corresponding hypertree curve and by Pic
1

G
the relative Picard

scheme of line bundles of multi-degree ð1; . . . ; 1Þ. Similarly, we let G1
G

, ~GG1
G

, etc., be the cor-

responding Brill–Noether loci. We will use the usual commutative diagram of morphisms
(with p the product of forgetful maps and u the Abel map corresponding to G):

M0;NWfpg ���!p Q
a

M0;GaWfpg

pN

???y
???yu

M0;N Pic
1

G
:�������!
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The main observation that we will use is that generically along the image of p, the
Abel map u has one-dimensional fibers.

Consider first the case (i). We have

do
I GMNWfp;nþ1gG

~GG1
G
:

A point ½m� in M0;NWfp;nþ1g corresponds via the above isomorphism to a morphism

f : S! P1 and an admissible section s of f �Oð1Þ. By abuse of notation we consider ½m� as
a point of do

I . Then pð½m�Þ A MGWfnþ1g corresponds to a pair ðS; sÞ, where s is an admissible
section such that s ¼ r�s, where r : S! S is the map that collapses i, j to p. Case (i) now
follows from the commutative diagram

M0;NWfpg ���!p pðM0;NWfpgÞ ���!u u
�
pðM0;NWfpgÞ

�
G

???y G

???yr�

???yr�

d0
I pðd0

I Þ u
�
pðd0

I Þ
���������!p ��������!u

as the vertical maps (which are given by pull-back by r) are bijective.

Consider now case (ii). A point ½m� in M0;NWfpgG
~GG1
G

corresponds to a morphism

f : S! P1 and an admissible section s of f �Oð1Þ. We have

do
I GMNWfp;nþ1g �MGbWfpgG ~GG1

G
�MGbWfpg:

If ð½m�; ½m 0�Þ A do
I , then the point pð½m�; ½m 0�Þ in MGWfnþ1g corresponds to a pair ðS; sÞ with

the following properties: there is a morphism

r : S! S

that collapses the component Sb to p, and if q A Sb is determined by ½m 0� A MGbWfpg, then
s ¼ r�sþ q is the corresponding admissible section. Note, if we fix a point in the image of
pðdo

I Þ via the Abel map, this fixes the element ½m 0�, and thus q. Case (ii) now follows from
a similar commutative diagram (in the diagram above, take products with MGbWfpg in the
first row).

Cases (iii) and (iv) are similar. r

This concludes the proof of Theorem 1.10. r

6. Planar realizations of hypertrees

To distinguish between the various Brill–Noether loci of di¤erent collections of sub-
sets, we denote by G2ðGÞ the Brill–Noether locus G2 corresponding to a collection of sub-
sets G ¼ fG1; . . . ;Gdg. Recall that an element of G2ðGÞ can be obtained by composing a
morphism S! P2 with a linear projection P2 dP1 such that the morphism
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� has degree 1 on each component of S,

� separates points in N.

So basically we choose N di¤erent points in P2 such that for each a, the points in Ga

are collinear. By Theorem 4.2, if G is an irreducible hypertree, G2ðGÞ is an irreducible sub-
variety of codimension 1 in M0;n. Recall that a hypertree G has a planar realization if there
exists a map S! P2 such that all points in N are distinct and the points in a subset S HN

with jSjf 3 are collinear if and only if S HGa for some a. Clearly, this is an open condition
on G2ðGÞ. We prove that this open set is non-empty:

Theorem 6.1. Any irreducible hypertree has a planar realization.

Proof. Let G ¼ fG1; . . . ;Gdg be an irreducible hypertree. Assume G does not have a
planar realization. It follows that there is a triple

G0 ¼ fa; b; cgHN;

not contained in any Ga, such that the points in G0 are collinear for any S! P2 that gives a
point of G2ðGÞ.

Let ~GG ¼ GW fG0g. By our assumption, G2ðGÞ ¼ G2ð~GGÞ. We may assume a A G1. Since
G1 does not contain G0, we may assume b B G1. Let G 01 ¼ G1nfag. Construct a new collec-
tion of subsets G 0:

(A) If jG1j ¼ 3, let G 0 ¼ fG2; . . . ;Gd ;G0g.

(B) If jG1jf 4, let G 0 ¼ fG 01;G2; . . . ;Gd ;G0g.

Claim 6.2. The collection of subsets G 0 is a hypertree.

Proof of Claim 6.2. We prove that G 0 satisfies the convexity axiom ðzÞ. As G is an
irreducible hypertree, for any S H f2; . . . ; dg we have

����G0 W
S

j AS

Gj

����f
���� S

j AS

Gj

����f P
j AS

ðjGjj � 2Þ þ 3 ¼
P
j AS

ðjGjj � 2Þ þ ðjG0j � 2Þ þ 2:

Similarly, if S k f2; . . . ; dg, we have

����G 01 WG0 W
S

j AS

Gj

����f
����G 01 W S

j AS

Gj

����f
����G1 W

S
j AS

Gj

����� 1

f
P
j AS

ðjGjj � 2Þ þ ðjG1j � 2Þ þ 3� 1

¼
P
j AS

ðjGjj � 2Þ þ ðjG 01j � 2Þ þ ðjG0j � 2Þ þ 2:

It is easy to see that G 0 satisfies the normalization axiom ðyÞ. It follows that G 0 is a hyper-
tree (possibly not irreducible). r
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We use our working definition of DG, namely DG ¼ G2ðGÞ. Similarly, DG 0 ¼ G2ðG 0Þ.
By Theorem 2.4 and Theorem 3.2, D 0G is a divisor in M0;n (possibly reducible) and the map

p 0 : M0;nþ1 !MG 0Wfnþ1g :¼
Q
G 0a

M0;G 0aWfnþ1g

is a birational morphism whose exceptional locus consists of p�1
N ðDG 0 Þ and boundary divi-

sors in M0;nþ1 contracted by p 0.

By Theorem 4.2, DG ¼ G2ðGÞ is an irreducible divisor in M0;n. In addition, we have
G2ð~GGÞLG2ðG 0Þ and by assumption G2ð~GGÞ ¼ G2ðGÞ. It follows that DG is an irreducible

component of DG 0 ¼ G2ðG 0Þ.

Let E1; . . . ;Es be the irreducible components of p�1
N DG 0 . We may assume E1 ¼ p�1

N DG.
By Theorem 4.2, we have

E1 ¼ p�1
N DG ¼ ðd � 1ÞH �

P
IHN

1ejI jen�3

mI EI ;

where mI satisfies inequality (4.2.1). By (4.2.2), we have mfig ¼ d � vi.

Notation 6.3. Let d 0 be the number of hyperedges in G 0. (Hence, d 0 ¼ d in case (A)
and d 0 ¼ d þ 1 in case (B).) Denote by v 0i the valence of i A N in G 0.

Lemma 6.4. The classes of the divisors Ei are subject to the following relation:

Ps

i¼1

ciEi ¼ ðd 0 � 1ÞH �
P

IHN
1ejI jen�3

m 0I EI �
P

jI j¼n�2
dIWfnþ1g AExcðp 0Þ

a 0I dIWfnþ1g;ð6:4:1Þ

where c1; . . . ; cs are positive integers, a 0I is the discrepancy of the divisor dIWfnþ1g with respect

to the map p 0 and the integers m 0I f 0 satisfy the following inequality:

m 0I f jI j � 1� cap
�
ðG 0ÞI

�
þ jfG 0a jG 0a H I cgj:ð6:4:2Þ

In particular, we have

m 0i f d 0 � v 0i :

Proof. Note that formula (4.4.1) still holds (the map p 0 is birational):

Ps

i¼1

ciEi ¼ KM0; nþ1
� p 0�KMGWfnþ1g

�
P

dIWfnþ1g AExcðp 0Þ
a 0I dIWfnþ1g:ð6:4:3Þ

For the purpose of the lemma, we ignore the terms a 0I dIWfnþ1g for jI j ¼ n� 2 in the
above formula. Then the lemma follows from (4.4.1), combined with the inequality

a 0I f codim p 0ðdIWfnþ1gÞ � 1

and Lemma 3.10. r
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We compare the coe‰cient of H in both sides of the equation (6.4.1). Recall that the
coe‰cient of H in E1 is d � 1.

Consider first case (A). Since the degree of H is at least d � 1 in the left-hand side,
and at most d � 1 on the right, it follows that a 0I ¼ 0 for all jI j ¼ n� 2 and moreover,
s ¼ 1, c1 ¼ 1, i.e., we have

E1 ¼ p�1
N DG ¼ ðd � 1ÞH �

P
IHN

1ejI jen�3

m 0I EI :

It follows that mi ¼ m 0i for all i. By Lemma 6.4, m 0i f d � v 0i . By (4.2.2), mi ¼ d � vi.
This leads to a contradiction, since v 0i < vi for all i A G1nfa; b; cg (we use here the assump-
tion that G1nfa; b; cg3j).

Consider now case (B). The coe‰cient of H on the right-hand side of (6.4.1) is at
most d, while the coe‰cient of H in E 01 is d � 1. If s > 1, it follows that s ¼ 2 and E2 is an
irreducible divisor that has H-degree 1. From the Kapranov blow-up model of M0;nþ1 one
can see that either E2 is a boundary divisor or h0ðE2Þ > 1. This is a contradiction, since E2 is
a divisor that intersects the interior of M0;nþ1 and moreover, it is an exceptional divisor for
the birational map p 0. The same argument shows that c1 ¼ 1.

Moreover, we must have a 0I0
¼ 1, for some jI0j ¼ n� 2 (with a 0I ¼ 0 for all I 3 I0).

Let fu; vg ¼ I c
0 . We have

E1 ¼ p�1
N DG ¼ dH �

P
IHN

1ejI jen�3

m 0I EI � du; v:

In particular, mi ¼ m 0i � 1 for all i3 u; v and mi ¼ m 0i if i A fu; vg. Note that
v 0b ¼ vb þ 1, v 0c ¼ vc þ 1, while v 0i ¼ vi for all i3 b; c. By Lemma 6.4,

m 0i f d 0 � v 0i ¼ d þ 1� v 0i for all i.

Since mi ¼ d � vi for all i, it follows that if i3 fb; cg, then i3 fu; vg, i.e., fu; vg ¼ fb; cg.
We have

E1 ¼ p�1
N DG ¼ dH �

P
IHN

1ejI jen�3

m 0I EI � db; c:ð6:4:4Þ

We consider the coe‰cients mI and m 0I for I ¼ G 01. By (4.2.6), we have

mI ¼ d þ jI j � 1�
P
i A I

vi:ð6:4:5Þ

By Lemma 6.4, we get

m 0I f jI j � 1� cap
�
ðG 0ÞI

�
þ jfG 0a jG 0a H I cgj:ð6:4:6Þ

155Castravet and Tevelev, Hypertrees, projections, and moduli of stable rational curves



Recall that we assume b B G1. Note that

jfGa jGaH I cgj ¼ d �
P
i A I

vi þ jI j � 1:ð6:4:7Þ

We will compare jfGa jGa H I cgj with jfG 0a jG 0a H I cgj.

We consider two cases. First, assume c B G1. Then ðG 0ÞI ¼ fIg. Hence,

cap
�
ðG 0ÞI

�
¼ jI j � 2:

Since G0 ¼ fa; b; cgH I c, it follows that

m 0I f 1þ jfG 0a jG 0a H I cgj ¼ 2þ jfGa jGaH I cgj ¼ d þ jI j þ 1�
P
i A I

vi;

which contradicts (6.4.5) since by (6.4.4) mI ¼ m 0I � 1.

Now assume c A G1. By (6.4.7) and from G0 ƒ I c it follows that

m 0I f 1þ jfG 0a jG 0a H I cgj ¼ 1þ jfGa jGa H I cgj ¼ d þ jI j �
P
i A I

vi:

This contradicts (6.4.5), since by (6.4.4), mI ¼ m 0I . r

7. Spherical and not so spherical hypertrees

Theorem 7.1. Let K be an even (i.e., bicolored ) triangulation of a sphere with n ver-

tices. Then its collection of black (resp., white) triangles G (resp., G 0) is a hypertree. It is ir-

reducible if and only if K is not a connected sum of two triangulations.

Proof. Let d (resp., d 0) be the number of triangles in G (resp., G 0). Since K has
3d ¼ 3d 0 edges, we have d ¼ d 0. By Euler’s formula,

n� 3d þ 2d ¼ 2;

and therefore d ¼ n� 2.

7.2. Take any k black triangles G1; . . . ;Gk and let DHS2 be their union. As a sim-
plicial complex, D has k faces, 3k edges, and jG1 W � � �WGkj vertices. Since h2ðDÞ ¼ 0, we
have

wðDÞ ¼ h0ðDÞ � h1ðDÞ ¼
����Sk
i¼1

Gi

����� 2k:

Abusing notation, let S2nD denote the simplicial complex obtained by removing interiors
of triangles in D. Let D be the closure of a connected component of the set S2nD with ver-
tices removed. Note that D is not necessarily a polygon (it is not necessarily simply con-
nected), but its boundary edges are well-defined. Their number eðDÞ is equal to three times
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the number of white triangles inside D minus three times the number of black triangles in-
side D. It follows that 3 j eðDÞ. Then the number of edges in qðS2nDÞ ¼ qD equals

3k ¼
P

eðDiÞf 3h0ðS2nDÞ:ð7:2:1Þ

This implies that

h0ðS2nDÞe k for any union D of k black ðresp:; whiteÞ faces:ð7:2:2Þ

7.3 (G satisfies the convexity axiom ðzÞ). By Alexander duality,

h1ðDÞ ¼ h0ðS2nDÞ � 1e k � 1;

and we have

����Sk
i¼1

Gi

����� 2 ¼ 2k þ h0ðDÞ � h1ðDÞ � 2f 2k þ h0ðDÞ þ 1� k � 2f k:

It follows that G is a hypertree.

7.4. Suppose that G is not irreducible. Then one can find a subset of k black
triangles G1; . . . ;Gk as above with 1 < k < n� 2 such that all inequalities above are equal-
ities, i.e.,

h0ðS2nDÞ ¼ k; h0ðDÞ ¼ 1:

Hence, S2nD has k connected components D1; . . . ;Dk. Moreover, using (7.2.1) we
have eðDiÞ ¼ 3 for all i. Some (but not all) of the Di are just white triangles K, others are
unions of black and white triangles. But all of them are simply-connected polygons, since
h1ðS2nDÞ ¼ 0 by Alexander duality (hence, S2nD is simply connected).

Now it is clear that we are done: Let D be one of the connected components of S2nD
which is not a white triangle. But the boundary of D is a triangle, and it is clear that K is a
connected sum of two triangulations K1 and K2 glued along the boundary of D. Namely,
K1 is formed by removing all triangles inside D and gluing a white triangle along the
boundary of D instead, and K2 is formed by removing all triangles not in D and gluing a
black triangle along the boundary of D instead.

The other way around, if K is a connected sum of triangulations K1 and K2, then G
is not irreducible: just take the set S to be the set of all black triangles of K1. r

The proof of Theorem 7.1 shows the following:

Lemma 7.5. If K is an even triangulation of a sphere and D is a polygon such that

any triangle inside D adjacent to a boundary edge of D is white (equivalently, D is one of

the connected components of the complement to a union of black triangles in K), then the

number of edges of D is divisible by 3. Moreover, K is irreducible if and only if whenever

the number of edges of D is three, then D is a white triangle or the complement of a black

triangle.
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We will prove in Corollary 8.4 that white and black hypertrees of any irreducible even
triangulation give the same divisor on M0;n. We will now show that under a mild genericity
assumption there are no other hypertrees that give the same divisor.

Definition 7.6. Let G be an irreducible hypertree composed of triples. We call G ge-

neric if for any triple fi; j; kgHN that is not a hyperedge or a wheel (see Definition 4.8),
we have

capðGNnfi; j;kgÞ ¼ n� 4;ð7:6:1Þ

where GNnfi; j;kg is the collection of triples obtained from G by identifying vertices i, j, and k

(and removing triples which contain two of the points i, j, k).

Theorem 7.7. Let G, G 0 be generic hypertrees. If DG ¼ DG 0 , then G 0 is irreducible and

there exists a bicolored triangulation K of S2 such that G is its collection of black faces and

G 0 is its collection of white faces. In this case, G uniquely determines the triangulation.

Theorem 7.7 and Lemmas 7.8, 7.9 give a lower bound on the number of extremal rays
of the e¤ective cone of M0;n, namely, the number of generic non-spherical irreducible hy-
pertrees plus half of the number of generic spherical irreducible hypertrees (on all subsets
of N).

Lemma 7.8. Let G be an irreducible hypertree on a subset K of N and consider the

forgetful map pK : M0;n !M0;K. Then p�1
K DG generates an extremal ray of E¤ðM0;nÞ.

Proof. We may assume without loss of generality that K ¼ f1; . . . ; kg for k e n. By
Theorem 4.3, the divisor DG is irreducible. Therefore, the divisor p�1

K DG is irreducible.
Moreover, pGWfnþ1gðDGÞ has codimension at least two in MGWfnþ1g. It is enough to con-

struct a hypertree ~GG on the set N such that p�1
K DG is in the exceptional locus of p~GGWfnþ1g.

This will be the case if for example GL ~GG. Let ~GG ¼ GW fG 01; . . . ;G 0n�kg where

G 01 ¼ fk þ 1; 1; 2g;G 02 ¼ fk þ 2; 1; 3g; . . . ;G 0n�k ¼ fn; 1; n� kg: r

Lemma 7.9. Let G be an irreducible hypertree on the set N. If for some forgetful maps

p : M0; ~NN !M0;N and p 0 : M0; ~NN !M0;N 0 for subsets N and N 0 of ~NN, we have

p�1ðDGÞ ¼ p 0�1ðDG 0 Þ;

for some irreducible hypertree G 0 on N 0L ~NN, then N ¼ N 0, DG ¼ DG 0 .

Proof. Consider the divisor class of the pull-back D of p�1ðDGÞ to M0; j ~NNjþ1 in the
Kapranov model with respect to the j ~NNj þ 1 marking. Using Theorem 4.2, we have

D ¼ ðd � 1ÞH �
P

i A ~NNnN
ðd � 1ÞEi �

P
i AN

ðd � viÞEi � � � � ;

where vi f 2 is the valence of i in G. If

p�1ðDGÞ ¼ p 0�1ðDG 0 Þ;
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then d ¼ d 0 and by reading o¤ the coe‰cients of Ei that are equal to d � 1, it follows that
N ¼ N 0 and DG ¼ DG 0 . r

Proof of Theorem 7.7. Comparing the classes of DG and D 0G given in Theorem 4.2,
we see that d ¼ d 0 ¼ n� 2, i.e., G 0 is also composed of triples, and for each i A N, the hy-
pertrees G and G 0 have the same valences vi.

Let X (resp., X 0) be the collection of wheels of G (resp., G 0). We claim that

GWX ¼ G 0WX 0:

Let m (resp., m 0) be the coe‰cients in the class of DG (resp., DG 0), as in Theorem
4.2. Then by (4.2.3) and (4.2.1), m 0Nnfi; j;kgf 1 for any triple fi; j; kg that is a hyperedge
or a wheel in G 0. But since G is a generic hypertree, using Lemma 4.9, we have
mNnfi; j;kg ¼ 0 for any triple fi; j; kg which is not a hyperedge or a wheel. This proves that
G 0WX 0HGWX. Since both G, G 0 are generic hypertrees, this proves the claim.

Suppose G3G 0. Without loss of generality, we can assume that

G1 A GnG 0:

We are going to construct a finite bi-colored 2-dimensional polyhedral complex K
inductively, as the union of complexes K1 HK2 H � � � . On each step, any black face of Ki

is going to be a hyperedge in G and a wheel in G 0, and vice versa for the white faces.

Let us define K1. Its vertices are indexed by G1. Since G1 is a wheel in G 0, it can be
identified with a triangle in a unique way, where the edges of the triangle are precisely the
intersections (with two elements) of G1 with the hyperedges of G 0. So we let K1 be this poly-
gon, colored black.

Next we define an inductive step. Suppose Kn is given. Take a face X . Then X is ei-
ther black or white. The construction is absolutely symmetric, so let us suppose that X is
black. Then the set of vertices of X is a hyperedge in G and a wheel in G 0. Moreover, we
will make sure that, in our inductive construction, the edges of X are exactly the intersec-
tions (with two elements) of X with the hyperedges of G 0. Notice that this holds for K1.

Let fa; bgHX be an edge that is not an edge of some white face. If any edge of X is
also an edge of some white face, then discard X , and try another face. If we cannot find a
face with an edge that is not an edge of some face of an opposite color, then the algorithm
stops.

Since X is a wheel of G 0, fa; bg is the intersection of X with a unique hyperedge Y of
G 0. This will be our next face. Since a; b A X , X is a unique hyperedge in G containing a, b.
So Y must be a wheel in G. Therefore, we can identify Y with the vertices of a triangle such
that its edges are identified with the (2-pointed) intersections of Y with the hyperedges in G.
For example, ða; bÞ will be one of these edges. We define Knþ1 as Kn with Y added as a new
white polygon.

We have to check that Knþ1 is a bi-colored polygonal complex, i.e., that any two
faces of Knþ1 share at most two vertices, and if they share exactly two vertices, then in
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fact they share an edge and are colored di¤erently. So let Z be a face of Kn such that
jZ XY j > 1 but Z 3Y . Then Z cannot be a hyperedge of G 0, so Z is a black face. Since
Z is a wheel of G 0, Z XY is an edge of Z, and since Y is a wheel in G, Z XY is an edge
of Y .

At some point this algorithm stops. Let K be the resulting polygonal complex. Let
fGi j i A Sg (resp., fG 0i j i A S 0g) be the collection of its black faces (resp., white faces) for
some S H f1; . . . ; n� 2g (resp., S 0H f1; . . . ; n� 2g). Let

e ¼
P
i AS

jGij ¼
P

i AS 0
jG 0i j

be the number of edges of K and let

v ¼
���� S
i AS

Gi

���� ¼
���� S
i AS 0

G 0i

����
be the number of its vertices. Finally, let f ¼ fb þ fw be the number of its faces, where
fb ¼ jSj (resp., fw ¼ jS 0j) is the number of black faces (resp., white faces).

Notice that a priori K is not necessarily homeomorphic to a closed surface, because
at some vertices of K several sheets can come together. At these points, the link of K is
homeomorphic to the disjoint union of several circles. Let K!K be the ‘‘normalization’’
obtained by separating these sheets. Then K is homeomorphic to a closed surface. Let
vf v be the number of vertices in K. We have

2ðv� eþ f Þf 2v� 2eþ 2fb þ 2fw

¼
���� S
i AS

Gi

����þ
���� S
i AS 0

G 0i

�����P
i AS

jGij �
P

i AS 0
jG 0i j þ 2jSj þ 2jS 0j

¼
���� S
i AS

Gi

�����P
i AS

ðjGij � 2Þ þ
���� S
i AS 0

G 0i

�����P
i AS

ðjGij � 2Þf 4

since G and G 0 are hypertrees. Since they are irreducible hypertrees, the inequality is strict
unless S ¼ S 0 ¼ f1; . . . ; n� 2g. It follows that

wðKÞf 2;

and the inequality is strict unless S ¼ S 0 ¼ f1; . . . ; n� 2g. But the Euler characteristic can-
not be bigger than 2, with equality if and only if K is a sphere. It follows that K ¼K is a
bi-colored triangulation of a 2-sphere which uses all hyperedges in G as black faces and all
hyperedges in G 0 as white faces.

It remains to show that G uniquely determines the triangulation. It is enough to show
that G 0 is the set of all wheels X of G. Since G 0LX, it is enough to show that there are no
wheels in G other than the set of white triangles in K. Assume that there exists a wheel
fi; j; kg which is not a white triangle. Let D be one of the two polygons on the sphere
bordered by this wheel. By switching between the two polygons, we may assume that at
least two of the three edges of D are bordered by two black triangles which lie outside of
D. If the remaining black triangle bordering D lies on the outside of D, this contradicts the
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irreducibility of G. If the remaining black triangle lies on the inside of D, then we obtain a
polygon bordered by white triangles and having four edges, which contradicts Lemma 7.5.

r

We now construct both spherical and non-spherical generic hypertrees.

Definition 7.10. Let K be an even triangulation. Let D be a polygon such that any
triangle inside D adjacent to a boundary edge of D is white.

We call K a generic triangulation if:

� K is irreducible, i.e., if D has three edges, then D is a white triangle or the comple-
ment of a black triangle (see Lemma 7.5).

� If D has six edges, then D is either a hexagon A or B or the complement of a
hexagon A 0 or B 0 from the following picture:

A B A 0 B 0

Remark 7.11. Genericity means that vertices are sprinkled on the sphere su‰ciently
densely. We did not try to give a combinatorial classification of generic triangulations, al-
though this is perhaps possible. But to give a flavor of what is going on, suppose K is any
even triangulation and let K 0 be a ‘‘quadrupled’’ even triangulation obtained by the fol-
lowing procedure: take all vertices in K and add a midpoint of any edge of K as a new
point of K 0. For any black (resp., white) triangle T ¼ fa; b; cg of K, the triangulation K 0

has black (resp., white) triangles fa; b 0; c 0g, fa 0; b; c 0g, and fa 0; b 0; cg and a white (resp.,
black) triangle fa 0; b 0; c 0g, where a 0, b 0, c 0 are new points in T opposite to vertices a, b, c,
see Figure 4. It is not hard to see that after quadrupling K several times the triangulation
becomes generic. Indeed, any closed path with six edges will happen either in the region
of the triangulation that looks like a standard A2-triangulated R2, in which case D is a
hexagon A or A 0, or this path loops around a vertex of valence3 6. In this case the valence
must be equal to 4, and we have a hexagon B or B 0. In fact, quadrupling just once is
enough ([H]).

Figure 4. Quadrupling a triangulation.
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Lemma 7.12. Let K be a generic triangulation and let G be its collection of black

triangles. Then G is a generic hypertree, except when n ¼ 8 and K is the triangulation given

by the bipyramid (see Section 9).

Remark 7.13. The genericity assumption in Lemma 7.12 is necessary: the bipyramid
is easily seen to not be a generic triangulation for n > 8 (for example there are many loops
with six edges with black triangles on one side of it that pass once through the north pole
and once through the south pole). We will show in Section 9 that the corresponding divisor
is a pull-back of the ‘‘Brill–Noether divisor’’ for a certain map M0;n !Mn�3, and conse-
quently its symmetry group is much larger than the dihedral group. This divisor can be
realized by various hypertrees G 0 obtained from G by permuting equatorial points. By
Lemma 7.12, the bipyramid for n ¼ 8 is the only generic triangulation that does not corre-
spond to a generic hypertree.

Proof of Lemma 7.12. We write a$ b if the vertices a and b are connected by an
edge. Up to symmetries, there are three possible cases.

Case X. ij and jk are both edges of black triangles. These triangles are removed in
GNnfi; j;kg.

Case Y. ij is an edge of a black triangle, which will be removed in GNnfi; j;kg, but
i 6$ k and j 6$ k. We also remove a black triangle adjacent to k as follows: if i, j, k are
vertices of the hexagon A 0, then we remove the black triangle inside the hexagon adjacent
to k; in all other cases, we remove a random black triangle adjacent to k.

Case Z. i 6$ j, j 6$ k, and i 6$ k. In this case we remove two black triangles adja-
cent to the same point (it could be i, j, or k) according to the following rules. If one of the
points i, j, or k has valence 2 (see Definition 1.8), then we remove both triangles adjacent to
this point (any of i, j, k is going to work). If each of the points i, j, k has valence more than
2, but these points are vertices of the hexagon A 0, then we remove the black triangle inside
the hexagon adjacent to i and any other black triangle adjacent to i. In any other case we
just remove two random black triangles adjacent to i.

We claim that the remaining n� 4 triangles ~GG form a hypertree if we identify
i ¼ j ¼ k. Let S H ~GG be a proper subset of s black triangles, with 1 < s < n� 4. It is
enough to show that S covers at least sþ 2 vertices (after we identify i ¼ j ¼ k). Let D be
the union of the triangles in S before the identification. Since G is irreducible, D contains at
least sþ 3 vertices of N. So it su‰ces to prove the following:

Claim 7.14. If i; j; k A D, then D contains at least sþ 4 vertices of N.

By 7.2, this claim is equivalent to the following more simple

Claim 7.15. The complement S2nD contains either a connected component with at

least nine sides or at least two connected components with at least six sides each (by 7.2, the

number of sides is always divisible by 3).

We argue by contradiction. Note that we remove two triangles, and a connected com-
ponent of S2nD that contains any of them has at least six edges. Therefore both removed
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triangles belong to the same connected component, call it D, with six edges (and all other
connected components are white triangles). Recall that i; j; k A D and DHS2nD.

We know how all hexagons look like: D must be either the ‘‘inside’’ of a hexagon A

or B or the ‘‘outside’’ of a hexagon A 0 or B 0. The hexagon A is excluded because it contains
only one black triangle.

The hexagon B contains two black triangles inside, so they must be the removed tri-
angles. Since i; j; k A D, it must be that i, j, k are on the boundary of the hexagon. In cases
X and Y the removed triangles contain i, j, k; hence, two opposite vertices of the hexagon
B are excluded. In this case it follows that one of i, j, k is connected by an edge to the other
two. This is only possible in case X. But in case X the removed triangles have in common
only j; hence, j must be strictly inside the hexagon, which is a contradiction. Finally, case
Z is impossible because the removed triangles have in common i, therefore i must be the
point strictly inside the hexagon, which is a contradiction.

Suppose that D is the outside of a hexagon A 0 or B 0. Since the removed triangles are
contained in D, it follows that no two of i, j, k can be connected by a black triangle inside
the hexagon.

Assume D is the outside of a hexagon A 0. Then i, j, k are the three vertices of A 0 with
no two of them connected by an edge. In case Y and case Z, one of the removed triangles is
inside A 0, which is a contradiction.

Assume we are in case X. Let a (resp., b, resp., c) be the middle vertex (on the bound-
ary of A 0) between i, j (resp., j, k, resp., i, k). We claim that i, j, a and j, k, b must form
white triangles. (Assume fi; j; ag is not a white triangle. Consider the polygon Q bordered
by the white triangles that contain the edges fi; ag, f j; ag, fi; jg. Then Q has either three or
four edges. This is a contradiction. The other case is identical.)

Consider the complement of the polygon P bordered by black triangles fi; a; cg,
fk; b; cg and the two black triangles adjacent to the edges fi; jg and f j; kg. Since K is a
generic triangulation, it must be that P is either the complement of a hexagon A 0 or B 0 (in
which case P contains two vertices strictly in its interior, while A 0, B 0 do not; hence, a con-
tradiction) or P is the inside of a hexagon A or B. This completely determines the triangu-
lation; in case A we must have n ¼ 8, while in case B we have n ¼ 9. It is easy to see that in
case A this gives the bipyramid triangulation, and that case B cannot happen for an irre-
ducible hypertree.

Assume now that D is the outside of a hexagon B 0. Since no two of i, j, k can be
connected by a black triangle inside the hexagon and since i, j, k are inside the hexagon,
it follows that the point strictly in the interior of B 0 must be one of i, j, k. In cases X, Y
since i, j, k belong to the removed triangles, which are in D, it follows that i, j, k are on the
boundary of B 0, which is a contradiction. In case Z, note that since the valence of the inte-
rior point is 2, the removed triangles must be the two black triangles inside B 0, which is a
contradiction. r

7.16. W. Thurston [Th] suggests an approach for the classification of triangulations
of the sphere based on hyperbolic geometry. Moreover, he gives a complete classification
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for triangulations with vi ¼ 2 or 3 for all vertices i. It would be interesting to see how irre-
ducible and generic triangulations fit in his classification.

We have not tried to classify all non-spherical hypertrees. It is easy to see that just
choosing a random collection of triples is not going to work: one of the results in the theory
of random hypergraphs is that they are almost surely disconnected. It is easy to see that
disconnected hypertrees do not satisfy ðzÞ. But perhaps one can enumerate all hypertrees
inductively, using some simple ‘‘add a vertex’’ procedures. Here is an example of such a
construction. The number of irreducible hypertrees produced this way grows very rapidly
as n goes to infinity.

7.17. Construction. Suppose that G 0 is an irreducible hypertree on N with triples
only. After renumbering, we can assume that n belongs to only two triples, namely to G 0n�3

and G 0n�2. Suppose also that n� 1 A G 0n�2. We define n� 1 triples for k ¼ nþ 1 as follows:
Gi :¼ G 0i for i ¼ 1; . . . ; n� 3; if G 0n�2 ¼ fi; n� 1; ng, then we define Gn�2 :¼ fi; n� 1; nþ 1g;
and we define Gn�1 :¼ fa; n; nþ 1g, where a is any index in NnðGn�2 WGn�3Þ, see
Figure 5.

a n

i

n� 1
a nþ 1 n

i

n� 1

Figure 5

Proposition 7.18. G is an irreducible hypertree.

Proof. Suppose I H f1; . . . ; n� 1g, 1 < jI j < n� 1. Consider several cases. If
I H f1; . . . ; n� 3g, then

����S
i A I

Gi

���� ¼
����S
i A I

G 0i

����f jI j þ 3;

and we are done. If I ¼ I 0W fn� 2g (resp., I ¼ I 0W fn� 1g), where I 0H f1; . . . ; n� 3g,
then

����S
i A I

Gi

����f
���� S
i A I 0

G 0i

����þ 1;

because nþ 1 belongs to the first union but does not belong to the second union. So again
we are done unless jI 0j ¼ 1, in which case the claim is easy.

It remains to consider the case I ¼ I 0W fn� 2; n� 1g, where I 0H f1; . . . ; n� 3g
(and note that jI 0j < n� 3). If I 0 is empty, then the claim is easy. Otherwise, let
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I 00 ¼ I 0W fn� 2g. Then 1 < jI 00j < n� 2 and so

���� S
i A I 00

G 0i

����f jI 00j þ 3:

But S
i A I

Gi M
S

i A I 00
G 0i t fnþ 1g:

So G is an irreducible hypertree. r

Lemma 7.19. Let G 0 be an irreducible hypertree composed of triples and let G be the

irreducible hypertree obtained from G 0 by the inductive Construction 7.17. If G 0 is generic,
then G is generic.

Proof. Let fi; j; kg be a triple in N W fnþ 1g that is not a triple, nor a wheel in G.
Denote by ~GGa the triple Ga obtained by identifying i, j, k with p, with the convention that
we drop the ~GGa’s that are not triples. We prove that we can find n� 3 triples ~GGa that satisfy
ðzÞ.

Consider the case when nþ 1 A fi; j; kg, say k ¼ nþ 1: If fi; jg is contained in some

Ga for a A f1; . . . ; n� 3g, say Gn�3, then we take as our n� 3 triples ~GG1; . . . ; ~GGn�4 and one of
~GGn�2, ~GGn�1 (one that is a triple; for example, since Gn�2 XGn�1 ¼ fnþ 1g and fi; j; nþ 1g is
not a wheel in G, one of Gn�2, Gn�1 does not contain i, j). If fi; jg is not contained in any of
G1; . . . ;Gn�3, we take ~GG1; . . . ; ~GGn�3 as our triples. The result follows from the fact that for

any T H f1; . . . ; n� 3g, since nþ 1 B
Sn�3

a¼1

Ga, we have

���� S
a AT

~GGa

����f
���� S
a AT

Ga

����� 1f jT j þ 3� 1 ¼ jT j þ 2:

Adding one of ~GGn�2, ~GGn�1 adds the index nþ 1 to the union, and condition ðzÞ is still satis-
fied. The case when n A fi; j; kg, nþ 1 B fi; j; kg is similar: we take ~GG1; . . . ; ~GGn�4 (note,

n B
Sn�4

a¼1

Ga) and ~GGn�1 as our triples.

Consider now the case when n; nþ 1 B fi; j; kg. Then fi; j; kg is not a triple, nor a
wheel in G 0. Since G 0 is a generic hypertree, there are n� 4 triples from G 0 which after iden-
tifying i, j, k with p, satisfy ðzÞ.

If the n� 4 triples are also triples in G (i.e., G 0n�2 is not among them), then adding one
Gn�1 to them will do. Assume the contrary. Since j~GG 0n�2j ¼ 3, it follows that j~GGn�2j ¼ 3.

We claim that the remaining n� 5 triples and ~GGn�2, ~GGn�1 will do the job. Let T be a subset
of the n� 5 remaining triples. Clearly, f~GGaga AT satisfy ðzÞ. Adding one of ~GGn�2, ~GGn�1 to

f~GGaga AT will not violate ðzÞ. But f~GGaga AT , ~GGn�2, ~GGn�1 also satisfy ðzÞ:
���� S
a AT

~GGa W ~GGn�2 W ~GGn�1

����f
���� S
a AT

~GGaW ~GG 0n�2 W fnþ 1g
����f ðjT j þ 1Þ þ 2þ 1:

This finishes the proof. r
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8. Determinantal equations

In this section we give simple determinantal equations of hypertree divisors in M0;n

and then use them to show that black and white hypertrees of a spherical hypertree give the
same divisor in M0;n.

We consider only the case when hyperedges are triples. Fix a hypertree

G ¼ fG1; . . . ;Gn�2g

on the set f1; . . . ; ng. We work in ‘‘homogeneous coordinates’’ on M0;n, i.e., we represent a
point of M0;n by n roots x1; . . . ; xn of a binary n-form.

Proposition 8.1. Let A be an ðn� 2Þ � n matrix with the following rows (well-defined

up to sign): if Ga ¼ fi; j; kg, then

Aai ¼ xj � xk; Aaj ¼ xk � xi; Aak ¼ xi � xj:

Then DG is given by the vanishing of any ðn� 3Þ � ðn� 3Þ minor of A obtained by deleting a

row and three columns with non-zero entries in that row.

Example 8.2. Consider the unique (up to symmetry) hypertree for n ¼ 7 with hyper-
edges

G ¼ f712; 734; 756; 135; 246g:

Then we have

A ¼

x2 � x7 x7 � x1 0 0 0 0 x1 � x2

0 0 x4 � x7 x7 � x3 0 0 x3 � x4

0 0 0 0 x6 � x7 x7 � x5 x5 � x6

x3 � x5 0 x5 � x1 0 x1 � x3 0 0

0 x4 � x6 0 x6 � x2 0 x2 � x4 0

2
666664

3
777775

and DG is given by the equation

�x2
7x2x3 þ x7x1x2x3 þ x2

7x1x4 � x7x1x2x4 � x7x1x3x4 þ x7x2x3x4

þ x2
7x2x5 � x7x1x2x5 � x2

7x4x5 þ x1x2x4x5 þ x7x3x4x5 � x2x3x4x5 � x2
7x1x6

þ x7x1x2x6 þ x2
7x3x6 � x1x2x3x6 � x7x3x4x6 þ x1x3x4x6 þ x7x1x5x6

� x7x2x5x6 � x7x3x5x6 þ x2x3x5x6 þ x7x4x5x6 � x1x4x5x6 ¼ 0:

Proof. This is very simple. Fix di¤erent points x1; . . . ; xn A A1. The condition that
these points can be obtained by projecting a hypertree curve is as follows: there exist points
y1; . . . ; yn A A1 such that a triple of points

ðxi; yiÞ; ðxj; yjÞ; ðxk; ykÞ
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lie on the line for any hyperedge Ga ¼ fi; j; kg. This can be expressed by the vanishing of
the determinant

�det

1 xi yi

1 xj yj

1 xk yk

2
64

3
75¼ yiðxj � xkÞ þ yjðxk � xiÞ þ ykðxi � xjÞ ¼ 0:

This gives a homogeneous system of linear equations on yi’s with the matrix of coe‰cients
A. Notice that it has a 2-dimensional subspace of trivial solutions (obtained by placing
all points pi along some line on the plane). Thus the condition that there exists a planar
realization of G with projections x1; . . . ; xn is given by the vanishing of any non-trivial
ðn� 3Þ � ðn� 3Þ minor. For example, fix a row that corresponds to Ga ¼ fi; j; kg. We
can force yi ¼ yj ¼ yk ¼ 0, as these points have to lie on a line anyway. Then we get a
system of linear equations in the remaining n� 3 variables and the condition is that this
system has a non-trivial solution. This gives the minor as in the statement of the theorem.

r

These equations do not explain why black and white hypertrees of the spherical hy-
pertree yield the same divisor: their matrices AB and AW will be vastly di¤erent. For exam-
ple, one can check that rk AB 3 rk AW for some values of variables x1; . . . ; xn. Fortunately,
DG has another determinantal equation.

Proposition 8.3. Let G be a 2-dimensional simplicial complex with simplices

G1; . . . ;Gn�2 (oriented arbitrarily). Then H1ðG;ZÞ ¼ Zn�3. We choose a generating set of

paths P1; . . . ;Pm (one can take m ¼ n� 3), where

Pi ¼ ða1
i ! a2

i ! � � � ! ar
i ! arþ1

i ¼ a1
i Þ

is a path in f1; . . . ; n� 2g such that Ga
j

i
XG

a
jþ1

i

3j for any j. Consider an m� ðn� 2Þ-
matrix B such that Bia ¼ 0 if a B Pi and Bia ¼ xk � xl if a ¼ as

i A Pi, where k ¼ Ga s
i
XGa sþ1

i

and l ¼ Ga s
i
XGa s�1

i
. Then DG is given by vanishing of any non-trivial ðn� 3Þ � ðn� 3Þ-minor

of B.

Corollary 8.4. Black and white hypertrees of a spherical hypertree give the same divi-

sor on M0;n.

Proof of the corollary. Notice that G is just the ‘‘black’’ part of the bi-colored trian-
gulation of the sphere. We orient all black and white triangles according to an orientation
of the sphere. We can choose a generating set of H1ðG;ZÞ to be given by cycles around
white triangles. Then B has the following very simple form. It has rows indexed by white
triangles, columns indexed by black triangles. The entry Bwb is equal to zero if triangles w

and b do not share an edge, and Bwb ¼ xi � xj if w and b intersect along the edge ½ij� (ori-
ented according to the orientation of b). Now notice that the corresponding matrix for the
white hypertree is just the minus transposed matrix �Bt. r

Example 8.5. Consider the spherical hypertree from Example 1.6. The matrix B

looks as follows (we skip zero entries):
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x1 � x3 x2 � x1 x3 � x2

x4 � x1 x8 � x4 x1 � x8

x3 � x4 x5 � x3 x4 � x5

x5 � x8 x8 � x10 x10 � x5

x6 � x5 x5 � x9 x9 � x6

x10 � x7 x9 � x10 x7 � x9

x3 � x6 x6 � x7 x7 � x3

x8 � x2 x7 � x8 x2 � x7

2
6666666666664

3
7777777777775

:

Proof of the proposition. This is similar to the proof of the previous proposition: we
fix x1; . . . ; xn A A1 but now instead of using y1; . . . ; yn as variables, we use slopes of the
lines k1; . . . ; kn�2 as variables. To reconstruct the planar realization, we choose a height y1

arbitrarily and then consecutively compute the remaining ‘‘heights’’ yi: if yi is already
known and i and j are connected by a line with slope ka, then of course

yj ¼ yi þ kaðxj � xiÞ;

which gives yj. We only have to show that the heights of the points thus obtained do not
depend on a sequence of lines that connects them to the first point. But this precisely means
that for each cycle of lines

a1 ! a2 ! � � � ! ar ! arþ1 ¼ a1;

the relative height of the last point with respect to the first point is equal to 0, i.e., that
slopes satisfy the system of linear equations with matrix B. Throwing away a trivial solu-
tion when all slopes are equal, we get the equation of DG as a minor of B of codimension 1
(note that rows and columns of B add to zero). r

9. Hypertrees and Brill–Noether divisors on Mg

Consider the Keel–Vermeire divisor on M0;6. According to our description, DG is the
locus of projections of vertices of the complete quadrilateral. This is a spherical hypertree
with the triangulation given by an octahedron. There are two hypertrees (black and white)
that give the same divisor. The total number of Keel–Vermeire divisors on M0;6 is 15. They
are parameterized by markings of the octahedron, i.e., by tri-partitions of f1; . . . ; 6g into
pairs. For example, Figure 6 corresponds to a 3-partition ð12Þð34Þð56Þ.

1 3
5

6
4 2

1

5

3 4

6

2

1

4

3

2

5

6

1

3

4

2

5

6

Figure 6. The Keel–Vermeire divisor in M0; 6.
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Now let us explain the left-hand side of Figure 6. For any tri-partition, consider the
map M0;6 !M3 obtained by gluing points in pairs

:

M0;6 M3

1 a 2 3 a 4 5 a

6

Keel defined a divisor DK HM0;6 as the pull-back of the hyperelliptic locus in M3.
This locus is divisorial. By the theory of admissible covers ([HM]), a hyperelliptic involu-
tion on the general genus 3 curve in the limit induces an involution of P1 that exchanges
points in the pairs ð12Þ, ð34Þ, and ð56Þ. The quotient by this involution is a degree 2 map
P1 ! P1, which can be realized by embedding P1 in P2 as a plane conic and projecting it
from a point. It follows that DK HM0;6 is the locus of six points on a conic such that the
chords connecting pairs of points ð12Þ, ð34Þ, and ð56Þ are concurrent.

It is quite amazing that these two descriptions give the same divisor:

Proposition 9.1. DK ¼ DG.

Proof. Passing to the projectively dual picture, let A1;A2;A3;A4 A P2 be general
points and let LHP2 be a general line. Let fLijg be six lines connecting pairs of points
Ai, Aj. The claim is that there exists an involution of L that permutes LXLij and LXLi 0j 0

if fi; jgW fi 0; j 0g ¼ f1; 2; 3; 4g. More precisely, we prove that DG HDK . Since DK is an ir-
reducible divisor (this is easy to see by the above description), the proposition follows.

The proof is illustrated in Figure 7. Let T : P2 dP2 be the standard Cremona trans-
formation with the base locus fA1;A2;A3g. Then T contracts lines L23, L13, and L12 to
points A 01, A 02, A 03. Let A 04 ¼ TðA4Þ.

projection point

1

4

3

2
5

6

dualize

Cremona

A1

A2

A4

A3

L 1
3

6 5
4

2

1 3
5

6
4 2

A 03
A 02

A 04
A 01

Figure 7. DK ¼ DG.

Notice that TðLÞ ¼ C is a conic that passes through A 01, A 02, A 03. These points are the
images of the points LXL23, LXL13, and LXL12, respectively. For any i ¼ 1; 2; 3, the
map T sends the line Li4 to the line that passes through A 0i and A 04. So the diagonals con-
necting A 0i to TðLi4 XLÞ are concurrent. r

Remark 9.2. The equation of DK was found by Joubert [Jo] in 1867. A point of M0;6

is given by six roots x1; . . . ; x6 of a binary sextic. Put them on the Veronese conic. This
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gives six points pi ¼ ð1; xi; x
2
i Þ. The equation of the line hpi; pji is

1

xj � xi

det

X Y Z

1 xi x2
i

1 xj x2
j

2
64

3
75¼ X ðxixjÞ � Yðxi þ xjÞ þ Z ¼ 0:

The condition that the three lines are concurrent is

det

x1x2 x1 þ x2 1

x3x4 x3 þ x4 1

x5x6 x5 þ x6 1

2
64

3
75¼ 0:ð9:2:1Þ

After some calculations, this gives

ð14Þð36Þð25Þ þ ð16Þð23Þð45Þ ¼ 0;ð9:2:2Þ

where we use the classical bracket notation ðijÞ ¼ xi � xj. The equation for DG is of course
the same, see 8 and [St], p. 93.

Remark 9.3. In fact DK was known earlier. Cayley [Ca] studied in 1856 Hilbert
functions of graded algebras (using a di¤erent language) and computed the Hilbert func-
tion of the algebra of invariants of binary sextics:

hðk½Sym6 k2�SL2Þ ¼ 1� x30

ð1� x2Þð1� x4Þð1� x6Þð1� x10Þð1� x15Þ :

This lead him to the (correct) prediction that this algebra is generated by invariants A, B,
C, D, E of degrees 2, 4, 6, 10, 15 with a single relation

E2 ¼ f ðA;B;C;DÞ

for some polynomial f . Salmon [S] computed in 1866 these invariants and proved (page
210) that E has a very simple meaning: E ¼ 0 if and only if roots of the sextic are
in involution! We are not specifying a tri-partition here, so any of the 15 tri-partitions
can occur. Salmon computes (page 275) an expression of E in terms of roots of the
sextic: E is a product of 15 determinants (9.2.1), one determinant for each tri-partition
ðijÞðklÞðmnÞ.

One can ask if there are other hypertree divisors with similar ‘‘dual’’ meaning as pull-
backs of Brill–Noether (or perhaps Koszul) divisors on Mg. We will show that this is so for
the easiest spherical hypertree one can draw: the bipyramid. We will leave it to the reader
to find further examples.

Let n ¼ 2k þ 2. A hypertree curve is illustrated in Figure 8 (for n ¼ 12). We label
lines by A0 ¼ B0, Ai, Bi (i ¼ 1; . . . ; k � 1), and Ak ¼ Bk. The labels are chosen so that the
point 1 (resp., the point 2) belongs to the lines Ai, Bi for i even (resp., odd) and such that
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the points 4; 5; . . . ; 3þ ðn� 2=2Þ are obtained by intersecting lines

A0 ¼ B0 ! B1 ! � � � ! Bk ¼ Ak

while the points 4þ ðn� 2=2Þ; . . . ; n; 3 are obtained by intersecting

Bk ¼ Ak ! Ak�1 ! � � � ! A0 ¼ B0:

A1 A0 ¼ B0B1 3 B2

B3

4

5
B4

A5 ¼ B5 6
7

A4

A3

8
9

12

1

10

11

A2

2

Figure 8. Bipyramid hypertree for n ¼ 12.

The bipyramid determines a tri-partition

f1; . . . ; ng ¼ f1; 2gWX WY

into two poles (in our example 1 and 2) and two ‘‘alternating’’ subsets X and Y of the
equator with jX j ¼ jY j ¼ k. In our example k ¼ 5,

X ¼ f3; 5; 7; 9; 11g and Y ¼ f4; 6; 8; 10; 12g:

Let DG HM0;n be the corresponding hypertree divisor.

Definition 9.4. Consider the map

M0;2kþ2
c

M2k�1

1 2 3 5 7 9 11 4 6 8 10 12

obtained by gluing the poles of P1 and then gluing to it two copies of P1 with k marked
points on each one, along points of parts X and Y of the tri-partition. Let DK HM0;2kþ2 be
the pull-back of the Brill–Noether divisor in M2k�1 that parametrizes k-gonal curves.2)

2) If k f 4, then the attached P1 (and hence, the map c) are not uniquely defined. However, we will see

that DK does not depend on any choices.
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Proposition 9.5. DK ¼ DG.

Remark 9.6. It is well known that the Brill–Noether divisor on M2k�1 is extremal
for k e 5. However, for k f 6 the Brill–Noether divisor is not extremal ([Fa]). The propo-
sition shows that nevertheless, the proper transform of the Brill–Noether divisor via the
map c is an extremal divisor on M0;2kþ2. See also Remark 10.1 and the examples in Sec-
tion 10.

Proof. Using the theory of admissible covers, we can identify DK with a locus in
M0;n such that the corresponding P1 with n marked points admits a g1

k with members
X , Y , and Z such that 1; 2 A Z. In other words, DK parametrizes n-tuples fp1; . . . ; png of
points on a rational normal curve

C HPk

such that

hp1; p2iXhpiii AX Xhpiii AY 3j:ð9:6:1Þ

It is not hard to see that DK is irreducible (DK can be parametrized by an open in
ðP1Þn�1, as the markings pi for i ¼ 1; . . . ; n� 1 determine pn). So it remains to show that
DG HDK . Consider n points p1; . . . ; pn A P1 obtained by projecting vertices of a hypertree
from Figure 8 (assume all lines Ai, Bi are distinct). We claim that if we put these points on a
rational normal curve C HPk, the condition (9.6.1) is going to be satisfied.

In the projectively dual plane, we get a configuration of n lines in P2 depicted in Fig-
ure 9. Let us explain what is new in this picture. The line L is projectively dual to the focus
of projection (we draw L as a curve because we are about to identify it with a rational nor-
mal curve in Pk). The definition of points Q1; . . . ;Qðk�1Þðk�2Þ

2

is clear from the picture.

3

11

9

7

5 12
10

8

6

1

2

4
L

Q6

Q4 Q5

Q1
Q2 Q3

A0 ¼ B0 A2 A4 B4 B2

A1 A3 A5 ¼ B5 B3 B1

Figure 9. Dual configuration of a bipyramid (n ¼ 12).
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Let S be the blow-up of P2 in points Ai (i > 0), Bi (i > 0), and all Qi. We do not
blow-up A0 ¼ B0, so basically we blow-up a ‘‘triangular number’’ of points arranged in
the triangular grid. One has to be slightly careful though because this arrangement of lines
has moduli, and in particular there are no ‘‘horizontal’’ lines containing points in the grid
other than lines 1 and 2. For example, there is in general no line containing Q1, Q2, and Q3.

Consider a divisor

D ¼ kH � A1 � � � � � Ak � B1 � � � � � Bk�1 �Q1 � � � � �Qðk�1Þðk�2Þ
2

on S. The following e¤ective divisors are linearly equivalent to D:

D1 ¼ L3 W � � �WL2kþ1 and D2 ¼ L4 W � � �WL2kþ2;

where Li is a proper transform of a line number i. It follows that the linear system jDj has
no fixed components, and therefore it defines a rational map

C : S dPk

regular outside of points of intersection of D1 and D2. In fact C is regular at A0 ¼ B0 be-
cause jDj also contains

L2 WL6 WL8 W � � �WL2kþ2

which does not contain A0 ¼ B0. The following argument proves that the dimension of the
linear system jDj is k and that the restriction of jDj to L cuts a complete linear system: If
jDj contains a member ~DD that contains L as a component, a simple analysis using Bézout’s
theorem shows that ~DDID1 WD2, which is impossible (see a similar analysis below).

We see that CðLÞ ¼ C HPk is a rational normal curve. Notice that hyperplanes
hpiii AX and hpiii AY are cut out by divisors D1 and D2 and that these divisors have another
point in common on S, namely A0 ¼ B0. Finally, let us consider the line hp1; p2i. Any hy-
perplane containing this line corresponds to a divisor ~DD in jDj that contains points 1 and 2.
By Bézout’s theorem, ~DD contains the line L2, and then the residual divisor ~DD� L2 contains
the line L1 (again by Bézout’s theorem). It follows that ~DD also contains a point A0 ¼ B0 and
therefore

CðA0Þ A hp1; p2iXhpiii AA Xhpiii AB: r

The bipyramid divisor is very exceptional for its symmetries: the symmetry group of a
bipyramid is the binary dihedral group ~DDk, but the corresponding divisor in M0;2kþ2 is a
pull-back from M0;2kþ2=S2 � Sk � Sk.

10. Pull-backs of divisors from Mg

We will consider pull-backs of several ‘‘geometric’’ divisors on Mg;k (for special
values of g and k) via maps

r : M0;n !Mg;k; n ¼ 2gþ k;
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obtained by identifying g pairs of markings on a rational stable curve. We give some evi-
dence that in general this does not lead to any new interesting divisors on M0;n. This is in
contrast with the case n ¼ 6 (when we obtain the Keel–Vermeire divisors) and the cases in
Section 9 (where we pull-back via di¤erent types of maps).

Remark 10.1. In our examples we will pull back divisors E on Mg;k which are ex-
tremal in E¤ðMg;kÞ. Moreover, in the Examples 10.6 and 10.8, the divisor E is contracted
to a point by a birational contraction Mg;k dY [J]. It is natural to ask whether the restric-
tion to M0;n is still a birational contraction onto the image, which would imply that the
components of r�E are extremal in E¤ðM0;nÞ. This turns out not to be true in general, as
in our examples we prove that the pull-back of E to M0;n is not extremal.

10.2. We will consider proper transforms of divisors E in M0;n via r:

D ¼ r�1ðEÞXM0;n:ð10:2:1Þ

The main reason for considering the proper transform is to avoid having boundary
components contained in the pull-back r�E. (This actually happens: see Example 10.8 for
an instance of this.)

To compute the class of the divisor D we will consider its pull-back to the Fulton–
MacPherson configuration space (see [FM]). Denote by P1½n� (resp., A1½n�), the Fulton–
MacPherson space of n points on P1 (resp., on A1). The space P1½n� is isomorphic to the
Kontsevich moduli space (see [FP]) of stable maps M0;nðP1; 1Þ. There are forgetful mor-
phisms:

~ff : P1½n� !M0;n; f :¼ ~ffjA1½n� : A
1½n� !M0;n:

Notation 10.3. Let DI (jI jf 2) be the boundary divisor whose general point corre-
sponds to a stable map f : C ! P1, with C a rational curve with two components C1, C2,
with markings from I on C1 and markings from I c on C2 and such that f has degree 0 on
C1 and degree 1 on C2.

Lemma 10.4. A divisor class D on M0;n is determined by its pull-back f�D as

follows: If in the Kapranov model of M0;n with respect to the n-th marking we have

D ¼ dH �
P

mI EI , then

f�D ¼ �dDf1;...;n�1g �
P

3ejI j<n�1;n B I

mf1;...;n�1gnI DI þ ðsum of DI with n A IÞ:

Proof. This is an easy calculation using the relations between the boundary divisors
DI (see [FM]) and the fact that ~ff�dI ¼ DI þDI c . Since the divisors

fDIgjI jf3;n B I ; fDIgjI jf2;n A I

are linearly independent, it follows that D is determined by f�D. r

10.5. Let x1; . . . ; xn be coordinates on An and let

U ¼ Ann
S
i3j

ðxi ¼ xjÞ:
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Clearly, we have fðUÞHM0;n. If D is an e¤ective divisor on M0;n such that all components
of D intersect M0;n, then all components of f�D intersect U . We will consider divisors D as
in (10.2.1). Hence, any component of f�D is a component of the closure

E 0 ¼ f�1
�
r�1ðEÞ

�
XU :

In the cases that we study (Examples 10.6 and 10.8), the divisor E 0 is irreducible and
linearly equivalent to a sum of boundary divisors.

The space A1½n� can be described as the blow-up of An along diagonals in increasing
order of dimension. The divisor DI is the exceptional divisor corresponding to the diagonal
DI where coordinates xi for i A I are equal.

If F is an irreducible polynomial in x1; . . . ; xn defining E 0 in U and having multiplic-
ity nI along the DI , the class of E 0 in A1½n� is given by

E 0 ¼ �
P

nI DI :

Example 10.6. Let r : M0;7 !M3;1 be the map that identifies pairs of markings
ð12Þ, ð34Þ, ð56Þ. Let E be the closure in M3;1 of the locus corresponding to pairs ðC; pÞ
with C a smooth genus 3 curve and p A C a Weierstrass point. Every smooth curve C has
a finite number of Weierstrass points; hence, E is a divisor in M3;1.

Consider now an integral nodal curve C. Let wC be the dualizing sheaf and let
w1; . . . ;wg be a basis for H0ðC;wCÞ. Locally at a smooth point p of C we have
wi ¼ fiðtÞ dt, where t is a local parameter at p, fi is a regular function. Just as for smooth
curves, the point p is called a Weierstrass point if and only if the Wronskian of the func-
tions f1; . . . ; fg vanishes at p. (See [LW] for the general definitions of Weierstrass points on
singular curves.)

Let ðC; pÞ A rðM0;7Þ. As there can only be finitely many Weierstrass points on C, it
follows that C has a Weierstrass point at p if and only if ðC; pÞ belongs to E.

Let t, xi; yi (1e ie 3) be coordinates on A7, with the pairs ðxi; yiÞ the markings that
get identified. The locus E 0XU (see 10.5) parametrizes data

ðA1; x1; x2; x3; y1; y2; y3; tÞ

for which the corresponding tri-nodal curve has a Weierstrass point at t.

Consider the basis of (local) di¤erentials f1 dt, f2 dt, f3 dt, where

fiðtÞ ¼
1

ðt� xiÞðt� yiÞ
ð1e ie 3Þ:

The divisor E 0 is defined in U by the vanishing of the Wronskian

f1ðtÞ f2ðtÞ f3ðtÞ
f 01 ðtÞ f 02 ðtÞ f 03 ðtÞ
f 001 ðtÞ f 002 ðtÞ f 003 ðtÞ

�������
�������:
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Moreover, it is easy to see that the determinant does not change if we replace the ra-
tional functions fi with the polynomials

giðtÞ ¼ fiðtÞ
Q3
i¼1

ðt� xiÞðt� yiÞ:ð10:6:1Þ

Using the program Macaulay, we compute the multiplicities of this determinant
along the diagonals DI HA7. Using Lemma 10.4, we compute the class of the divisor

D ¼ fðE 0ÞHM0;7

in the Kapranov model with respect to the 7-th marking to be

D ¼ 3H �
P6

i¼1

Ei � E12 � E34 � E56:

The divisor D is clearly big as H is big, and we have D ¼ H þQ, where Q is the
proper transform of any quadric in P4 that contains the lines determined by the pairs of
points ð12Þ, ð34Þ, ð56Þ.

Example 10.7. Consider the map r : M0;7 !M3;1 as in Example 10.6. Let E be the
closure in M3;1 of the locus corresponding to pairs ðC; pÞ with C a smooth genus 3 curve
and p A C a point on a bitangent, i.e., wC ¼ OCð2pþ 2qÞ for some q A C.

Let t, xi; yi (1e ie 3) be coordinates on A7, with the pairs ðxi; yiÞ the markings that
get identified. The locus E 0XU (see 10.5) parametrizes data

ðA1; x1; x2; x3; y1; y2; y3; tÞ

for which the corresponding tri-nodal curve has the tangent at t tangent at some other
point. Consider the canonical map

g : A1 ! P2; t 7!
�
g1ðtÞ; g2ðtÞ; g3ðtÞ

�
;

where g1, g2, g3 are as in (10.6.1). Consider the following function in t; s A A1:

mðt; sÞ ¼ 1

ðs� zÞ2
g1ðtÞ g2ðtÞ g3ðtÞ
g1ðsÞ g2ðsÞ g3ðsÞ
g 01ðtÞ g 02ðtÞ g 03ðtÞ

�������
�������:

For a fixed t A A1, the equation mðt; sÞ ¼ 0 computes the points of intersection of the
tangent line at t with the curve gðA1Þ. The function mðt; sÞ is quadratic in s:

mðt; sÞ ¼ As2 þ Bsþ C; A ¼ q2m

q2s
ðt; 0Þ; B ¼ qm

qs
ðt; 0Þ; C ¼ mðt; 0Þ:

The divisor E 0 is defined in U by the vanishing of the discriminant

D ¼ B2 � 4AC:
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As in Example 10.6, using the program Macaulay and Lemma 10.4, we compute the
class of the divisor D ¼ fðE 0ÞHM0;7 (in the Kapranov model with respect to the 7-th
marking) to be

D ¼ 8H � 4
P6

i¼1

Ei � 2
P

i3j A f1;...;6g
Eij � 2E123 � 2E456:

The divisor D is clearly big as H is big, and we have

D ¼ 2ðH þ dij þ dlm þ dknÞ;

for any fi; j; kg ¼ f1; 2; 3g, fl;m; ng ¼ f4; 5; 6g.

Example 10.8. Let r : M0;10 !M5 be the map that identifies the pairs of points
ð11 0Þ, ð22 0Þ, ð33 0Þ, ð44 0Þ, ð55 0Þ. Let E be the Brill–Noether divisor of trigonal curves in
M5. By the calculations in [HM], [EH], the class of E is equal to

8l� dirr � 4d1 � 6d2:

Using standard formulas for pull-backs of tautological classes, it is easy to compute the
class of its pull-back r�E. To preserve all symmetries of this divisor in the notation, we
give the formula for the pull-back p�11r

�E to M0;11 in the Kapranov model with respect to
the 11-th marking. The class is given by

p�11r
�E ¼ 20H � 16

P
E1 � 12

P
E12 � 12

P
E11 0 � 9

P
E123

� 6
P

E121 0 � 7
P

E1234 � 4
P

E1231 0 � 6
P

E121 02 0

� 6
P

E12345 � 3
P

E12341 0 � 3
P

E123451 0

� 2
P

E1231 02 03 0 �
P

E123451 02 0 þ 2
P

E12341 02 03 0 :

To explain the notation, the sums are taken over all permutations that preserve the number
of pairs from ð11 0Þ, ð22 0Þ, ð33 0Þ, ð44 0Þ, ð55 0Þ. For example:

P
E1 ¼

P5

i¼1

Ei þ
P5

i¼1

Ei 0 ;

P
E11 0 ¼

P
1eie5

Eii 0 ;

P
E12 ¼

P
i3j;1ei; je5

Eij þ Ei 0j 0 þ Eij 0 ;

P
E123 ¼

P
1ei; j;ke5; i3j;k; j3k

Eijk þ Ei 0j 0k 0 þ Eijk 0 þ Eij 0k 0 ; etc:

It is clear from this formula that r�E is reducible and contains the main component
(that intersects M0;10), as well as some boundary divisors. These boundary divisors can be
easily determined using the method of admissible covers, but computing the corresponding
multiplicities is a bit subtle.
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As in the previous examples, we can nevertheless compute the class of the main com-
ponent. Let

x1; . . . ; x5; y1; . . . ; y5

be the coordinates on A10, with the pairs ðxi; yiÞ the markings that get identified. Using
the theory of admissible covers, the locus E 0XU (see 10.5) parametrizes data
ðA1; x1; . . . ; x5; y1; . . . ; y5Þ for which the corresponding nodal curve in M5 has a g1

3, i.e.,
the chords determined by the pairs ðxi; yiÞ have a common transversal when considering
A1 HP3 as a twisted cubic via the Veronese embedding. Consider the Grassmannian of
lines in P3:

Gð1; 3ÞHPð52 k4Þ

together with its Plücker embedding. By [St], Example 3.4.6, five lines in P3 with Plücker
coordinates L1; . . . ;L5 have a common transversal if and only if the determinant

0 L1:L2 L1:L3 L1:L4 L1:L5

L2:L1 0 L2:L3 L2:L4 L2:L5

L3:L1 L3:L2 0 L3:L4 L3:L5

L4:L1 L4:L2 L4:L3 0 L4:L5

L5:L1 L5:L2 L5:L3 L5:L4 0

�����������

�����������
vanishes. Here Li:Lj denotes the wedge product in52 k4. Let Li be the chord determined
by the pair ðxi; yiÞ. The lines Li connect points on the twisted cubic, which we can para-
metrize as ð1; t; t2; t3Þ. It follows that the wedge product Li:Lj is the Vandermonde deter-
minant

1 1 1 1

xi yi xj yj

x2
i y2

i x2
j y2

j

x3
i y3

i x3
j y3

j

���������

���������
:

As the terms ðyi � xiÞ, ðyj � xjÞ can be factored out, we are left with a degree 20 polyno-
mial F that defines E 0 in U . Using the program Macaulay it is easy to see that F is irreduc-
ible and we can compute the multiplicities of F along the diagonals DI HA10. Using
Lemma 10.4 it follows that the class of the pull-back p�ND of the divisor D ¼ fðE 0ÞHM0;10

to M0;11 (in the Kapranov model with respect to the 11-th marking) is given by

p�ND ¼ 20H � 16
P

E1 � 12
P

E12 � 12
P

E11 0 � 9
P

E123

� 8
P

E121 0 � 7
P

E1234 � 5
P

E1231 0 � 6
P

E121 02 0

� 6
P

E12345 � 3
P

E12341 0 � 3
P

E1231 02 0

� 3
P

E123451 0 �
P

E12341 02 0 � 2
P

E1231 02 03 0 �
P

E123451 02 0 :

The divisor p�ND is linearly equivalent to a sum of boundary divisors: consider the
sum of the 20 hyperplanes determined by choosing a pair of points fxi; xjg, or fyi; yjg
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and taking the hyperplane passing through the remaining points (these are the boundary
divisors dxi ;xj

and dyi;yj
). It is easy to see that all the multiplicities of this union of hyper-

planes are larger than the multiplicities in the formula for p�ND.

It follows that p�ND is a moving divisor. Since any e¤ective divisor linearly equivalent
to p�ND is a pull-back by pN from M0;10, it follows that D is a moving divisor.
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