
Transformation Groups c©Springer Science+Business Media New York (2021)

SPHERICAL TROPICALIZATION
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Abstract. We extend tropicalization and tropical compactification of subvarieties of
algebraic tori to subvarieties of spherical homogeneous spaces. Given a tropical compacti-
fication of a subvariety, we show that the support of the colored fan of the ambient
spherical variety agrees with the tropicalization of the subvariety. The proof is based on
our equivariant version of the flattening by blow-up theorem. We provide many examples.

Introduction

Let k be an algebraically closed field, K = k((t)) the field of Laurent series and
K =

⋃
n k((t1/n)) the field of Puiseux series with valuation

ν : K
× → Q,

∑
n

cnt
n 7→ min{n : cn 6= 0}.

Let Tn = (k×)n be the algebraic torus, Λ = hom(Tn, k×) its character group,
and Q = hom(Λ, k×) ∼= Qn. The valuation ν induces a surjective map:

val : T (K)→ Q (1)

that sends (x1(t), . . . , xn(t)) ∈ (K
×

)n to (ν(x1(t)), . . . , ν(xn(t))) ∈ Qn. Given a
closed subvariety Y ⊆ Tn, its tropicalization Trop Y is the image val(Y (K)) ⊆ Qn.
It is a piece-wise linear set, more precisely the support of a rational polyhedral
fan. More about tropicalizations and their use can be found in [MB], [G], [EKL].

Given a closed subvariety Y ⊆ Tn, a tropical compactification Y , introduced
in [Te], is the closure of Y in a toric variety X of Tn such that Y is a complete
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variety and the multiplication map µY of Y is faithfully flat:

µY : T × Y → X, (g, x) 7→ gx. (2)

The toric variety X is given by a fan F in Q. The relation between the tropicaliza-
tion and a tropical compactification is very simple, SuppF = TropY . Existence of
tropical compactifications was shown in [Te], see also [HKT], [ST], [LQ], [U].

We extend the tropicalization and tropical compactifications to subvarieties Y ⊂
G/H of spherical homogeneous spaces of connected reductive groups. Spherical
means that a Borel subgroup B ⊂ G acts on G/H with an open orbit. As in
the toric case, spherical varieties, i.e., equivariant open embeddings of G/H into
normal G-varieties X, are in a bijection with combinatorial data (colored fans).
This correspondence is reviewed briefly in §3, see also [LV], [K], [Ti]. There is a
map

val : (G/H)(K)→ Q (3)

analogous to (1), where Q = hom(Λ,Q) and Λ is the weight lattice, i.e., the
subgroup of characters of B that are weights of B-semi-invariant functions on G/H.
The image of val is the valuation cone V. We define the spherical tropicalization
TropY as val(Y (K)). By Lemma 14, TropY is a conical set generated by the set
val(Y (K)).

Definition 1. The closure Y ⊆ X is called a tropical compactification of Y if Y
is complete, and the multiplication map µY : G× Y → X is faithfully flat.

Theorem 1. For any closed subvariety Y of a spherical homogeneous space G/H,

(1) Tropical compactifications of Y in toroidal spherical varieties exist.

(2) If Y ⊆ X is a tropical compactification, where X is a spherical variety
associated to a colored fan F, then SuppF = TropY .

Definition 1 makes sense for subvarieties of arbitrary homogenous spaces and
we prove Theorem 1 in §5 based on analogous results in this more general setting.
This, in turn, is based on our generalization (Theorem 8) of the flattening by
blow-up theorem [RG] to the equivariant setting.

In the toric case, tropicalization is usually defined in a more general setting, for
subvarieties of T defined over the field K of Puiseux series, in which case it is a
support of a polyhedral complex rather than a fan. Tropical compactifications in
this setting have been studied in [LQ], [G], [HKT]. In the spherical setting, the
tropicalization of a subvariety Y ⊂ G/H defined over K is also well-defined, using
the formula val(Y (K)). It would be interesting to study the tropical compactifica-
tions in this setting and to exhibit interesting examples.

We work out many examples of spherical tropicalization and spherical tropical
compactifications for subvarieties of non-toric spherical homogeneous spaces in §5.
A basic example is GLn viewed as a spherical homogeneous space of GLn ×GLn,
which acts on GLn by left and right multiplication. Recall that if x = (xij(t)) is
an invertible matrix with entries in K, there exist matrices g = (gij) and h = (hij)

692



SPHERICAL TROPICALIZATION

with entries in k[[t]], such that gxh is in “reversed” Smith normal form

gxh =


tα1 0 . . . 0
0 tα2 . . . 0
...

...
. . .

...
0 0 . . . tαn

 ,

for some integers α1 ≥ · · · ≥ αn, which we call the invariant factors of x slightly
abusing the standard terminology.

Theorem 2. Let Y ⊂ GLn be a closed subvariety. Then TropY ⊂ Qn is the
conical subset generated by n-tuples of invariant factors of matrices x ∈ Y (K).

If a closed subvariety Y ⊂ GLn admits a parametrization then Trop Y can be
calculated in a straightforward and elementary way analogous to the approach [ST]
in the toric case. For instance, to find the tropicalization of the subvariety Y =
V (x11 − x22, x312 − x21) ⊂ GL2, one can write a matrix in Y (K) in the form(

y(t) z(t)
z(t)3 y(t)

)
, y(t), z(t) ∈ K,

which allows us to easily find its possible invariant factors. The tropicalization of
this variety is a striped area in Figure 1. The gray area is the rest of the valuation
cone.

Figure 1: Tropicalization of Y = V (x11 − x22, x312 − x21)

Valuations of defining equations of Y impose restrictions on possible invariant
factors of matrices in Y (K), e.g., if Y ⊂ GL2 is given by x211x12−x522 +x11x

3
21 = 1

then any matrix (xij(t)) ∈ Y (K) satisfies

min {2ν(x11(t)) + ν(x12(t)),−5ν(x22(t)), ν(x11(t)) + 3ν(x21(t))} = 0.

But, as in the toric case, given a set of defining equations f1, . . . , fn of Y , TropY
is not always the intersection of Trop V (fi) (see Example 5).

693



J. TEVELEV, T. VOGIANNOU

Many interesting moduli spaces in algebraic geometry are subvarieties of spheri-
cal varieties, for example the representation variety Y of the fundamental group
of the 2-sphere with 3 punctures is a subvariety of G = (GLn)3, which can viewed
as a spherical homogeneous space of G×G. In §8 we show that the tropicalization
of Y is a cone given by the Horn inequalities. We plan to compute the tropical
compactification of Y in a future work. Spherical tropicalization and tropical
compactification of arbitrary representation varieties is a very interesting problem,
which can lead to a compactification theory for character varieties, see [V].

Compactifications of subvarieties of general homogeneous spaces

1. Equivariant flattening by blow-up

In this subsection all schemes and morphisms are over a fixed noetherian scheme
S including a flat affine surjective group scheme G of finite type, a G-morphism
f : X → Y of G-schemes of finite type, a dense open G-subset U ⊂ Y , and a
closed G-subscheme Z ⊂ X or more generally a coherent equivariant sheaf (also
called G-sheaf) M on X. We write

µ : G×S X → X, (g, x) 7→ gx (4)

for the multiplication map. We will assume that f |Z∩f−1(U) is a flat morphism, or
more generally that the coherent sheaf M|f−1(U) is flat over U 1.

Definition 2 ([R, Chap. 4]). Consider a Cartesian diagram

X̃

Ỹ Y

X
......................................
.....
.......
.....f̃

........................................................................................................................... ............
ũ

........................................................................................................................... ............
u

......................................
.....
.......
.....f (5)

where u is a projective G-morphism, which induces an isomorphism of open dense
G-subsets u|Ũ : Ũ ∼−→ U . Let M̃ = ũ∗M. A quotient coherent sheaf M̃pt = M̃/Ñ

is called a pure transform of M if Ñ vanishes on f̃−1(Ũ) and Ass(M̃pt) ⊆ f̃−1(Ũ).

Equivalently, Ñ ⊂ M̃ is the subsheaf of all sections supported on f̃−1(Ỹ − Ũ). For
a subscheme Z ⊂ X, the pure transform is defined as the scheme-theoretic closure

Z̃ = ũ−1(Z ∩ f−1(U)) ⊆ X̃.

Pure transforms of coherent sheaves and subschemes are related as follows:

Lemma 3. (OX/IZ)pt = OX̃/IZ̃ , where IZ , IZ̃ are sheaves of ideals of Z and Z̃.

Proof. Let M = OX/IZ and M̃ = ũ∗M = OX̃/Iũ−1(Z). Then M̃pt = M̃/Ñ =

OX̃/IZ̃′ for a sheaf of ideals IZ̃′ that determines a closed subscheme Z̃ ′ ⊆ ũ−1(Z).

1When Y is reduced, there exists an open set U ′ such that M|f−1(U ′) is flat [EGAIV,

Thm. 6.9.1] over U ′. The image U = µ(G ×S U ′) is then a G-stable open set such that
M|f−1(U) is flat over U .
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We claim that Z̃ ′ = Z̃. Since Ñ vanishes on f̃−1(Ũ), IZ̃′ |f̃−1(Ũ) = Iũ−1(Z)|f̃−1(Ũ)

and
Z̃ ′ ∩ f̃−1(Ũ) = ũ−1(Z) ∩ f̃−1(Ũ) = ũ−1(Z ∩ f−1(U)).

From the definition of the pure transform, Z̃ ⊆ Z̃ ′. Furthermore, Z̃ ′ ∩ f̃−1(Ũ) =

Z̃ ∩ f̃−1(Ũ), and hence
(
OX̃/IZ̃′

)
|f̃−1(Ũ) =

(
OX̃/IZ̃

)
|f̃−1(Ũ).

Assume that Z̃ 6= Z̃ ′. Then we can find an affine open set V = SpecA in X̃ such
that Z̃ ′ ∩ V = V (a), Z̃ ∩ V = V (b) with a ⊂ b ideals of A (strict inclusion). Let

a ∈ b \ a, so that a is zero in A/b, but non-zero in A/a. Let p be in f−1(Ũ)∩V . If

p 6∈ Z̃ ′ then clearly
(
OX̃/IZ̃′

)
p

= 0. If p is in Z̃ ′ ∩ f̃−1(Ũ) ∩ V = Z̃ ∩ f̃−1(Ũ) ∩ V ,

then since
(
OX̃/IZ̃′

)
|f̃−1(Ũ) =

(
OX̃/IZ̃

)
|f̃−1(Ũ),

a = 0 in
(
OX̃/IZ̃′

)
p

=
(
OX̃/IZ̃

)
p

= (A/b)p.

Thus a is a non-zero local section supported outside f̃−1(Ũ). This contradicts the

definition of the pure transform of M, hence Z̃ ′ = Z̃. �

Proposition 4. Mpt is a G-sheaf on X̃ and Z̃ is a G-stable closed subscheme.

Proof. X̃ has a natural structure of a G-scheme and M̃ of a G-sheaf such that f̃
and ũ are G-morphisms. It suffices to show that Ñ ⊆ M̃ is a G-subsheaf. Write

µ̃ : G×S X̃ → X̃ and p̃r2 : G×S X̃ → X̃

for the multiplication map and the second projection of G×S X̃, respectively, and

α : µ̃∗M̃→ p̃r∗2M̃

for the isomorphism of OG×SX̃
-modules that defines the G-structure on M̃. We

want to show that α(µ̃∗Ñ) ⊆ p̃r∗2Ñ. Since µ̃ is flat, µ̃∗Ñ is the subsheaf of sections

of µ̃∗M̃ supported outside µ̃−1(f̃−1(Ũ)), and similarly for p̃r∗2N [H, II, Ex. 1.20].
Note that

µ̃−1(f̃−1(Ũ)) = G×S f̃−1(Ũ) = p̃r−12 (f̃−1(Ũ)),

as f̃−1(Ũ) is G-stable. Thus the isomorphism α preserves the set of sections

supported outside of µ̃−1(f̃−1(Ũ)), therefore α(µ̃∗Ñ) ⊆ p̃r∗2Ñ as required.
For closed subschemes, the quotient OX/IZ is a G-sheaf, and so by the above

is its pure transform OX̃/IZ̃ . Thus Z̃ is a G-stable closed subscheme of X̃. �

Lemma 5. M̃pt = M̃ (resp. Z̃ = ũ−1(Z)) if M is flat over Y (resp. f |Z is flat)

and Ass(Ỹ ) ⊆ Ũ , which holds for example if Ỹ is integral.

Proof. If M̃ is flat, associated points of M̃ map to associated points of Ỹ [EGAIV,

Thm. 3.3.1], hence Ass(M̃) ⊆ f̃−1(Ũ). Flatness of f |Z is equivalent to flatness of
OX/IZ . The pure transform of OX/IZ with respect to U is then ũ∗(OX/IZ) =

OX̃/Iũ−1(Z), and at the same time OX̃/IZ̃ . It follows that Z̃ = ũ−1(Z). �
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Definition 3. A projective G-morphism u : Ỹ → Y is called an equivariant
flattening of M (resp. of Z) if M̃pt is flat over Ỹ (resp. f̃ |Z̃ is flat).

Conjecture 1. An equivariant flattening always exists.

We prove existence of an equivariant flattening under an additional assumption
that f is a projective morphism, which we will assume from now on. Let QuotM/X/Y

be the Quot functor, i.e., the contravariant functor SchY → Set such that

QuotM/X/Y (T ) =

{
Coherent quotients of the pullback of
M to T ×Y X that are flat over T

}
.

It is represented by the Quot scheme Q, a disjoint union
∐
i Qi of projective

schemes Qi over Y (see [TDTE]). Write π : Q→ Y for the structure morphism. Q
can be viewed as a scheme over S via the composition of π with Y → S.

Lemma 6. Q has a natural structure of a G-scheme and π is a G-morphism.

Proof. Given a scheme T , we define an action of GS(T ) on QS(T ), functorial in T ,
as follows. Let g ∈ GS(T ) and s ∈ QS(T ). We view T as a scheme over Y via
y = π ◦ s, in which case s is a morphism over Y , and y a morphism over S:

S

Y

QT ............................................................................................................................................... ............
s

...................................................... .........
...
y ...................................................

...
............

π

....................................
.....
.......
.....

........................................................................................................................ .......
.....

..............................................................................................................
.....
............

.

The Y -morphism s corresponds to a coherent quotient N of ỹ∗M flat over T :

T ×Y X

T Y

X
......................................
.....
.......
.....

................................................................................................ ............
ỹ

........................................................................................................................... ............
y

......................................
.....
.......
.....f

. (6)

The morphism T ×Y X → T induces a map GS(T ) → GS(T ×Y X). Let g̃ be
the image of g under this map. Note that ỹ ∈ XS(T ×Y X), so that g̃ỹ = g̃y is also
an element in XS(T ×Y X), where g̃y is given by the cartesian diagram

T ×Y X

T Y

X
......................................
.....
.......
.....

................................................................................................ ............
g̃y

........................................................................................................................... ............
gy

......................................
.....
.......
.....f

(here T ×Y X and T ×Y X → T are as in (6)). Since M is a G-sheaf, there is an
isomorphism of sheaves on T ×Y X:

φ : ỹ∗M→ g̃y
∗
M

The quotient sheaf N is identified via φ with a coherent quotient sheaf of g̃y
∗
M

that is flat over T . This gives a point in QY (T ) ⊆ QS(T ), where T is a scheme
over Y via gy. We define gs to be this point. Showing the properties of a group
action and functoriality on T is easy and is omitted. Finally, we show that π is a
G-morphism. Let T be a scheme. Let πT : QS(T )→ YS(T ) be the map induced by
π on T -points, and let g ∈ GS(T ), s ∈ QS(T ). Let y be the image of s in YS(T ).
From the definition of gs, πT (gs) = gy = gπT (s), and so π is a G-morphism. �
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Lemma 7. Let R be a G-scheme and y : R → Y a G-morphism such that the
coherent sheaf ỹ∗M is flat over R:

X ×Y R

R Y

X
......................................
.....
.......
.....

............................................................................................... ............
ỹ

........................................................................................................................... ............
y

......................................
.....
.......
.....f

.

Then the corresponding morphism s : R→ Q over Y is a G-morphism.

Proof. For a scheme T , write sT : RS(T ) → QS(T ) for the induced map on T -
points. Given g ∈ GS(T ) and r ∈ RS(T ), we want to show that sT (gr) = gsT (r).
The image sT (r) is the point in QS(T ) = QuotM/X/Y (T ) associated to the sheaf
r̃∗ỹ∗M = (ỹ ◦ r̃)∗M on X ×Y T flat over T :

T ×Y X

T

X ×Y R

R Y

X
......................................
.....
.......
.....

............................................................................................... ............
ỹ

........................................................................................................................... ............
y

......................................
.....
.......
.....f

........................................................................................................................... ............
r

..................................................................... ............
r̃

......................................
.....
.......
.....

.

Let g̃ ∈ GS(T ×Y X) be the image of g under the map GS(T )→ GS(T ×Y X)
induced by T ×Y X → T . Note that ỹ ◦ r̃ ∈ XS(T ×Y X) and, as in the proof of
Lemma 6, g̃(ỹ ◦ r̃) = (g(y ◦ r))∼ = (y ◦ gr)∼:

T ×Y X

T Y

X
......................................
.....
.......
.....

................................................................................................ ............
ỹ ◦ gr

........................................................................................................................... ............
y ◦ gr

......................................
.....
.......
.....f

.

The equality g(y ◦ r) = y ◦ gr follows from the equivariance of y. There is an
isomorphism of sheaves on T ×Y X:

φ : (ỹ ◦ r̃)∗M→ ỹ ◦ gr∗M.

This is a coherent sheaf, flat over T , that determines the point gsT (r) in QS(T ).
The image sT (gr) is the point in QS(T ) associated to the sheaf ((y ◦ gr)∼)∗M

on X ×Y T . This is precisely gsT (r), thus s is a G-morphism. �

Theorem 8. An equivariant flattening of M (resp. of Z) exists for any projective

G-morphism f : X → Y . If Y is integral then we can assume that Ỹ integral.

Proof. When G = S is a trivial group scheme, see [R, Chap. 4, §1, Thm. 1]. In
general, we follow the same strategy. By Lemma 7, the sheaf M|f−1(U) induces

a G-morphism v : U → Q over Y . Let Ỹ be the scheme-theoretic image of v, a
G-stable closed subscheme of Q, and let w : U → Ỹ be the induced G-morphism,
and s : Ỹ ↪→ Q the associated closed G-embedding. Write u : Ỹ → Y for the
structure morphism:

U

Ỹ

Q

Y

................................................................. .........
...
w

................................................................................................................................................................... ............
v

...
...

...
..s..........................

.............................................
.....
.......
.....

................................................................................................................................
.....
............

πu
.
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We claim that u is an equivariant flattening of M. Since Y is noetherian,
U has finitely many irreducible components, and the same holds for its image
Ỹ . Therefore Ỹ lies in finitely many irreducible components of Q, so that u is
projective. If in addition Y is integral, there is only one irreducible component,
and so Ỹ is integral. Furthermore, u = π ◦ s is a G-morphism. The composition
u ◦ w is the open G-embedding U ↪→ Y , hence w is also an open G-embedding.
Let Ũ = w(U), which is a G-stable open set in Ỹ . In summary, u is a projective
birational G-morphism, and it restricts to an isomorphism on G-stable open sets
Ũ ∼−→ U . The morphism s : Ỹ ↪→ Q corresponds to a quotient sheaf P = M̃/Ñ on

X̃ = X×Y Ỹ , where ũ∗ is defined by diagram (5). We will show that P is the pure
transform of M.

The morphism w : U ↪→ Ỹ induces a map QY (Ỹ ) → QY (U) that sends a

coherent quotient of the pullback of M on X ×Y Ỹ that is flat over Ỹ to its
pullback on f−1(U), which is a coherent quotient of M|f−1(U) that is flat over U .
Thus the image of s in QY (U), which is w◦s = v, corresponds to w̃∗P = M|f−1(U).
As an open immersion, w is flat, hence

w̃∗P = w̃∗M̃/w̃∗Ñ = (w̃∗ũ∗M)/w̃∗Ñ = M|f−1(U)/w̃
∗Ñ.

We deduce that w̃∗Ñ is the zero sheaf. Taking the pullback of w̃∗Ñ by the isomor-
phism ũ|f̃−1(Ũ) : f̃−1(Ũ) ∼−→ f−1(U), we see that Ñ vanishes on f̃−1(Ũ). Since Ỹ is

the scheme-theoretic image of U , its associated points are contained in Ũ . Due to
the flatness of P, the associated points of P map to associated points of Ỹ [EGAIV,

Thm. 3.3.1]. We deduce Ass(P) ⊆ f̃−1(Ũ), and Definition 2 implies that P, which

is flat over Ỹ , is the pure transform of M. For a G-stable closed subscheme Z ⊂ X,
the proof is the same using Lemma 3. �

To prove existence of tropical compactifications in the next subsection, we need
to prove existence of equivariant flattening of the multiplication map.

Corollary 9. Let X be an integral G-scheme of finite type and let M be a coherent
sheaf on X. Consider a coherent sheaf N = pr∗2 M on G ×S X. Suppose that G
admits an equivariant compactification G ↪→ G′ in a projective scheme G′ 2. Then
there exists a projective birational G-morphism u : X̃ → X from an integral scheme
X̃ such that the G-sheaf Ñpt on G×S X̃ (defined in the proof ) is flat over X̃ via µ̃:

G×S X̃

X̃ X

G×S X
......................................
.....
.......
.....µ̃

....................................................................... ............
ũ

........................................................................................................................... ............
u

......................................
.....
.......
.....
µ . (7)

Proof. Let G act on G×SX by multiplication on the first factor, g(h, x) = (gh, x),
so that the multiplication map µ is a G-morphism. Then N has a canonical G-sheaf

2The equivariant compactification G′ exists if G is a surjective smooth affine group
scheme with connected fibers over a normal noetherian scheme S [Su2, Thm. 4.9] or if
G is a linear algebraic group over S = Spec k for an algebraically closed field k [Su1,
Thm. 3].
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structure. Let G ×′S X ' G ×S X as a scheme but G acts by multiplication on
both factors, g(h, x) = (gh, gx). Consider the G-isomorphism φ given by

φ : G×′S X
∼−→ G×S X, (g, x) 7→ (g, g−1x).

The scheme G×′SX is a G-stable open subset of G′×′SX. There exists a coherent
G-sheaf P on G′ ×′S X such that P|G×′SX = φ∗N. Indeed, the pushforward of φ∗N
to G′ ×S X is a quasi-coherent G-sheaf, which is a direct limit of its coherent
G-subsheaves that restrict to φ∗N on G ×S X (see [Th, Cor. 2.4] or [LM, Cor.
15.5]). The second projection pr2 : G′×S X → X is projective as a base change of
G′ → S. Since X is integral, there exists a G-invariant dense open subset U ⊂ X
such that P|G′×′SU is flat over U via pr2.

A morphism u : X̃ → X is a G-flattening of N with respect to (µ,U) if and only
if it is a G-flattening of φ∗N with respect to pr2 = µ ◦ φ. By Theorem 8, there is

a G-flattening u : X̃ → X of P with integral X̃:

G′ ×′S X̃

X̃ X

G′ ×′S X
......................................
.....
.......
.....p̃r2

................................................................ ............
ũ

........................................................................................................................... ............
u

......................................
.....
.......
.....
pr2 .

Restriction to the G-stable open set G ×′S X shows that u is a G-flattening of
P|G×′SX = φ∗N with respect to pr2, hence a G-flattening of N with respect to µ.
�

2. General tropical compactifications

In this subsection the base scheme S is Spec k for an algebraically closed field k, G
is a smooth linear algebraic group over k and U is a homogeneous variety of G. We
fix a closed subscheme Y ⊆ U and consider open dense G-embeddings U ↪→ X.

Lemma 10. The multiplication map µY : G× Y → U is faithfully flat.

Proof. Consider the morphism

ψ : G× U → U × U, (g, u) 7→ (gu, u).

Since ψ is equidimensional and G×U , U ×U are smooth, ψ is flat [EGAIV, 6.1.5].
Thus its base change G × Y → U × Y is flat, and therefore its composition with
the projection U × Y → U , which is µY , is flat. It is clearly surjective. �

Definition 4. Let X be a G-variety containing U as a dense open subset. The
scheme-theoretic closure Y ⊆ X is called a tropical compactification of Y if Y is
proper and the multiplication map µY : G× Y → X is faithfully flat.

Proposition 11. Consider a projective birational G-morphism u : X → X ′. Let

Y
′

be the scheme-theoretic closure of Y in X ′. Consider a cartesian diagram

G×X

X X ′

G×X ′
......................................
.....
.......
.....

µ

.................................................................................. ............
ũ

........................................................................................................................... ............
u

......................................
.....
.......
.....µ′ .

The pure transform of G× Y ′ with respect to (u, U) is G× Y .
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Proof. By Lemma 10, the pure transform of G× Y ′ is the closure of subscheme

ũ−1
(

(G× Y ′) ∩ (G× U)
)

= ũ−1 (G× Y )) = G× u−1(Y )

in G×X, which is G× Y . �

Given one tropical compactification, we can get more using the following:

Proposition 12. Let Y ⊆ X be a tropical compactification of Y and u : X̃ → X
a proper birational G-morphism of varieties. Then the scheme-theoretic closure Ỹ
of Y in X̃ is a tropical compactification of Y and is equal to u−1(Y ).

Proof. Let µ : G×X → X be the multiplication map of X. Consider the coherent
sheaves M = OX/IY on X and N = pr∗2 M = OG×X/IG×Y on G × X. Faithful
flatness of µY is equivalent to faithful flatness of N with respect to µ. The pure
transform of N is ũ∗N = OG×X̃/IG×Ỹ (Lemmas 5, 3 and Prop. 11), which is

faithfully flat. This in turn is equivalent to faithful flatness of µ̃ : G × Ỹ → X̃.
Furthermore, Ỹ = u−1(Y ) (Lemma 5), and so Ỹ is proper since u is. Thus Ỹ ⊆ X̃
is a tropical compactification. �

Using Prop. 12, we can partially order tropical compactifications under the
relation Ỹ � Y if there is a proper birational G-morphism X̃ → X. This is an
analog of [Te, Prop. 2.5] in the toric case, where this ordering has a combinatorial
meaning: refinement of the fan of the toric variety X. In the next section we will
see that the same holds for tropical compactifications in spherical varieties.

Theorem 13. There exists a tropical compactification Y in a normal G-variety X.

Proof. By [Su1, Thm. 3], we can find an equivariant compactification U ↪→ X ′

in a G-variety X ′. Let Y
′ ⊆ X ′ be the scheme-theoretic closure of Y . We claim

that we can find a projective birational G-morphism u : X → X ′ such that the
multiplication map µ̃Y : G×Y → X is flat, where Y is the scheme-theoretic closure
of Y in X. Indeed, consider the coherent G-sheaf OG×X′/IG×Y ′ = pr∗2(OX′/IY ′).
Flatness of µY over U (Lemma 10) is equivalent to flatness of (OG×X′/IG×Y ′)|G×U
via µ. By [Su1, Thm. 3], we can find an equivariant compactification G ↪→ G′.
Apply Corollary 9 to get an equivariant flattening u : X → X ′ of OG×X′/IG×Y ′ :

G×X

X X ′

G×X ′
......................................
.....
.......
.....

µ

.................................................................................. ............
ũ

........................................................................................................................... ............
u

......................................
.....
.......
.....µ′

Flatness of the pure transform of OG×X′/IG×Y ′ , which is OG×X/IG×Y by Lemma

3 and Proposition 11, is equivalent to flatness of µY : G× Y → X.
Using Proposition 12, we can assume that X is normal. Since U ⊂ X ′ is an open

G-orbit, u restricts to an isomorphism on G-stable open dense sets U ′ ∼−→ U and
so we can view X as an equivariant compactification of U . Since u is projective
and X ′ is proper, X is also proper, and so is Y .

Finally, since µY is flat, its image is open in X. To make µY faithfully flat (i.e.,
flat and surjective), it remains to substitute X with the image of µY . �
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Compactifications of subvarieties of spherical homogenous spaces

3. Brief survey of spherical varieties

Let X = hom(B, k×) be the group of characters. Let k(G/H)(B) be the multipli-
cative group of B-semi-invariant rational functions on G/H. It comes with a
homomorphism Ξ : k(G/H)(B) → X, f 7→ χf :

k(G/H)(B) =
{
f ∈ k(G/H)× such that gf = χf (g)f for all g ∈ B

}
.

The kernel of Ξ is the set of constant functions, hence k(G/H)(B)/k× injects
in X. The image Λ ⊂ X is called the weight lattice. Its rank is called the rank of
G/H. Any Q-valuation of k(G/H) trivial on k can be restricted to k(G/H)(B) and
induces a homomorphism Λ→ Q, i.e., an element of Q = hom(Λ,Q). This gives a
map

% : {Q-valuations of k(G/H)} → Q.

Restricting to geometric valuations, we can view % as a map from the set of prime
divisors D of G/H (or its birational model), sending D to %(vD), where vD is the
corresponding valuation. Denote by V the set of G-invariant valuations of k(G/H).
These valuations are automatically geometric. Then % restricts to an injection on V
and we identify V with its image in Q. This is a rational convex polyhedral cone,
called the valuation cone. Let D be the finite set of B-stable prime divisors of
G/H. The elements of D are called colors.

Definition 5. A colored cone is a pair (C,F), where F ⊆ D is a subset of colors
and C ⊆ Q is a strictly convex cone generated by %(F) and finitely many elements
of V. Furthermore, C◦ ∩ V 6= ∅ and 0 6∈ %(F), where we denote by C◦ the relative
interior.

A face of a colored cone (C,F) is a colored cone (C0,F0) such that C0 is a face
of C that intersects V non-trivially and F0 = F ∩ %−1(C0).

A colored fan F is a non-empty set of colored cones such that every face of a
cone in F is in F and any element v ∈ V lies in the interior of at most one cone.

A spherical variety is called simple if it contains a unique closed G-orbit. Any
spherical variety is covered by finitely many simple spherical open subvarieties.
There is a bijection between spherical embeddings G/H ↪→ X and colored fans
that restricts to a bijection between simple spherical embeddings and colored cones.
Namely, let X be a simple spherical variety with a unique closed G-orbit Y . Let
BX ⊆ V be the set of G-stable prime divisors of X containing Y , and let FX
be the set of B-stable prime divisors of X containing Y that are not G-stable.
We identify any D ∈ FX with the intersection D ∩ (G/H), which is a non-empty
B-stable prime divisor of G/H, i.e., a color. Let CX ⊂ Q be the cone generated by
BX and %(F)X . Then (CX ,FX) is the colored cone associated to X.

Definition 6. A spherical variety X is called toroidal if the associated colored fan
has no colors, i.e., if F = ∅ for any colored cone (C,F) of the colored fan.

For any spherical variety X, there is a surjective proper birational G-morphism
X ′ � X, that restricts to the identity on G/H, with X ′ a toroidal spherical variety.
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The support of a colored fan F is the intersection of the union of its cones
with V. A spherical variety is complete if and only if the support of its colored
fan is V. An equivariant compactification of a spherical variety X is a complete
spherical variety X ′ (for the same space G/H) with an open dense G-embedding
X ↪→ X ′. As for toric varieties, one can find an equivariant compactification X ′

by completing the colored fan of X. If X is toroidal, one may assume that X ′ is
toroidal as well.

Example 1. Let G = SL2 with Borel subgroup B consisting of the upper trian-
gular matrices. Consider the spherical homogeneous space G/H = A2−{0}, where

H =

{(
1 ∗
0 1

)}
. There are two B-orbits, an open orbit O and a closed orbit D:

O =

{(
x
y

)
∈ A2 | y 6= 0

}
, D =

{(
x
0

)
∈ A2 |x 6= 0

}
.

We have X ' Z, namely the character χn

(
a b
0 a−1

)
= an corresponds to n ∈ Z.

Moreover, k(x, y)(B) consists of yn for n ∈ Z, up to multiplication by scalars. The
character associated to yn is χn. Therefore Λ = X, generated by y or equivalently
by χ1, and Q = hom(Λ,Q) ' Q is spanned by the function χ∗ : Λ→ Q, χ∗(y) = 1.

Consider the following G-invariant valuations vmin, vmax of k(x, y). If p ∈ k[x, y]
then vmax(p) = − deg(p) and vmin is the minimal degree of a monomial in p(x, y).
Since vmin(y) = 1, vmax(y) = −1, we have V = Q and %(vmin) = −%(vmax) = χ∗.

The B-orbit D is a unique color, so D = {D}. The valuation vD measures the
order of vanishing along D = {y = 0}. Thus vD(y) = 1, hence %(D) = χ∗.

Let R denote the cone in Q generated by χ∗, and −R the opposite one. There
are four distinct non-trivial colored cones in Q, and six colored fans. These fans
are listed in Table 1, along with their maximal cones, the corresponding spherical
varieties, and their closed G-orbits. One can see that the colored cone (R,D) adds

Table 1: spherical varieties for the homogeneous space A2 − {0}

spherical variety closed G-orbits maximal colored cones colored fan

A2 − {0} A2 − {0} (0,∅)
A2 0 (R,D)

Bl0 A2 E (R,∅)
P2 − {0} W (−R,∅)

P2 W , 0 (R,D), (−R,∅)
Bl0 P2 W , E (R,∅), (−R,∅)

a point at the origin, (R,∅) adds the exceptional divisor E of the blowup of the
plane at the origin, while −R adds “the line at infinity” W . The complete spherical
varieties P2 and Bl0 P2 are supported on all of V.

4. Spherical tropicalization

There is a tropicalization map [LV, §4], [Ti, §24]

val : (G/H)(K)→ V, γ 7→ vγ (8)
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defined as follows. Let f ∈ k(G/H). For a sufficiently general g ∈ G, the domain of
gf contains the image of γ and the pullback γ∗(gf) ∈ K is well-defined. We have

vγ(f) = {ν(γ∗(gf)) for a sufficiently general g ∈ G} = min
g∈G

ν(γ∗(gf)).

Any K-point γ : SpecK → G/H factors through Spec k((t1/n)) for some n > 0.
If γ̃ : Spec k((t̃)) → G/H is the induced morphism, where t̃ = t1/n, we define
vγ = vγ̃/n. This gives a tropicalization map (8), which is a surjection: any G-
invariant valuation of G/H is a scalar multiple of some vγ .

Equivalently, let L = k(G)((t)) and consider the standard valuation

ν : L× → Z,
∑
n

cnt
n 7→ min{n : cn 6= 0}.

Let ψγ = µ ◦ φγ be the morphism SpecL→ G/H given by the diagram

Spec k(G) G

SpecK G/H

SpecL G×G/H G/H
.........
.........
.........
.........
.........
.........
....................
............

........................................................................... ........
....

.......................................................................................................... ............

................................................................................................................ ............
γ

.........
.........
.........
.........
.........
.........
....................
............p1

........................................................................ ........
....p2

............................................................ ............
φγ

.................................................................................................. ............
µ

where Spec k(G)→ G is the generic point and µ is the multiplication map. Then

vγ(f) = ν(ψ∗γ(f)).

The extension to K-points of G/H in straightforward.

Conjecture 2. The map (8) extends to a continuous map from the Berkovich
analytification (G/H)an to Q⊗ R.

Definition 7. The tropicalization of a closed subvariety Y ⊆ G/H is

TropY = val(Y (K)).

Example 2. We continue with notation of Example 1 and describe tropicaliza-
tions of curves in A2 − {0}. A K-point γ : SpecK → A2 − {0} corresponds to a
homomorphism of k-algebras γ∗ : k[x, y] → K such that not both x, y map to 0.
Write xγ , yγ ∈ K for the images of x, y ∈ k[x, y]. We claim that

val(γ) = cχ∗, where c = min {ν(xγ), ν(yγ)} . (9)

Indeed, k(G) = k(gij) for i, j = 1, 2 and the morphism ψγ : SpecL → A2 − {0}
corresponds to the homomorphism of k-algebras:

ψ∗γ : k[x, y]→ L, f(x, y) 7→ f(g · (xγ , yγ)),
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where

g · (xγ , yγ) =

(
g11 g12
g21 g22

)(
xγ
yγ

)
=

(
g11xγ + g12yγ
g21xγ + g22yγ

)
.

The pullback ψ∗γ(y) is then g21xγ + g22yγ . In this expression, no term from g21xγ
cancels with a term from g22yγ , since they have distinct coefficients in k(G). Thus

vγ(y) = ν(ψ∗γ(y)) = min {ν(xγ), ν(yγ)} .

Next, let C be a curve in A2 − {0} given by an equation

f(x, y) =
∑
n,m≥0

cn,mx
nym = 0.

A K-point γ : SpecK → A2 − {0} factors through C precisely when the kernel
of γ∗ contains f(x, y), i.e., if f(xγ , yγ) = 0. Write f(x, y) = c0,0 + f0(x, y). If
c0,0 6= 0, then f(xγ , yγ) = 0 implies

min
(n,m)

{nν(xγ) +mν(yγ)} ≤ 0,

where (n,m) are the pairs of non-negative integers, not both of which are zero,
such that cn,m 6= 0. It is clear that one of ν(xγ) and ν(yγ) has to be non-positive,
hence vγ(y) ≤ 0 and val(γ) = cχ∗ with c ≤ 0. It follows that TropC is the ray −R

In case c0,0 = 0, there is no restriction on vγ(f), and TropC is all of V = Q:

In other words, the tropicalization of a curve passing through the origin of A2 is
all of V, while the tropicalization of a curve not passing through it is the ray −R.

5. Spherical tropical compactifications

Let Y ⊆ G/H be a closed subvariety of a spherical homogeneous space. Any
tropical compactification of Y in a normal variety occurs in a spherical variety.
Our goal is to prove Theorem 1.

Lemma 14. If v ∈ TropY , c ∈ Q≥0 then cv ∈ TropY , in particular

TropY = Q≥0 val(Y (K)).

Proof. Let v = vγ ∈ TropY for some γ ∈ Y (K), and pick c ∈ Q≥0. There is a
morphism φ : SpecK → SpecK of k-schemes given by the endomorphism

φ∗ : K → K, f(t) 7→ f(tc)

of a k-algebra. Let γ̃ = γ ◦ φ ∈ Y (K). Let f ∈ k(G/H)×, and let g ∈ G be such
that the domain of gf contains im γ = im γ̃. Then γ̃∗(gf)(t) = γ∗(gf)(tc) and so

ν(γ̃∗(gf)) = c ν(γ∗(gf)).

It follows that vγ̃(f) = cvγ(f), and hence vγ̃ = cv. �
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Let R = k[[t]] be the ring of power series over k, a discrete valuation ring with
field of fractionsK. If γ is aK-point ofG/H andG/H ↪→ X a spherical embedding,
then due to separatedness there is at most one morphism θ : SpecR → X such
that the following diagram commutes:

SpecK

SpecR

X
......................................
.....
.......
.....

..................................................................................................... ............
γ

..........
........

..........
........

..........
........

....................
............

θ
. (10)

If θ exists, write x and ξ for the images of the closed and the generic point of
SpecR, respectively. The point ξ ∈ G/H is the image of γ. The point x is called
the limit point of γ in X, denoted lim γ. We say that lim γ exists in X if θ exists.
If X → X ′ is a G-morphism of spherical varieties that fixes G/H then the image
of lim γ in X (if it exists) is lim γ in X ′. This can be extended to K-points of
G/H, since any morphism SpecK → G/H factors through Spec k((t1/n)) for some
n ∈ Z≥0.

Lemma 15. If R ⊆ V is a ray, XR the associated toroidal simple spherical variety,
and vγ ∈ R◦ for γ ∈ G/H(K) then lim γ exists and belongs to the closed G-orbit O.

Proof. The ray R is generated by some G-invariant discrete valuation vD, asso-
ciated to a G-stable prime divisor D ⊂ XR containing O. Since XR is toroidal and
dim C = 1, O is of codimension 1, hence D = O. Write vγ = cvD for some c ∈ Q>0.

Let XR ↪→ X be an equivariant compactification in a toroidal spherical variety.
Due to properness of X ′, there is a (unique) morphism θ such that (10) commutes.
Write x̃ and ξ̃ for the closed and the generic point of SpecR, respectively, and let
x = θ(x̃) and ξ = θ(ξ̃) be their images in X. Consider the induced map on stalks:

θ∗x : OX,x → OSpecR,x̃.

We have γ∗(f) = θ∗x(f) for any f ∈ OX,x. Since θ∗x is a local homomorphism,
ν(γ∗(f)) = 0 if f does not vanish at x, and ν(γ∗(f)) > 0 otherwise. We claim
that x ∈ O. Assume the opposite is true. Write Ō for the closure of O in X. We
consider three cases: (i) x ∈ G/H, (ii) x 6∈ G/H and x 6∈ Ō, and (iii) x ∈ Ō − O.
Let Ox ⊆ X be the G-orbit containing x.

(i) Pick an affine open set U = SpecA ⊂ XR that contains x and intersects Ō.
It exists because XR is quasi-projective. Let p ⊂ A be the prime ideal of x ∈ U
and write Ō ∩ U = V (a) for some ideal a ⊂ A. Choose f ∈ a \ p. Then f is a
unit in Ap, hence ν(γ∗(f)) = 0, which implies vγ(f) ≤ 0. On the other hand, since
f ∈ a, f vanishes on Ō ∩ U and so vD(f) > 0, which is a contradiction.

(ii) Let D1, . . . , Dr be G-stable prime divisors containing Ox. Since x 6∈ Ō,
neither of these divisors is equal to D. It follows that the open ray R◦ is disjoint
from the cone in V spanned by vD1 , . . . , vDr , and therefore there is a function
f ∈ k(G/H)(B) such that vDi

(f) > 0 for i = 1, . . . , r but vγ(f) < 0. Since X is
normal, f ∈ OX,x′ and vanishes at x′ for any x′ ∈ Ox. Thus the same is true for
gf for any g ∈ G. It follows that vγ(f) > 0, which is a contradiction.

(iii) Let f ∈ OX,x be such that f vanishes along Ox near x bit not along Ō,
hence vD(f) = 0. On the other hand, gf vanishes at x for g from an open set of
G, so vγ(f) > 0, which is a contradiction. �
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Lemma 16. Let C ⊆ V be a cone and X the associated toroidal simple spherical
variety with a closed G-orbit O. Let Y ⊆ G/H be a closed subvariety, Y ⊆ X its
closure, and x ∈ O ∩ Y . Then there is γ ∈ Y (K) such that lim γ = x and vγ ∈ C◦.

Proof. By cutting Y ⊂ X with general hypersurfaces passing through x, we can
assume without loss of generality that Y is 1-dimensional. Let B ⊂ k(Y ) be a
discrete valuation ring that dominates OY ,x. By the Cohen’s Structure Theorem

[E, Prop. 10.16]), the completion B̂ of B is isomorphic to R = k[[t]], and we identify
it with this ring. The inclusions

OY ,x ↪→ B ↪→ B̂ ↪→ K

give rise to a morphism θ : Spec B̂ → Y of schemes over k that sends the generic
point of Spec B̂ to the generic point of Y and the closed point to x.

The restriction of θ to SpecK is a K-point γ of Y such that lim γ exists and is
equal to x. Now we show that vγ ∈ C◦. Let C0 be the ray generated by vγ in V.
If C0 is in C◦ then we are done. Assume not. We consider two cases, (i) C0 is not
contained in C, and (ii) C0 is in C − C◦. Let X0 be the associated toroidal simple
spherical variety of C0 with closed G-orbit O0. Write Y0 ⊆ X0 for the closure of Y .

(i) Let F be a fan (without colors) with cones C0 and C, and let X ′ be the
associated toroidal spherical variety. There are open G-embeddings X0 ↪→ X ′ and
X ↪→ X ′. Since the cones C0 and C don’t intersect (except at the origin), the orbits
O0 and O are disjoint in X ′. Since vγ ∈ C◦0 , lim γ exists in X0 and is in O0 by
Lemma 15. But this can’t be true because lim γ = x ∈ O as shown above.

(ii) There is a birational G-morphism X0 → X. Since C0 is not contained in C◦,
the closed orbit O0 of X0 does not map to the closed orbit O of X. From Lemma 15,
lim γ exists in X0 and is in O0. The image of lim γ under X0 → X, which is the
limit point of γ in X, lies in the orbit O, which is a contradiction. �

The next proposition is an extension of [Te, Lem. 2.2] to spherical varieties.

Proposition 17. Let X be a simple toroidal spherical variety with a closed G-
orbit O, and let C be the associated cone in Q. Then TropY intersects the relative
interior of C if and only if the closure Y ⊆ X intersects the closed orbit O.

Proof. First assume that Trop Y ∩C◦ 6= ∅, and let v ∈ TropY ∩C◦. By Lemma 14,
we may assume that v = vγ with γ ∈ Y (K). Let X0 be the toroidal simple spherical
variety associated to C0, O0 the closed G-orbit of X0, and Y0 ⊆ X0 the closure
of Y . By Lemma 15, the limit point of γ in X0 is in O0, which shows that Y0 ∩O0

is non-empty. Since C0 is in C◦, there is a birational G-morphism f : X0 → X that
sends O0 to O and maps Y0 to Y . Therefore, Y ∩O 6= ∅.

Now assume that Y ∩O 6= ∅. By Lemma 16, there is a K-point γ ∈ Y (K) such
that vγ ∈ C◦, so that TropY ∩ C◦ 6= ∅. This completes the proof. �

The following propositions and their proofs generalize [Te, Prop. 2.3 and 2.5].

Proposition 18. Let X be a toroidal spherical variety associated with a fan F.
Then Y is complete if and only if TropY ⊆ SuppF.
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Proof. Suppose that Y is complete but Trop Y is not contained in SuppF. LetX ↪→
X ′ be an equivariant compactification of X in some toroidal spherical variety X ′,
associated to a fan F′ containing F. Since X ′ is complete, SuppF′ = V, hence
there is a cone C of F′ whose interior does not intersect F and contains a point
of TropY . Let Y ′ be the closure of Y in X ′. Since Y is complete, Y ′ = Y . Thus
Y ′ does not intersect the boundary X ′ − X. This boundary contains the closed
G-orbit corresponding to C, and this contradicts Proposition 17.

Now assume that TropY ⊆ SuppF but Y is not complete. Let X ↪→ X ′, F′,
and Y ′ be as above. Since Y is not complete but Y ′ is, as a closed subvariety of a
complete variety, the inclusion Y ⊂ Y ′ is strict. In particular, Y ′ intersects some
G-orbit in X ′ − X, which corresponds to a cone C of F′ whose interior does not
intersect F. By Proposition 17, C◦ intersects Trop Y , but this is not the case as
the latter is contained in SuppF. �

Proposition 19. If Y is a tropical compactification of Y in a toroidal spherical
variety X associated to a fan F then SuppF = TropY .

Proof. Suppose SuppF 6= TropY . By Proposition 18, SuppF contains TropY .
Let v ∈ SuppF be an element not in Trop Y . Then the entire ray R generated
by v is not in TropY (Lemma 14). Let F′ be a refinement of F that contains the
cone R and let X ′ be the toroidal spherical variety defined by it. There is a proper
birational G-morphism f : X ′ → X. The closure Y ′ ⊆ X ′ of Y , which is the pure
transform of Y with respect to f , is a tropical compactification of Y (Prop. 12).
The multiplication morphism G× Y ′ → X ′ is faithfully flat, hence surjective, and
so Y ′ intersects every G-orbit of X ′. But by Proposition 17 this is not the case for
the closed G-orbit associated to the cone R. �

Proof of Theorem 1. By Theorem 13, tropical compactifications of Y exist. Let
Y ⊆ X be one of them and let F be the fan associated to X. Let F′ be the fan
obtained by removing all colors from F, i.e., F′ consists of all cones C ∩ V for
(C,F) ∈ F, and let X ′ be the associated toroidal spherical variety. In particular,
SuppF′ = SuppF. There is a proper birational G-morphism f : X ′ → X restricting
to the identity on G/H. By Prop. 12, the closure Y ′ ⊆ X ′ of Y is a tropical
compactification in a toroidal spherical variety. Finally,

SuppF = SuppF′ = TropY

by Prop. 19, which completes the proof. �

Example 3. In the notation of Example 2, let C ⊆ X be a tropical compactifica-
tion with X toroidal. Then X is P2 − {0} if C does not pass through the origin
O ∈ A2 or Bl0 P2 if it does. In particular, X contains the boundary W and the
intersection number C · W is the degree of the curve C. On the other hand,
if X = Bl0 P2, the intersection number C · E is the multiplicity of C at the
origin, which is typically smaller than degC. It follows that even though we can
define multiplicities of cones of TropX as in the toric case [ST], and they encode
important geometric information, the balancing condition does not hold.
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Further examples of spherical tropicalization

We use notation of §2. Lemma 14 allows us to use K-points instead of K-points.

6. Subvarieties of GLn

We will prove Theorem 2 and its analog for SLn:

Theorem 20. Let Y = (f1 = · · · = fs = 0) ⊂ SLn be a closed subvariety. Then
TropY consists of (n−1)-tuples (α1, . . . , αn−1) of invariant factors (in decreasing
order) of matrices M ∈ SLn(K) such that f1(M) = · · · = fr(M) = 0.

We consider G = GLn or SLn simultaneously. Consider the group G × G with
Borel subgroup B consisting of pairs of an upper and a lower triangular matrices.
Let H = {(g, g) ∈ G×G} be the diagonal. Then (G×G)/H ' G with the action
given by left and right multiplication (g, h) · x = gxh−1 for (g, h) ∈ G×G, x ∈ G.
This is a spherical homogeneous space by the Bruhat decomposition. Let xij be
matrix coordinates for G. For G = GLn, the group of characters is X ' Z2n, where
(l,m) = (l1, . . . , ln,m1, . . . ,mn) ∈ Z2n corresponds to

χ(l,m) : B → k×, ((aij), (bij)) 7→
n∏
i=1

a−liii bmi
ii . (11)

For G = SLn, X ∼= Z2(n−1), where (l,m) = (l1, . . . , ln−1,m1, . . . ,mn−1) ∈ Z2(n−1)

corresponds to the character (11) with ln = mn = 0.
For G = GLn, the lattice Λ is generated by B-semi-invariant functions

f ′i = det


xi,i xi,i+1 . . . xi,n
xi+1,i xi+1,i+1 . . . xi+1,n

...
...

. . .
...

xn,i xn,i+1 . . . xn,n


for i = 1, . . . , n. For example, f ′1 = detx and f ′n = xnn. The character of f ′i is
χ′i = χ(mi,mi), where mi = (0, . . . , 0, 1, . . . , 1) (the first entry 1 is the ith one). The
colors are the B-stable prime divisors D2, . . . , Dn given by the functions f ′2, . . . , f

′
n,

and %(Di) = (χ′i)
∗ in Q (the dual basis to χ′i). A better set of generators is

f1, . . . , fn, where fi = f ′i/f
′
i+1 for i < n, and fn = f ′n. The character associated

to fi is χi = χ(ei,ei), where ei = (0, . . . , 0, 1, 0, . . . , 0) (the 1 in the ith entry). The
vector space Q is n-dimensional, spanned by the dual basis χ∗1, . . . , χ

∗
n to f1, . . . , fn.

For G = SLn, we define f ′2, . . . , f
′
n as for G = GLn and then let f1 = 1/f ′2,

and fi = f ′i/f
′
i+1 for i = 2, . . . , n − 1. The character χ′i associated to f ′i is χ(l,l),

where l = (−1, . . . ,−1, 0, . . . , 0) (the first zero in the ith position). The character
χi associated to fi is as in the case of G = GLn. The vector space Q is (n − 1)-
dimensional, spanned by the dual basis χ∗1, . . . , χ

∗
n−1.

We now construct the tropicalization map val : G(K)→ Q. Let γ ∈ G(K), and
write γ∗ : k[G]→ K for the associated homomorphism of k-algebras, where

k[GLn] = k[xij ]det x and k[SLn] = k[xij ]/(1− detx).
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Write xγ for the matrix γ∗(x). Let L =
⋃
m k(G × G)((t1/m)) as in §4. The

morphism ψγ : SpecL→ G is induced by the map

ψ∗γ : k[G]→ L, f(x) 7→ f(gxγh
−1).

Thus vγ(f ′i) is the smallest value of the valuations of i × i minors of the matrix
xγ and vγ(fi) = v(f ′i)− v(f ′i+1) with the special cases v(fn) = v(f ′n) if G = GLn,
or v(f1) = −v(f ′2) if G = SLn. This is a well-known method for calculating the
invariant factors of a matrix, hence v(fi) = αi, where α1, . . . , αn are invariant
factors of the matrix xγ in the decreasing order. Therefore,

val(γ) = α1χ
∗
1 + · · ·+ αnχ

∗
n in Q,

where αn = 0 when G = SLn. This proves Theorems 2 and 20.

If G = GLn, the valuation cone, which is the image of val , is the set

V = {(α1, . . . , αn) ∈ Q : α1 ≥ · · · ≥ αn},

while if G = SLn, it is the set

V =

{
(α1, . . . , αn−1) ∈ Q : α1 ≥ · · · ≥ αn−1 and

n−1∑
i=1

αi + αn−1 ≥ 0

}
.

Indeed, the sum
n−1∑
i=1

αi for a matrix of determinant 1 is equal to −αn−2 ≥ −αn−1.

The valuation cones of GL2 and SL3 are shaded gray areas in Figures 2a and 2b.

(a) Valuation cone of GL2 (b) Valuation cone of SL3

Figure 2: Valuation cones of GL2 and SL3
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Example 4. Let C be the line in GL2 defined by the ideal

I = (x11 − x12 − 1, x12 − x21, x22).

A matrix in C(K) is of the form(
z(t) + 1 z(t)
z(t) 0

)
, z(t) ∈ K.

The determinant of this matrix is −z(t)2. If ν(z(t)) ≥ 0, then the smallest invariant
factor is α2 = 0, and α1 = ν(−z(t)2), so that α1 can be any non-negative integer.
This gives the ray consisting of the positive α1-axis in Q, say R1. If ν(z(t)) < 0,
then the smallest invariant factor is α2 = ν(z(t)), and α1 +α2 = ν(−z(t)2) = 2α2,
so that α1 = α2. This corresponds to the ray along the line α1 = α2 in the third
quadrant, call it R2. Thus TropC is the union of rays R1 and R2, see Figure 3.

Since TropC has dimension 1, it completely determines the toroidal spherical
variety in which the tropical compactification occurs. We describe this spherical
variety. We view GL2 as a quasi-affine variety in A4 (with coordinates xij). Con-
sider the projective space P4 with homogeneous coordinates

(X0, X) =

(
X0,

(
X11 X12

X21 X22

))
.

We identify A4 with the affine space (X0 6= 0) in P4. The action of GL2 ×GL2 on
GL2 extends to an action on all of P4:

(g, h) · (X0, X) = (X0, gXh
−1), (g, h) ∈ GL2 ×GL2, (X,X0) ∈ P4,

and so GL2 ↪→ P4 is a spherical embedding. Its colored fan is given in Figure 6(A).
The rays R1 and R2 are cones of this fan, and so the spherical variety associated
to TropC is a GL2-stable open subvariety of P4. It follows that the tropical
compactification of C is its closure in P4, which contains two points in the boun-
dary, (

1,

(
1 0
0 0

))
and

(
0,

(
1 1
1 0

))
.

Example 5. Let Y1 be the hyperplane (x11 = 1) in GL2. A matrix in Y1(K)
satisfies ν(x11(t)) = 0, hence the smallest invariant factor α2 is non-positive. There
is no restriction on α1. Indeed, if (α1, α2) is a pair of integers with α1 ≥ α2 and
α2 ≤ 0, then the matrix (

1 tα1

tα2 0

)
∈ Y1(K)

has invariant factors (α1, α2). Therefore, Trop Y1 is the one of Figure 4(A).
If Y2 = V (x21 − x212), then TropY2 is the whole valuation cone. Indeed, for any

pair of integers (α1, α2) with α1 ≥ α2, the matrix(
tα1 0
0 tα2

)
∈ Y2(K)
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Figure 3: TropC is the union of two rays

has invariant factors (α1, α2). Now consider the subvariety Y = V (x11 − 1, x21 −
x212). Any matrix in Y (K) is of the form(

1 y(t)
y2(t) z(t)

)
, y(t), z(t) ∈ K.

The determinant of this matrix is z(t)− y3(t). If ν(y(t)), ν(z(t)) ≥ 0, then α2 = 0
and α1 can be any positive number, which gives the positive α1-axis. If ν(y(t)) ≤
0, ν(z(t)) ≥ 0, then α2 = 2ν(y(t)) and α1 = ν(y(t)). This is the ray along the line
α2 = −α1/2 in the third quadrant. If ν(y(t)) ≥ 0, ν(z(t)) ≤ 0, then α2 = ν(z(t))
and α1 = 0, which is the negative α2-axis. If ν(y(t)), ν(z(t)) ≤ 0, then there
are three subcases. If ν(z(t)) is more than 2ν(y(t)) or less than 3ν(y(t)), then
we get back the ray along α2 = −α1/2 or the negative α2-axis, respectively. If
3ν(y(t)) ≤ ν(z(t)) ≤ 2ν(y(t)), then α2 = ν(z(t)) and α2/2 ≤ α1 ≤ 0, and we get
the cone between α2 = −α1/2 and the negative α2-axis. TropY is given in Figure
4(b). Even though Y = Y1 ∩ Y2, TropY is strictly smaller than Trop Y1 ∩TropY2.

Example 6. Consider the special orthogonal group SO4 as a subvariety of SL4:

SO4 =
{
x ∈ SL4 : xtx = e

}
,

where e is the identity matrix. Let x(t) ∈ SO4(K). The invariant factors of x(t)t

and x(t) are the same, while the ones of e are all zero. The invariant factors
(α1, α2, α3, α4) of x(t) must satisfy the following Horn’s inequalities (see §8):

α1 + α4 ≥ 0 and α2 + α3 ≥ 0.

Since x(t) has determinant 1, α4 = −α1−α2−α3, and the first inequality becomes
α2 +α3 ≤ 0, hence α3 = −α2. This forces α4 = −α1. We show that any quadruple
(α1, α2, α3, α4) that satisfies these two conditions is in Trop SO4.

711



J. TEVELEV, T. VOGIANNOU

(a) TropV (x11 − 1) (b) TropV (x11 − 1, x21 − x212)

Figure 4: Tropicalizations of subvarieties of GL2

Pick (α1, α2,−α2,−α1) with α1 ≥ α2 ≥ 0. The matrix with entries in K:
t−α1

√
1− t−2α1 0 0

−
√

1− t−2α1 t−α1 0 0

0 0 t−α2
√

1− t−2α2

0 0 −
√

1− t−2α2 t−α2


is orthogonal, of determinant 1, and has invariant factors (α1, α2,−α2,−α1). It
follows that Trop SO4 = {(α1, α2, α3) ∈ V : α3 = −α2}.

7. Subvarieties of PGLn

Any x ∈ PGLn(K) can be represented by a matrix for which the smallest invariant
factor is 0. Any such representation has the same invariant factors, which we call
(without the last 0) the invariant factors of x. The proof of the next theorem is
the same as for Theorems 2 and 20.

Theorem 21. Let Y ⊂ PGLn be a closed subvariety. Then TropY consists of
(n− 1)-tuples (α1, . . . , αn−1) of invariant factors of elements x ∈ Y (K).

The valuation map assigns to x its invariant factors and the valuation cone is

V = {(α1, . . . , αn−1) ∈ Q : α1 ≥ · · · ≥ αn−1 ≥ 0}.

8. Tropicalization of the representation variety of π1(S0,3)

Let S0,3 denote the Riemann sphere with 3-punctures. Its fundamental group is

Γ = π1(S0,3) = 〈a, b, c : abc = 1〉 =
〈
a, b, c : ab = c−1

〉
,

where a, b, c are loops around the first, second, and third puncture, respectively.
Γ is isomorphic to the free group in 2 generators but this presentation is more

712



SPHERICAL TROPICALIZATION

natural for the problem. Let G be GLn or SLn. The G-representation variety of Γ
is

RepG(Γ) = hom(Γ, G) =
{

(x, y, z) ∈ G3 : xy = z−1
}
.

We view G3 as a homogeneous space via the action of G6 = (G×G)3 by multiplica-
tion on the left and on the right. The lattice Q has dimension 3n if G = GLn, and
3(n − 1) if G = SLn. Consider the standard basis for Q, which is an extension of
the one given in §6 to the product of three copies of G.

IfG = GLn, the set Trop RepG(π1(S0,3)) consists of (positive scalar multiples of)
(3n)-tuples of integers (α1, . . . , αn, β1, . . . , βn, γ1, . . . , γn) that appear as invariant
factors of matrices x, y, z with entries in K, such that xy = z−1. We write
(γ′1, . . . , γ

′
n) for the invariant factors of the matrix z−1, which are γ′1 = −γn,

γ′2 = −γn−2, etc. It suffices to describe (3n)-tuplets of integers

(α1, . . . , αn, β1, . . . , βn, γ
′
1, . . . , γ

′
n)

that appear as invariant factors of matrices x, y, z′ with entries in K, such that
xy = z′. The case of G = SLn is similar.

This problem is equivalent to Horn’s problem, see [F, Thm. 7 & 17]. Its solution
is given by the Horn’s inequalities

n∑
i=1

αi +

n∑
i=1

βi =

n∑
i=1

γ′i, (12)

and ∑
k∈K

γ′i ≤
∑
i∈I

αi +
∑
j∈J

βi for all (I, J,K) ∈ Tnr , (13)

where I, J,K are subsets of {1, . . . , n} of the same cardinality, and Tnr are defined
inductively as

Tnr =

(I, J,K) ∈ Unr :

for every p < r and (F,G,H) ∈ T rp ,∑
f∈F

if +
∑
g∈G

jg ≤
∑
h∈H

kh + p(p+ 1)/2


where Unr are the sets of triplets (I, J,K) given by:

Unr =

{
(I, J,K) :

∑
i∈I

i+
∑
j∈J

j =
∑
k∈K

k + r(r + 1)/2

}
.

For example, Trop RepSL2
(Γ) is given by the inequalities

α1 ≤ β1 + γ1, β1 ≤ γ1 + α1, γ1 ≤ α1 + β1,

see Figure 5. The valuation cone is the first quadrant.
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Figure 5: Tropicalization of the SL2-representation variety of π1(S0,3)

9. Tropical compactification of the maximal torus of GL2

In this section we give an example of computing a tropical compactification in the
spirit of Theorem 8, i.e., by starting with the closure of Y in a complete spherical
variety and modifying it with blow-ups until the multiplication map of Y becomes
flat. This amounts to refining the colored fan. The cones that lie outside Trop Y
are then removed and the multiplication map becomes flat and surjective. Let

T = {x ∈ GL2 : x12 = x21 = 0} .
The tropicalization of T is all of the valuation cone. Indeed, given a pair of integers
(α1, α2) with α1 ≥ α2, the invertible matrix(

tα1 0
0 tα2

)
has invariant factors α1, α2. We begin by compactifying T in a spherical variety
supported on V, i.e., a complete spherical variety. We view GL2 as an open subset
of A4, with coordinates xij , which in turn is embedded in P4, with homogeneous
coordinates (X0, X) = (X0, (Xij)), and is identified with (X0 6= 0), see Example 4.
The spherical variety P4 has two closed GL2-orbits: the origin of 0 ∈ A4 and the
set of rank 1 matrices “at infinity”. The colored fan of P4 is shown in Figure 6(a).

Let T ′ ⊂ P4 be the closure of T . We claim that the multiplication map µT ′ :
GL2 ×GL2 × T ′ → P4 is flat everywhere but µ−1T ′ (0) = GL2 ×GL2 × {0}. We first
show that all fibers of µT ′ but the one over 0 ∈ P4 have the same dimension. We
use the following simple observation:

Proposition 22. Let G be an algebraic group over k, X a G-variety, and Y ⊆ X
a closed subvariety. The non-empty fibers of the multiplication map of Y over
points in an orbit O have dimension dimG+ dim(Y ∩O)− dimO.

The dimension of GL2 ×GL2 is 8, while the one of P4 is 4. We use Proposition
22 on each orbit of P4 to show that the dimension of all fibers but the one over
0 ∈ P4 is 6. For each orbit O, we need to show that dim(T ′ ∩O)− dimO = −2.

(1) If O = GL2, then T ′ ∩O = T is of dimension 2, while dimO = 4.
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(2) The orbit O of rank 1 matrices in A4, i.e., in (X0 6= 0), is the divisor
(detx = 0) ⊂ A4, without the origin 0, hence of dimension 3. It intersects
T ′ at the following subset of dimension 1:(

x11 0
0 0

)
,

(
0 0
0 x22

)
, x11, x22 ∈ k×.

(3) Let O be the orbit of invertible matrices at infinity. It is an open set in the
hyperplane (X0 = 0), hence of dimension 3. Its intersection with T ′(

0,

(
X11 0

0 X22

))
, X11, X22 ∈ k×, X11X22 6= 0,

is isomorphic to P1 ⊂ P3 minus two points, and so of dimension 1.
(4) Let O be the orbit of rank 1 matrices at infinity:

O =
{

(0, X) ∈ P4 : detX = 0
}
.

It is a divisor on the hyperplane (X0 = 0) ∼= P3, hence of dimension 2. It
intersects T ′ at a 0-dimensional subset(

0,

(
1 0
0 0

))
and

(
0,

(
0 0
0 1

))
.

The fiber over 0 is GL2 ×GL2 × {0}, which is of dimension 8. We see that µT ′

is equidimensional everywhere but over the origin. Flatness of µT ′ over P4 − {0}
follows from the following proposition, which is a direct consequence of [EGAIV,
Prop. 6.1.5]. The closed set T ′ is Cohen–Macaulay as a complete intersection in
P4, and GL2 is an open set in A4, thus GL2 ×GL2 × T ′ is Cohen–Macaulay.

Proposition 23. Let φ : X → Y be a an equidimensional morphism of varieties
such that Y is nonsingular and X is Cohen–Macaulay. Then φ is flat.

(a) The fan of P4 (b) The fan of Bl0 P4

Figure 6: Fans of spherical varieties for GL2

715



J. TEVELEV, T. VOGIANNOU

Consider the blow-up morphism π : Bl0 P4 → P4 that restricts to an isomor-
phism Bl0 P4 − E ∼−→ P4 − {0}. The exceptional divisor E is isomorphic to P3.
We view its elements as 2 × 2 homogeneous matrices; write Yij for the associated
homogeneous coordinates. The action of GL2 × GL2 on P4 − {0} extends to an
action on Bl0 P4 by left and right multiplication on the homogeneous matrices of
the exceptional divisor. Under this action π is a GL2-morphism. Thus Bl0 P4 is a
spherical variety for the homogeneous space GL2. The closed GL2-orbits are the
set of matrices of rank 1 at infinity, and the matrices of rank 1 in the exceptional
divisor. The fan associated to Bl0 P4 is given in Figure 6(b). In particular Bl0 P4

is toroidal.
We claim that the closure T ⊂ Bl0 P4 is a tropical compactification of T .

Completeness of T follows from completeness of Bl0 P4, or from the fact Trop T =
SuppF, where F is the fan associated to Bl0 P4 (Prop. 18). Also, TropT = SuppF

implies that T intersects all orbits of Bl0 P4 (Prop. 17), so that the multiplication
map µT : GL2 ×GL2 × T → Bl0 P4 is surjective. We show that it is also flat.

The multiplication maps of T and T ′ agree away from the exceptional divisor

µT |GL2×GL2×(T−E) = µT ′ |GL2×GL2×(T ′−{0})

(as morphisms to Bl0 P4 − E ∼= P4 − {0}). The intersection Y ∩ E consists of the
diagonal homogeneous matrices of E. One can check using Proposition 22 that all
fibers of µT over E are of dimension 6; this case is identical to the case of fibers
over the hyperplane (X0 = 0). Therefore all fibers of µT are of the same dimension.

The closed set T , which is the pure transform of T ′, is Cohen–Macaulay as a
complete intersection; this can be easily checked on the standard charts Uij ∼= P4

of Bl0 P4 ⊂ P4 × P3. Applying Proposition 23 we get that µT is flat, and since it
is surjective, faithfully flat. We deduce Y ⊂ Bl0 P4 is a tropical compactification.

Remark 1. A similar argument shows that the closure of the maximal torus T of
a connected semi-simple group G in its wonderful compactification G, see [CP], is
a spherical tropical compactification of T .

Remark 2. There are many spherical homogeneous spaces of rank 1 [Ti, Tab. 5.10].
In this case a spherical toroidal tropical compactification of a subvariety Y ⊂ G/H
is uniquely determined by its spherical tropicalization Trop(Y ).
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