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ABSTRACT. A result of Keel and McKernan states that a hypothetical counterex-
ample to the F -conjecture must come from rigid curves on M0,n that intersect the
interior. We exhibit several ways of constructing rigid curves. In all our examples,
a reduction mod p argument shows that the classes of the rigid curves that we
construct can be decomposed as sums of F -curves.

1. INTRODUCTION

Let M0,n be the moduli space of stable n-pointed rational curves. The one-
dimensional boundary strata of the moduli space, i.e., the irreducible components
of the locus parameterizing rational curves with at least n−3 components are often
called F -curves. A long standing open question [KM] (known as the F -conjecture)
is whether the Mori cone of curves NE(M0,n) is generated by F -curves. Gib-
ney, Keel and Morrison [GKM] proved that the F -conjecture for all n implies that
the same is true for the moduli spaces Mg,n of stable, genus g, n-pointed curves,
namely, that the Mori cone NE(Mg,n) is generated by one-dimensional boundary
strata (thus, giving an explicit description of the ample cone of Mg,n).

Keel and McKernan [KM] proved the F -conjecture for n ≤ 7 and proved that
a hypothetical counterexample to the F -conjecture must come from rigid curves
intersecting the interior M0,n (see Thm. 2.2 for a precise statement). The notion of
rigidity in the Keel-McKernan result is a very strong one:

Definition 1.1. Let C be a curve on a variety X . We say that C moves on X if
there is a flat family of curves π : S → B over a curve germ (b0 ∈ B), with a map
h : S → X such that dimh(S) = 2 and h(Sb0) = C (set-theoretically). We say that
C is rigid on X if C does not move.

1.2. Constructing rigid curves.

We observe that if the curve C is an irreducible component of the exceptional
locus of a regular map X → Z (for some Z), then C is rigid on X in the sense of
Def. 1.1. Indeed, this is an immediate application of Mumford’s rigidity lemma
[Mu, p.43]. On M0,n, the natural maps to consider are products of forgetful maps.
In Sections 3, 4, and 5 we discuss a construction, which we call the hypergraph
construction. The basic idea is that M0,n is covered by arbitrary blow-ups of P2

in n points (as long as these points do not belong to a (possibly reducible) conic).
The curves that we consider are (−1)-curves in these blow-ups. The hypergraph
construction uses a rigid configuration of n points to construct interesting curves
and surfaces in M0,n, that intersect the interior M0,n, and are contracted by some
natural products of forgetful maps. It is in general difficult to decide when the
exceptional locus of such a map has a 1-dimensional irreducible component. We
have been able to prove this by an ad-hoc argument in one example. Namely, one
starts with the (93124) Hesse configuration of 9 inflection points of a non-singular
plane cubic and 12 lines connecting them pairwise. Applying our hypergraph
construction to the configuration projectively dual to the Hesse configuration, one
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gets in this way a rigid curve on M0,12. (This construction appeared first in the
authors preprint [CT1].)

1.3. Constructing rigid maps.

The notion of rigidity in Def. 1.1 is much stronger than the one usually used for
maps [McM]: a map f : C → X is called rigid if any family of maps containing
f is isotrivial. Here a family of maps is a proper flat family of curves π : S → B
with reduced fibers over a curve germ (b0 ∈ B), with a map h : S → X such that
h|Sb0 = f . The family of maps is isotrivial if (after shrinking B) it is isomorphic
over B to the constant family C × B, h(c, b) = f(c). If C is a rigid curve on X ,
the embedding map f : C → X is a rigid map, but the converse does not hold
in general. Indeed, consider a family of quartic plane curves specializing to a
double conic. If C denotes the reduced conic on the total space S of the family,
then clearly C is not a rigid curve on S, but the embedding map C ↪→ S is rigid.
Rigid maps C → M0,n were recently constructed by Chen [Ch] using results of
McMullen [McM] and Möller [Mö] on Teichmüller curves. An amazing feature of
Chen’s curves is that their union is dense in M0,n for every n ≥ 8. It seems to be a
difficult problem to decide whether these curves are rigid in the sense of Def. 1.1.

In Section 6 we present a different construction of rigid maps inspired by dis-
cussions with J. Kollár and J. de Jong from a few years ago. It uses rigid configura-
tions of lines and conics in the plane. We call this the “Two Conics” construction.
We give an explicit example of such a curve in Section 9 using the configuration of
Grünbaum [G, 5.5] of 9 lines in the plane representing the golden ratio.

1.4. Arithmetic Breaks.

We then proceed to show that all the rigid curves (and images of rigid maps)
that we found can be decomposed into sums of F -curves. This is easy for curves
found in [Ch]: these curves lie in the symmetric Mori cone NE(M0,n/Sn) and their
classes are easily seen to be sums of F -curves.

Curves obtained using hypergraph and “Two conics” constructions are highly
asymmetric, and it is hard to see how their classes can break into sums of F -curves.
However, we have found a way to break not just the class of the curve but the
curve itself using a simple idea that we call an “arithmetic break”. The above-
mentioned result of Keel and McKernan says, roughly, that if a curve on M0,n

moves in a one-parameter family then it breaks (one of the fibers is reducible).
We remark that even a rigid curve C moves in an arithmetic sense. Namely, its

field of definition K is a field of algebraic numbers. Let R ⊂ K be the integral
closure of Z. Then C has an integral model CR over SpecR, which is a subscheme
in the R-moduli scheme M0,n;R. We observe that in all our examples, one of the
fibers of CR → SpecR is reducible. We further analyze irreducible components of
this fiber (defined over the corresponding finite field), and show that these com-
ponents move and break, and in fact break down to effective linear combinations
of F -curves, thus showing that the class of C is also an effective sum of F -curves.
Here we use a well-known fact that PicM0,n is characteristic-independent (this
follows from the description of M0,n as a blow-up - Kapranov [Ka], Keel [Ke] or
Knudsen [Kn]). This raises an interesting question:

Question 1.5. Is it possible to construct a rigid curve on M0,n that intersects the
interior such that all its reductions modulo p are irreducible?

Note that rigidity is important here: it is possible to construct an embedding
P1
R →M0,n;R that intersects the interior, even though we know only one example,

which arises from the Grünbaum configuration (see Section 8) using the hyper-
graph construction. However, the generic fiber of such a map is not a rigid curve.
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1.6. Structure of the paper.

In Section 2, for the reader’s convenience we reproduce, with the authors’ per-
mission, the Keel-McKernan argument (Thm. 2.2 does not appear in its current
form in [KM]). In Section 3 we give a general construction of surfaces in M0,n, that
intersect the interior M0,n, starting with a configuration of points in P2. Section 4
explains the hypergraph construction. In Section 5 we consider a specific example
coming from the Hesse configuration. We find a curve on M0,12 which is an irre-
ducible component of the exceptional locus of a generically finite map M0,12 → Z.
In Section 6 we present the “two conics construction”. In Section 7 we explain how
the Hesse curve breaks into several components in positive characteristic. This al-
lows us to write the class of the curve as a sum of F -curves. In Section 9 we do the
same for a curve obtained via the two-conic construction.

We work over an algebraically closed field k (in Sections 2, 3, 4, 5 and 6), unless
we specify otherwise (such as in Sections 7, 9 and 10).
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2. THE KEEL-MCKERNAN THEOREM

Definition 2.1. We say that an extremal rayR of a closed convex cone C ⊂ Rn is an
edge if C is “not rounded” at R. Concretely, the vector space R⊥ ⊂ (Rn)∗ (of linear
forms that vanish on R) should be generated by supporting hyperplanes for C.

Theorem 2.2. [KM] Suppose that the Mori cone NE(M0,n) has an extremal ray which is
an edge and is generated by a curve C ⊂M0,n such that C ∩M0,n 6= ∅. Then C is rigid.

Remark 2.3. Assuming that the Mori cone NE(M0,n) is finitely generated, and
moreover each extremal ray is generated by a curve, then if C is a curve that gen-
erates an extremal ray of NE(M0,n), then either C intersects the interior M0,n and
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by Theorem 2.2 it must be rigid, or C is contained in a boundary component. In
the latter case, as

NE(M0,k ×M0,l) ∼= NE(M0,k)×NE(M0,l) (2.1)

it follows that C is obtained from a curve in M0,k for some k < n, by attaching
a fixed curve with fixed markings. Moreover, C itself generates an extremal ray
of NE(M0,k). It follows that either C is an F -curve, or eventually one obtains a
counterexample to the F -conjecture from a rigid curve C ⊂ M0,n that intersects
the interior M0,n.

For completeness, note that F -curves do generate extremal rays of NE(M0,n).
This is easily seen by induction, using (2.1). Moreover, for any F -curve F , we have
F · (KM0,n

+ ∆) = 1, where KM0,n
is the canonical class and ∆ is the sum of all

boundary [KM, Rmk. 3.7 (1)].

Remark 2.4. A rational rigid curveC ⊂M0,n has the property thatKM0,n
·C ≥ n−6.

This follows from the usual lower bound for the dimension of the Hom-scheme
locally at a point [f ], where f : P1 →M0,n:

dim[f ] Hom(P1,M0,n) ≥ −KM0,n
· f∗[P1] + dim(M0,n).

If the curve f(P1) is rigid, then it must be that

dim[f ] Hom(P1,M0,n) ≤ dim PGL2 = 3.

Note that by [KM, Lemma 3.5], we have:

−KM0,n
=

bn2 c∑
k=2

(
2− k(n− k)

n− 1

)
δk. (2.2)

where we denote δk =
∑
|I|=k δI .

Definition 2.5. We say that an effective Weil divisor on a projective variety has
ample support if it has the same support as some effective ample divisor.

Definition 2.6. We say that an effective divisor D is anti-nef if D · C ≤ 0 for any
curve C contained in the support of D.

Proposition 2.7. [KM] Let M be a Q-factorial projective variety and D an effective divi-
sor with ample support, each of whose irreducible components are anti-nef. Let C ⊂M be
a moving irreducible proper curve which generates an edge R of the Mori cone. Then R is
generated by a curve contained in the support of D.

Proof. Let p : S → B be a proper surjection from a surface S to a non-singular
curve B and let h : S → M be a morphism such that T = h(S) ⊂ M is a surface
and there exists a fibre F of p with h(F ) set theoretically equal to C. Clearly, we
may assume S is smooth. Suppose on the contrary that no curve inD∩T generates
the same extremal ray as C.

Let D =
∑
Di be the decomposition into irreducible components. Let D′i =

h−1(Di). Clearly, each D′i is an effective Q-Cartier divisor, and in particular, is
purely one dimensional. Let D′ =

∑
D′i. As D has ample support, D′ is non-

empty. Since C = h(F ) generates an extremal ray of the Mori cone of M , it follows
that any component of any fiber of p : S → B is either contracted by h or belongs
to the same extremal ray R. In particular, all components of D′ which are not
contracted by h are multisections of p : S → B.

We show next that we can find two irreducible curves B1, B2 ⊂ D′ and (after
renaming) two divisors D′1, D′2 with Bi ⊂ Di such that B1.D

′
2 > 0 and B2.D

′
1 ≥ 0.
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Choose an irreducible component B1 of D′ not contracted to a point by h and
contained in a maximal number of D′i’s. (We use here that h(S) is a surface.) Sup-
pose that G1, . . . , Gk are the components of D′ containing B1. Since the Di’s are
anti-nef, Gi · B1 ≤ 0. Since D has ample support, there exists a D′i such that
D′i · B1 > 0. After renaming, we may assume that D′2 · B1 > 0. Pick any com-
ponent B2 of D′2 not contracted to a point by h. By the choice of B1 there exists
Gi 6⊃ B2. We set D′1 = Gi.

Let λ > 0 be such that E := D′1 − λD′2 has zero intersection with the general
fiber. In particular, E.F = 0. As R is an edge, E is numerically equivalent to∑
aiHi, where ai ∈ R and Hi is a nef divisor on S with Hi · F = 0 (pull-back of a

supporting hyperplane on M ). As F 2 = 0, the Hodge Index Theorem implies that
for all i we have Hi = µiF , for some µi ∈ R and hence, E = µF , for some µ ∈ R.
Since B1, B2 are multisections, it follows that E.B1, E.B2 are both nonnegative
or both negative. This gives a contradiction, as by choice of B1 and B2, we have
E.B1 < 0 and E.B2 ≥ 0. �

Proof of Theorem 2.2. Suppose, on the contrary, that C is a moving curve that in-
tersects M0,n and generates an edge of the Mori cone. Note that the boundary
∆ of M0,n has ample support [KM, Lem. 3.6] and every boundary component is
anti-nef [KM, Lem. 4.5]. By Prop. 2.7, C is numerically equivalent to a positive
multiple of a curve C ′ on the boundary. By Lemma 2.8, there is some boundary di-
visor which intersects it negatively. Then this divisor intersects C negatively and
therefore C is contained in the boundary. Contradiction. �

Lemma 2.8. For any curve C in the boundary of M0,n, there is a boundary component
∆α such that C ·∆α < 0.

Proof. If C is contained in δij , consider the Kapranov morphism Ψ : M0,n → Pn−3

with the i-th marking as a moving point. Then Ψ(δij) = pt; if we let ψi = Ψ∗O(1),
then C.ψi = 0. It is not hard to see that the class Ψi can be written as

∑
αIδI

with αI > 0 for all I . If C.δI ≥ 0 for all I , then it follows that C.δI = 0 for all I ,
which is a contradiction, since the boundary has ample support. If C is contained
in some δI with |I| ≥ 3, we prove the statement by induction on |I|: consider the
forgetful map π : M0,n →M0,n−1 that forgets a marking i ∈ I . Then π(δI) = δI\{i}.
If C is not contracted by π, then by induction, π(C).δJ < 0 for some J ⊂ N \ i.
By the projection formula, C.π−1δJ = π(C).δJ < 0 and the statement follows, as
π−1δJ = δJ +δJ∪{n}. If π(C) = pt then C is a fiber of π and it is an easy calculation
to show that C.δI < 0. �

For the reader’s convenience, we sketch the proof of the following

Corollary 2.9. [KM] For n ≤ 7 the Mori cone NE(M0,n) is generated by F -curves.

Proof. This is clear for n ≤ 5. Assume n = 6 or 7. We will use here the fact that
the Mori cone NE(M0,n) is polyhedral for n = 6, 7 (for details see the original
argument in [KM]). By (2.2), we have:

−KM0,6
=

2

5
δ2 +

1

5
δ3, −KM0,7

=
1

3
δ2.

By Remark 2.4, there are no rational rigid curves intersecting the interior. This
is immediate if n = 7. For n = 6 this follows from the fact that the boundary
has ample support. We are left to prove that any extremal ray R of NE(M0,n) is
generated by a rational curve (then Theorem 2.2 will give a contradiction). This
follows from the Cone Theorem for n = 6 (use that −KM0,6

has ample support).
For n = 7 this follows from [KM, Prop. 2.4] (with D = δ, G = εδ2, for ε << 1). �
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To our knowledge, it is not known if NE(M0,n) is polyhedral when n ≥ 8.

3. SURFACES IN M0,n FROM CONFIGURATIONS OF POINTS IN P2

We give a simple construction of surfaces in M0,n that intersect the interiorM0,n.

Theorem 3.1. Suppose p1, . . . , pn ∈ P2 are distinct points, and let U ⊂ P2 be the com-
plement to the union of lines connecting them. The morphism

F : U →M0,n

obtained by projecting p1, . . . , pn from points of U extends to the morphism

F : Blp1,...,pnP2 →M0,n. (3.1)

If there is no (probably reducible) conic through p1, . . . , pn then F is a closed embed-
ding. In this case the boundary divisors δI of M0,n pull-back as follows: for each line
LI := 〈pi〉i∈I ⊂ P2, we have F ∗(δI) = L̃I (the proper transform of Li) and (assuming
|I| ≥ 3), F ∗(δI\{k}) = Ek, where k ∈ I and Ek is the exceptional divisor over pk. Other
boundary divisors pull-back trivially.

Proof. For any I ⊂ {1, . . . , n}, we denote by FI : P2 99K M0,I a rational map
defined as above but using only points pi, i ∈ I . Then FI = πI ◦F , for the forgetful
map πI : M0,n →M0,I .

First suppose that n = 4. Consider three cases. If no three out of the four points
p1, . . . , p4 lie on a line then

F : Blp1,p2,p3,p4P2 'M0,5 →M0,4 ' P1

is given by the pencil of conics through p1, . . . , p4. If p1, p2, p3 lie on a line that
does not contain p4 then F : Blp4P2 → M0,4 ' P1 is a projection from p4. Finally,
if all points lie on a line then F1234 is a map to a point (given by the cross-ratio of
p1, . . . , p4 on the line they span). Note that in all cases F is regular on Blp1,...,pnP2.
The product of all forgetful maps M0,n →

∏
IM0,I over all 4-element subsets is a

closed embedding (see e.g. [HKT, Th. 9.18]). It follows that (3.1) is regular.
Now suppose that there is no conic passing through all points.
The argument above shows that F restricted to each exceptional divisor Ei is

a closed immersion. Indeed, there always exist three points pa, pb, pc such that
pi does not belong to a line spanned by any two of the three points (otherwise
all points belong to a union of two lines passing through pi, which is a reducible
conic). By the above, the morphism Fabci|Ei is a closed immersion (in fact an iso-
morphism).

Let k be the maximal number such that there exist k points out of p1, . . . , pn
lying on a smooth conic. We can assume without loss of generality that p1, . . . , pk
lie on smooth conic. We consider several cases. Suppose first that k ≥ 5. Since,
for any 4-element subset I ⊂ {1, . . . , k}, FI is given by a linear system of conics
through pi, i ∈ I , the geometric fibers of F1...k are: (1) the proper transform C̃ of
a conic C through p1, . . . , pk (which does not pass through the remaining points);
(2) exceptional divisors Ei, i > k; (3) closed points in P2 \ {p1, . . . , pn}. Since
we already know that F |Ei is a closed embedding, it suffices to prove that F |C̃
is a closed embedding. For this, consider F123,k+1. There are two subcases. If
p1, p2, p3, pk+1 lie on a smooth conic then, since pk+1 6∈ C, the linear system of
conics through p1, p2, p3, pk+1 separate points of C̃. If they lie on a reducible conic
then pk+1 must belong to a line connecting a pair of points from p1, p2, p3, for
example p2 and p3. Then the linear system of lines through p1 separate points
of C̃. In both cases, F |C̃ is a closed embedding.
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Note that k 6= 2 (otherwise all points lie on a line through p1 and p2). We claim
that k 6= 3 either. Arguing by contradiction, suppose that k = 3. Then, for any
i > 3, pi lies on one of the three lines connecting p1, p2, p3. Moreover, each of these
lines must contain at least one of the points pi, i > 3, because otherwise all points
lie on the union of two lines. So suppose that

p4 ∈ 〈p1, p2〉, p5 ∈ 〈p2, p3〉, p6 ∈ 〈p1, p3〉.

But then p2, p3, p4, p6 lie on a smooth conic.
So the only case left is k = 4. Points p5, . . . , pn lie on a union of 6 lines connecting

p1, . . . , p4 pairwise. The geometric fibers of F1234 : Blp1,...,pnP2 → M0,{1,2,3,4} are
the preimages w.r.t. the morphism Blp1,...,pnP2 → Blp1,...,p4P2 of proper transforms
of conics C through p1, . . . , p4. If C is a smooth conic then the argument from the
k ≥ 5 case shows that F |C̃ is a closed embedding. So suppose that C is a reducible
conic, for example the union of lines 〈p1, p2〉 and 〈p3, p4〉. Note that not all points
belong to these two lines, for example suppose p5 belongs to 〈p1, p3〉. Then F1352

collapses 〈p1, p2〉 and separates points of 〈p3, p4〉. F1354 has an opposite effect. So
F13524 separates points of C̃ and we are done.

To compute pull-backs of boundary divisors, note that F−1(∂M0,n) = ∂U (set-
theoretically), and so, for any subset I , F ∗δI (as a Cartier divisor) is a linear combi-
nation of proper transforms of lines LJ = 〈pj〉j∈J and exceptional divisors Ei. In
order to compute multiplicity of F ∗δI at one of these divisors D, we can argue as
follows: suppose C ⊂ Blp1,...,pnP2 is a proper curve intersecting D transversally at
a point p ∈ C that does not belong to any other boundary component. By the pro-
jection formula, the multiplicity is equal to the local intersection number of F (C)
with δI at F (p). But this intersection number can be immediately computed from
the pullback of the universal family of M0,n to C. To implement this program, we
consider two cases. First, suppose that D = LJ . Working locally on A2

x,y ⊂ P2, we
can assume that p = (x, y),D = (x), C = (y), J = {1, . . . , k}, pi = (x, y−bi), bi 6= 0,
for i ≤ k, and pi = (x−ai, y−bi), for i > k, where ai 6= 0, bi 6= 0, and ai/bi 6= aj/bj .
Then (locally near p) the pull-back of the universal family ofM0,n to the punctured
neighborhood U ⊂ C of p has a chart Spec k[x, 1/x, s](x) → Spec k[x, 1/x](x) with
sections (x + sbi) for i ≤ k and (x + sbi − ai) for i > k. Closing up the family
in Spec k[x, s](x) → Spec k[x](x) and blowing-up the origin (x, s) ∈ Spec k[x, s](x)

separates the first k sections. The special fiber has two components, with points
marked by J one component and points marked by Jc on the other. This proves
the claim in the first case.

Secondly, suppose that D = E1. We assume that p1 = (x, y) ∈ A2 ⊂ P2. We
work on the chart Spec k[x, t] ⊂ Blp1A2 where y = tx. Then E1 = (x). We can
assume that p = (x, t), C = (t), and that pi = (x − ai, t − ti) for i > 1, where
ai 6= 0, ti 6= 0. Then (locally near p) the pull-back of the universal family of
M0,n to the punctured neighborhood U ⊂ C of p has a chart Spec k[x, 1/x, s](x) →
Spec k[x, 1/x](x) with sections s1 = (s), si = (s− ti− sxa−1

i ) for i > 1. We close-up
in Spec k[x, s](x) → Spec k[x](x) and resolve the special fiber by blowing up points
(x, s−ti) each time there is more than one point with the same slope ti. This yields
a family of stable curves with a special fiber that contains (a) a “main” component
with points marked by 1 and by i each time there is just one point with the slope ti;
(b) one component (attached to the main component) for each ti that repeats more
than once marked by j such that ti = tj . This proves the claim in the second
case. �

Example 3.2. Applying this to n = 6 gives a covering of M0,6 by cubic surfaces.
This is related to the fact thatM0,6 is a resolution of singularities of the Segre cubic
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threefold
S = {(x0 : . . . : x5) |

∑
xi =

∑
x3
i = 0} ⊂ P5.

Using the formula [HT, Rk.3.1] for the pull-back of the hyperplane section of S,
it is easy to check that our blow-ups are pull-backs of hyperplane sections of S.
This proves a well-known classical fact that moduli of cubic surfaces are gener-
ated by hyperplane sections of S (the Cremona hexahedral equations, see [Do]).
It deserves mentioning that one of the (non-general) blow-ups of P2 in 6 points
embedded in M0,6 this way is the “Keel-Vermeire divisor”, see [CT2, Section 9].

We end this section with the following observation:

Proposition 3.3. In the set-up of Theorem 3.1, the numerical classes of proper transforms
of lines and exceptional divisors on the blow-up Blp1,...,pnP2 are sums of F -curves.

We will give an explicit example of how Prop. 3.3 applies in 7.8.

Proof. We argue by induction on n. The proper transform of any line in Blp1,...,pnP2

is linearly equivalent to the sum of exceptional divisors and the proper transform
of a line passing through at least two points of p1, . . . , pn, so it is enough to consider
these two cases.

Case I. The exceptional divisor over pi maps to a point by the i-th forgetful map
M0,n →M0,n−1. Any irreducible component C of any fiber of the forgetful map is
easily seen to be a sum of F -curves: if the corresponding irreducible component of
the (n − 1)-pointed stable rational curve has three distinguished points then C is
an F -curve. However, any fiber can be degenerated to a fiber over a 0-dimensional
stratum of M0,n−1.

Case II. Consider the proper transform of a line LI through at least 2 points of
p1, . . . , pn. The corresponding curve of M0,n belongs to the boundary divisor δI ,
so it suffices to show that its projections onto M0,|I|+1 and M0,n−|I|+1 are sums of
F -curves.

The projection onto M0,n−|I|+1 can be interpreted as follows: remove points
indexed by I from P2 and place an extra point p at a general point of LI . Now
repeat the construction of Theorem 3.1 for this new configuration. By inductive
assumption, the proper transform of the line is the sum of F -curves onM0,n−|I|+1.

The projection onto M0,|I|+1 is immediate: forgetting the extra marking maps
the curve to a point of M0,|I| (given by cross-ratios of pi, i ∈ I along LI ). So we are
done as in Case I. �

The next simplest curves in the surfaces Blp1,...,pnP2 are proper transforms of
conics through 5 points. The following is an immediate corollary of Thm. 3.1:

Corollary 3.4. In the set-up of Theorem 3.1, assume the points p1, . . . , p5 are in general
position and the smooth conic C passing through them contains no other points pi, i > 5.
Then the proper transform C̃ ⊂M0,n of C has the following intersections with boundary
divisors: for each line LI ,

δI · C̃ = 2− |I ∩ {1, . . . , 5}|,

and for each k ∈ I ,

δI\{k} · C̃ =

{
1 if k ≤ 5

0 otherwise.

Other intersection numbers are trivial.

We analyze in detail an example of such a curve in Section 5.
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4. THE HYPERGRAPH CONSTRUCTION

Definition 4.1. Let f : X → Y be a quasiprojective morphism of Noetherian
schemes. The exceptional locus Exc(f) is the complement to the union of points
in X isolated in their fibers. By [EGA3, 4.4.3]., Exc(f) is closed.

We use the following observation to construct rigid curves on M0,n:

Proposition 4.2. If a curve C ⊂ X is an irreducible component of the exceptional locus
of a morphism f : X → Z, with X and Z projective varieties, then C is rigid on X .

Proof. Assume C is not rigid, i.e., there is a family π : S → B over a smooth curve
B, a map h : S → X such that h(S) is a surface and for some fiber F of π we have
(set-theretically) that h(F ) = C. Since the fibers of π are numerically equivalent
on S, and as F is contracted by f ◦ h, it follows that if A is some ample divisor on
Z, then every fiber of π intersects f ◦ h−1(A) trivially. Hence, every fiber of π is
contracted by f , i.e., contained in Exc(f). It folows that h(S) ⊆ Exc(f). As C is an
irreducible component of Exc(f), this is a contradiction. �

One is left to find a morphism f : M0,n → Z as in Prop. 4.2. The most natural
morphisms to consider are products of forgetful morphisms. We first make the
following:

Definition 4.3. A hypergraph Γ = {Γ1, . . . ,Γd} on the set N = {1, . . . , n} is a col-
lection of subsets of N , called hyperedges, such that the following conditions are
satisfied:

• Any subset Γj has at least three elements;
• Any i ∈ N is contained in at least two subsets Γj .

Definition 4.4. We call a hypergraph morphism the product of fogetful maps

πΓ : M0,n →
d∏

α=1

M0,Γα .

Definition 4.3 generalizes the notion of hypertree introduced in [CT2] (this con-
struction has first appeared in [CT1]). Essentially, a hypergraph is the simplest
structure that allows one to study exceptional loci of products of fogetful maps,
by using Brill-Noether theory of certain reducible curves. The following are some
of the constructions in [CT2] in a slightly more general context.

Definition 4.5. Let Γ = {Γ1, . . . ,Γd} be a hypergraph. A curve Σ is called a hy-
pergraph curve associated to Γ if it has d irreducible components Σ1, . . . ,Σd, with
Σα ∼= P1, marked by Γα and glued at identical markings as a scheme-theoretic
push-out: at each singular point i ∈ N , Σ is locally isomorphic to the union of
coordinate axes in Avi , where vi is the valence of i, i.e., the number of subsets Γα
that contain i. We consider Σ as a marked curve (by indexing its singularities).

4.6. Identifying M0,n with a space of maps Σ → P1. If not all the Γα are triples,
hypergraph curves will have moduli, namely

MΓ :=
∏

j=1,...,d

M0,Γj .

We observe that M0,n can be identified with the variety of morphisms

f : Σ→ P1

(modulo the free action of PGL2), that send singular points p1, . . . , pn of Σ to dif-
ferent points q1, . . . , qn ∈ P1. (Note that the point in MΓ corresponding to Σ is
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determined by the hypergraph morphism M0,n →MΓ.) This gives a morphism

v : M0,n → Pic1, f 7→ f∗OP(1) (4.1)

from M0,n to the (relative over MΓ) Picard scheme Pic1 of line bundles on Σ of
degree 1 on each irreducible component.

4.7. The exceptional locus of a product of forgetful maps. As remarked in [CT2,
Rmk. 2.6] most of the constructions in [CT2, 2.1] hold in this more general context.
For the reader’s convenience, we recall the main construction.

A linear system on the hypergraph curve Σ is said to be admissible if it is globally
generated and the corresponding morphism Σ → P1 sends the singular points of
Σ to distinct points. We define the Brill-Noether loci W r and Gr as follows. The
locusW r ⊂ Pic1 parametrizes line bundlesL ∈ Pic1 such that for each hypergraph
curve Σ, the complete linear system |L|Σ| is admissible, and we have:

h0(Σ, L) ≥ r + 1.

The locus Gr parametrizes admissible pencils on Σ such that the corresponding
line bundle is in W r. We have natural forgetful maps

v : Gr →W r.

We refer the reader to [CT2, Section 2] for the details. Note that Gr and W r could
possibly be empty for r ≥ 2. The key point in the construction is the following:

Theorem 4.8. [CT2, Thm 2.4] There is an isomorphism G1 ∼= M0,n over MΓ and the
map

v : M0,n
∼= G1 → Pic1

has exceptional locus G2. In particular, G2 is contained in the exceptional locus of the
morphism:

πΓ|M0,n
: M0,n →

d∏
α=1

M0,Γα

In contrast with the map v, it seems quite difficult to understand in general the
full exceptional locus of the map πΓ. (An easy case is when all Γα contain the
same index [CT2, Thm 2.4].) In our quest for small exceptional loci, the least we
can require is that W 2 is small (for example a point). First note that Theorem 4.8
has the following:

Corollary 4.9. Let Σ be a hypergraph curve and let L ∈ W 2 \W 3 be an admissible line
bundle whose restriction to Σ gives a morphism f : Σ→ P2. Let U := P2 \ f(Σ).

(a) The geometric fiber of v : G1 → W 1 over (Σ, L) ∈ W 2 is isomorphic to U . Its
geometric points correspond to morphisms

Σ→ f(Σ)
prx−→P1,

where prx : P2 99K P1 is a linear projection from x ∈ U .
(b) If W 2 is a point (and W 3 is empty) then U is the exceptional locus of v.

For the remaining part of this section we assume that we have the setup of
Cor. 4.9 (b), i.e., W 2 is a point and W 3 is empty. Let m0 = p(W 2) and let Σ be the
fiber of the universal family of hypergraph curves over m0 ∈MΓ. Let p1, . . . , pn ∈
P2
k be the images of singular points of Σ under the linear system |W 2|.

Proposition 4.10. In the setup of Cor. 4.9 (b), U belongs to the exceptional locus of
πΓ : M0,n → MΓ. If, moreover, points p1, . . . , p5 lie on a smooth conic C, then C ∩ U
belongs to the exceptional locus of the morphism

π := (πΓ × πI)|M0,n
: M0,n−→MΓ ×M0,I , (4.2)
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where I = {1, 2, 3, 4, 5}. If C ∩ U is an irreducible component of the exceptional locus of
the morphism π, then C ∩ U ⊂M0,n is a rigid curve on M0,n.

Proof. Clearly, C ∩ U is the exceptional locus for the map U → M0,5 given by
projecting p1, . . . , p5 from points ofU . Hence,C ∩ U is contained in the exceptional
locus of the hypergraph morphism

π̃ := πΓ × πI : M0,n−→MΓ ×M0,I .

Since C ∩ U is a component of Exc(π) = Exc(π̃) ∩M0,n, it follows that C ∩ U
must be an irreducible component of Exc(π̃) and we are done by Prop. 4.2. �

5. THE DUAL HESSE CONFIGURATION AND A RIGID CURVE ON M0,12.

It remains to find a hypergraph that satisfies the last condition of Prop. 4.10.
At the very least we need Γ such that W 1 has relative dimension 0. By the Brill–
Noether theory, the relative dimension of W 1 is at least

g − 2(g − d+ 1) = dimM0,n − dimMΓ,

where g is the arithmetic genus of the associated hypergraph curve Σ.

5.1. Consider the hypergraph of the dual Hesse configuration (see Fig. 1). We use
the following enumeration of its hyperedges:

Γ1 = {p, 1, b, γ}, Γ2 = {p, 2, c, β}, Γ3 = {p, 3, a, α}

Γ4 = {n, 2, a, γ}, Γ5 = {n, 3, b, β}, Γ6 = {n, 1, c, α}
Γ7 = {m, 1, 2, 3}, Γ8 = {m,α, β, γ}, Γ9 = {m, a, b, c}

It has d = 9 hyperedges with 4 points on each hyperedge, with 12 vertices. Note
that g = 16 and the expected relative dimension of W 1 is 0.

Let Γ be the hypergraph {Γ1, . . . ,Γ9,Γ0}where:

Γ0 = {m,n, p, 1, a}

(this corresponds to adding a conic C through 5 points in Prop. 4.10).

Theorem 5.2. The hypergraph morphism

π := πΓ|M0,12
: M0,12 →MΓ = (M0,4)9 ×M0,5

has a 1-dimensional connected component in the closure of its exceptional locus in M0,12.
This connected component is in fact irreducible and is the proper transform C in Bl12P2

of the conic in P2 passing through 5 points {m,n, p, 1, a} of the dual Hesse configuration.

Proof. Let ρ be a closed point of M0,12 = G1. Then ρ gives rise to the morphism
Σ → P1 and we let x′ = ρ(x) for any singular point x of Σ. Without loss of
generality we can assume that

1′ =∞, m′ = 0, a′ = 1,

and we let
b′ = t,

where t ∈ k is a parameter.
In these coordinates the morphism π has the following form:

w1 = [p′, 1′, b′, γ′], w2 = [p′, 2′, c′, β′], w3 = [p′, 3′, a′, α′],

w4 = [n′, γ′, a′, 2′], w5 = [n′, β′, b′, 3′], w6 = [n′, α′, c′, 1′],

w7 = [m′, 1′, 2′, 3′], w8 = [m′, γ′, β′, α′], w9 = [m′, b′, c′, a′],

u = p′, v = n′,
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where

[x, y, z, s] =
(s− x)(y − z)
(y − x)(s− z)

is the cross-ratio and (u, v) are coordinates on M0,5.

Claim 5.3. The natural morphism M0,12 → (M0,4)9 ×M0,{1,m,a,b,p,n} is injective on
closed points. In particular, πΓ has at most one-dimensional fibers.

Proof. We will show how to recover all points x′ starting from 1′, m′, a′, b′, p′, n′

and using coordinates on MΓ. From the cross-ratio w9 we find that:

c′ =
(w9 − 1)t

w9t− 1
.

From the cross-ratio w1 we find that:

γ′ =
w1t− u
w1 − 1

.

From the cross-ratio w4 we find that:

2′ =
−w4v + v + γ′(w4 − v)

−w4v + 1 + γ′(w4 − 1)
=
−v(w4 − 1)(w1 − 1) + (w4 − v)(w1t− u)

(1− w4v)(w1 − 1) + (w4 − 1)(w1t− u)
.

For simplicity, we think of this as 2′ = C
D where

C = −v(w4 − 1)(w1 − 1) + (w4 − v)(w1t− u), (5.1)

D = (1− w4v)(w1 − 1) + (w4 − 1)(w1t− u). (5.2)
From the cross-ratio w6 we find that:

α′ =
w6v − c′

w6 − 1
=
w6v(w9t− 1)− (w9 − 1)t

(w6 − 1)(w9t− 1)
.

For simplicity, we think of this as α′ = A
B where

A = w6v(w9t− 1)− (w9 − 1)t, (5.3)

B = (w6 − 1)(w9t− 1). (5.4)
From the cross-ratio w7 we find that:

3′ =
w72′

w7 − 1
=

w7C

(w7 − 1)D
.

Finally, from the cross-ratio w8 we find that:

β′ =
M

N

where we denote:
M = (1− w8)(w1t− u)A, (5.5)

N = (w1 − 1)A− w8(w1t− u)B. (5.6)
This shows the claim. �

Lemma 5.4. The locus in MΓ where the fiber of the hypergraph map is positive dimen-
sional is given by those points for which the following polynomials in t with coefficients in
k[w1, . . . , w9, u, v] are identically zero:

(A−uB)[w7C−(w7−1)D]−w3(A−B)[w7C−u(w7−1)D] = f1t
2 +f2t+f3, (5.7)

[w7C − v(w7 − 1)D](M − tN)− w5(M − vN)[w7C − t(w7 − 1)D]

= f4t
4 + f5t

3 + . . .+ f8, (5.8)

[(w9t− 1)C − (w9 − 1)tD](M − uN)− w2[(w9t− 1)M − (w9 − 1)tN ](C − uD)
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= f9t
4 + f10t

3 + . . .+ f13, (5.9)

where A,B,C,D,M,N are as in (5.1) – (5.6).

Proof. We get equations on t by utilizing the cross-ratios not used in the proof of
the previous Claim. Namely, we get (5.7) from the points 3′, p′, a′, α′ and w3; we
get (5.8) from the points n′, 3′, b′, β′ and w5; we get (5.9) from the points p′, 2′, c′,
β′ and w2. For example: we require that [p′, 3′, a′, α′] = ω3. This is equivalent to:

(α′ − p′)(3′ − a′) = ω3(3′ − p′)(α′ − a′).

As a′ = 1, p′ = u, α′ = A
B and 3′ = ω7C

(ω7−1)D , this implies:

(A− uB)[w7C − (w7 − 1)D]− w3(A−B)[w7C − u(w7 − 1)D] = 0.

Note that A,B,C,D are linear polynomials in t. Note that equality must hold
for all t (remember, we are looking for one-dimensional fibers of the map π). This
implies that the degree two polynomial in (5.7) must be identically zero. �

Let m0 ∈ MΓ be the point that corresponds to the dual Hesse configuration in
P2. It is not realizable over R, so we can give only its vague sketch, see Fig. 1.

FIGURE 1. A dual Hesse hypergraph.

Note that “circles” (resp. “squares”, resp. “triangles”) span lines Γ4, Γ5, and Γ6.
Alternatively, one can choose coordinates in P2 such that

Γ1Γ2Γ3 = X3 − Z3, Γ4Γ5Γ6 = X3 − Y 3, Γ7Γ8Γ9 = Y 3 − Z3.

Lemma 5.5. Let ω be the primitive cubic root of 1. The point m0 has coordinates

w0
1 = . . . = w0

9 = −ω2, u0 = 1− ω, v0 = 1− ω2.



14 ANA-MARIA CASTRAVET AND JENIA TEVELEV

The differentials of functions f1, . . . , f13 at m0 do not depend on u and v and the Jacobian
matrix [∂fi/∂wj ] at m0 is given by

0 0 0 1 0 ω + 1 −ω − 1 0 ω + 1
−1 0 ω ω 0 −ω − 3 2ω + 3 0 −ω − 1

−ω + 1 0 0 0 0 −ω + 1 −ω − 2 0 0
0 0 0 1 −ω − 1 ω −ω − 1 1 ω
0 0 0 2ω − 1 3ω + 4 −5ω − 3 3ω + 5 3ω − 1 −3ω − 1
0 0 0 −5ω − 1 −3ω − 9 8ω + 10 −2ω − 10 −9ω − 3 5ω + 4
0 0 0 3ω + 3 9 −3ω − 12 −3ω + 9 9ω + 9 −3ω − 3
0 0 0 0 3ω − 3 −3ω + 3 3ω − 3 −3ω − 6 0
0 0 0 −2ω 0 2 0 −2ω − 2 2ω + 2
−2 4ω + 4 0 6ω + 7 0 9ω − 1 0 −ω + 8 −ω − 6

−7ω + 1 −12 0 ω − 7 0 −20ω − 16 0 15ω −4ω + 4
12ω + 9 3− 12ω 0 −3ω 0 6ω + 18 0 −15ω − 12 3ω
−3ω − 6 6ω + 3 0 0 0 3ω − 3 0 3ω + 6 0


It has rank 9 (rows 1, 2, 3, 6, 7, 8, 11, 12, 13 are linearly independent). Consider the fol-
lowing functions:

g1 = 45f4 + 27f5 + (3− 6ω)f6 − (10ω + 5)f7 − (6ω + 3)f8

g2 = −18f4 + (6ω − 6)f5 + 6ωf6 + (4ω + 2)f7 + (2ω + 2)f8

g3 = 126f9 + (63ω+ 126)f10 + (105ω+ 126)f11 + (161ω+ 112)f12 + (189ω+ 42)f13

Their differentials at m0 are identically 0 and the Hessians[
∂2gk
∂u∂u

∂2gk
∂u∂v

∂2gk
∂v∂u

∂2gk
∂v∂v

]
, k = 1, 2, 3

at m0 are equal to[
−18ω − 18 −30ω − 12
−30ω − 12 −12ω + 54

]
,

[
4ω + 8 16ω + 8
16ω + 8 16ω − 16

]
,

[
−126ω + 42 42ω + 84

42ω + 84 42ω + 42

]
.

These three matrices are linearly independent.

Proof. This is a straightforward calculation and a joy of substitution. �

Now we can finish the proof of the Theorem. It suffices to show that the scheme
Z cut out by the ideal 〈f1, . . . , f13〉 is zero-dimensional at m0. This would follow
at once if the tangent cone of Z at m0 is zero-dimensional. By the Lemma, the
ideal of the tangent cone contains functions wi − w0

i (for i = 1, . . . , 9), (u − u0)2,
(u− u0)(v − v0), and (v − v0)2, which clearly cut out m0 set-theoretically. �

Remark 5.6. The dual Hesse configuration is a q = 3 case of the Ceva(q) arrange-
ment with 3q lines that satisfy

Γ1 . . .Γq = Xq − Y q, Γq+1 . . .Γ2q = Y q − Zq, Γ2q+1 . . .Γ3q = Zq −Xq.

We think it is plausible that these hypergraphs also give rise to 1-dimensional ex-
ceptional loci (on M0,q2+3).

Notation 5.7. We denote by ∆I a formal curve class that has intersection 1 with δI
and 0 with the rest of boundary divisors.

5.8. Class of C. In the setup of Th. 5.2, the numerical class of C can be computed
using Cor. 3.4:

∆1,b,γ + ∆p,b,γ + ∆p,2,c,β + ∆2,c,β + ∆3,a,α + ∆p,3,α + ∆2,a,γ + ∆n,2,γ + ∆n,3,b,β

+∆3,b,β + ∆1,c,α + ∆n,c,α + ∆1,2,3 + ∆m,2,3 + ∆m,α,β,γ + ∆α,β,γ + ∆a,b,c + ∆m,b,c

+∆1,β + 2∆2,b + 2∆2,α + 2∆3,c + 2∆3,γ + ∆a,β + 2∆b,α + 2∆c,γ .
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6. THE “TWO CONICS” CONSTRUCTION

Definition 6.1. Recall that any configuration of lines {L1, . . . , Lk} in P2 has an as-
sociated matroid. This is a collection of subsets of the set {1, . . . , k} representing
linearly independent subsets of the set of linear equations of lines {L1, . . . , Lk}.
We say that a configuration of distinct lines {L1, . . . , Lk} in P2 is a rigid configu-
ration if any configuration of lines with the same matroid can be obtained from
{L1, . . . , Lk} via an automorphism of P2.

6.2. The “Two Conics” Construction. Let {L1, . . . , Ln−3} be a rigid configuration
of lines in P2 and let {p1, . . . , pk} be the set of intersection points. Assume that
there are two smooth, non-tangent, conics C1 and C2, each passing through five
points in {p1, . . . , pk}, with the intersection C1∩C2 containing exactly three points
from {p1, . . . , pk}. Let p be the fourth point of intersection of C1, C2. For simplicity,
we’ll assume none of the lines is tangent to any of the conics. Let {pk+1, . . . , pl}
(for some l > k) be the points of intersection of C1, C2 with the lines L1, . . . , Ln−3.

The pencil of lines through p gives a family of n-pointed rational curves as fol-
lows: Each line through p is marked by the intersections with the lines Li, the
second intersection points with C1 and C2 and the point p itself. More precisely,
let S0 be the blow-up of P2 at p and let Ep be the exceptional divisor. Then Ep
together with the proper transforms of the lines and conics give n sections of the
P1-bundle S0 → P1. These sections are pairwise transversal and therefore can be
disconnected by simple blow-ups as follows. Let S be the blow-up of S0 along
p1, . . . , pl and the points qi := C̃i ∩ Ep, i = 1, 2. Let Ei (resp., E′1, E′2) denote the
exceptional divisors corresponding to the points pi, i = 1, . . . , l (resp., q1, q2). Since
none of the conics is tangent to any of the lines, the proper transforms

L̃1, . . . , L̃n−3, C̃1, C̃2, Ẽp

form n disjoint sections of the family π : S → P1.

Notation 6.3. Let f : P1 →M0,n be the map induced by the family

(π : S → P1, L̃1, . . . , L̃n−3, C̃1, C̃2, Ẽp).

We will denote by u, v the markings corresponding to C̃1, C̃2, i.e, we have:

M0,n = M0,{1,...,n−3,u,v,p}.

Recall that the forgetful map M0,n+1 → M0,n is the universal family. So we have
S ∼= P1 ×M0,n

M0,n+1. Let h : S →M0,n+1 be the pull-back map.

Proposition 6.4. The maps f : P1 → M0,n and h : S → M0,n+1 of (6.3) are closed
immersions. The boundary divisors of M0,n+1 pull-back as follows: For each point pj
(j = 1, . . . , l) which is the intersection point of the lines and conics indexed by the subset
I ⊆ {1, . . . , n − 3, u, v}, we have h∗δI∪{n+1} = Ej . Moreover, h∗δ{u,p,n+1} = E′1 and
h∗δ{v,p,n+1} = E′2. Other boundary divisors pull-back trivially.

Proof. We renumber the lines so that the lines L1, L2, L3 do not pass through p.

For the first claim, it suffices to check that the composition P1 f−→M0,n → M1,2,3,p

(where the last map is the forgetful map) is an isomorphism. This follows from
the fact that M0,5 is isomorphic to the blow-up of P2 in 4 general points, say
p, p1, p2, p3, and the forgetful map (= universal family) M0,5 → M0,4 is obtained
by choosing a pencil of lines through p. The four sections are Ep and the proper
transforms of lines through p1, p2, and p3. Our construction gives the same fam-
ily. The claim about pull-backs of boundary divisors follows by definition of the
boundary divisors (see also similar Theorem 3.1). �
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Theorem 6.5. The map f : P1 →M0,n is rigid.

Proof. Assume that there is a smooth curve germ (t0 ∈ T ) and maps Π : C → T ,
F : C →M0,n such that we have:

(Ft0 : Ct0 →M0,n) ∼= (f : P1 →M0,n).

Let U → C be the pull-back of the universal family of n-pointed stable curves
over C, with sections σ1, . . . , σn−3, σu, σv, σp : C → U . The family U → T gives
a deformation of the surface S and we may assume (by shrinking T ) that U is
smooth over T . By applying repeatedly [BPV, Prop. IV. (3.1), p. 121], it follows
(after shrinking T ) that the surface Ut is a blow-up of P2, with the exceptional
divisors fitting in a flat family over T . More precisely, for every t ∈ T the surface
Ut is a blow-up of P2 along distinct points pt, ptj (j = 1 . . . , l) and two infinitely
near points qt1, qt2, such for t = t0 this coincides with our initial configuration

pt0 = p, pt0j = pj , qt0i = qi.

Moreover, there are divisors E1, . . . , El, Ep, E ′1, E ′2 in U such that for each t ∈ T ,

Etj = Ej ∩ Ut, Etp = Ep ∩ Ut, E ′ti = E ′i ∩ Ut
are the exceptional divisors corresponding to the points pt, ptj , q

t
i .

For each t ∈ T , let Lti, C
t
1, Ct2 be the images in P2 of the sections σti , σ

t
u, σtv . The

intersection numbers (σti .Etj), (σtu.Etj), (σtv.Etj) do not depend on t, hence, each of
the curves Lti, C

t
1, Ct2 contains the point ptj if and only if this happens for t = t0.

(Moreover, the multiplicity is 1 if this happens.) Moreover, as O(σi) is flat over T ,
the self-intersection number (σti)

2 is constant in the family and it follows that Lti is
a line and Ct1 and Ct2 are conics. It is clear now that the lines Lt1, . . . , Ltn−3 have the
same incidence, for all t ∈ T . �

7. ARITHMETIC BREAK OF A HYPERGRAPH CURVE

We will show how the rigid curve C constructed in Section 5, breaks in char-
acteristic 3 into several components. We compute the numerical classes of these
components and use this to prove that the class of C is a sum of F -curves. We
keep the notations from Section 5. Starting with this section, all schemes will be
Z-schemes (including M0,n).

7.1. Set-up.

Let ω ∈ C be a primitive cubic root of 1 and letR = Z[ω] be the ring of Eisenstein
integers. Let K = Q[ω]. The Hesse configuration is defined over K and we can
choose coordinates X,Y, Z in P2 such that the 12 points have coordinates:

m = (1, 0, 0), n = (0, 0, 1), p = (0, 1, 0),

a = (ω, ω, 1), b = (1, ω, 1), c = (ω2, ω, 1),

1 = (1, ω, 1), 2 = (ω2, ω2, 1), 3 = (ω, ω2, 1),

α = (ω, 1, 1), β = (ω2, 1, 1), γ = (1, 1, 1).

We view these points as sections of P2
R.

Let C denote the smooth conic bundle (over R)

ωXY + ωXZ + Y Z = 0.

It contains sections m,n, p, 1, a. Note that C has a parametrization given by:

P1
R
∼= C, (u, v) 7→ (ωu2 + uv, ωuv + v2,−ωuv).

Our curve C is the characteristic 0 fiber of C (base-changed to C).

7.2. Break of the curve C in characteristic 3 (outline).
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Consider the characteristic 3 fiber P1
F3

of P1
R → SpecR at (ω− 1) ∈ SpecR. Note

that at this fiber sections a, b, c, 1, 2, 3, α, β, γ pass through (1, 1, 1). Consider the
rational map:

P1
R
∼= C 99KM0,12.

In order to resolve this map, one has to blow-up the arithmetic surface P1
R several

times along P1
F3

. We now outline the strategy. First, we blow-up P1
R at the point

u = v = 1 in the fiber P1
F3

. Let the corresponding exceptional divisor be E1 and let
F denote the proper transform of P1

F3
. We blow-up one more point onE1, resulting

in an exceptional curve E2. We also blow-up the intersection point of E1 and F
and let E3 be the exceptional curve (see Fig. 2).

FIGURE 2. Components of the characteristic 3 fiber.

We let T be the resulting arithmetic surface. We will abuse notations and denote
by F and E1 the proper transforms of the respective curves in T .

We construct a family π : S → T with twelve sections, such that over an open
set T 0 ⊆ T the sections are disjoint, and thus define a map T 0 →M0,12. Moreover,
we can enlarge T 0 such that that its intersection with each of F , Ei is non-empty.
Simply blow-up the total space S along the sections that become equal over the
generic points of these curves. The maps T 0 ∩F →M0,12, T 0 ∩Ei →M0,12 extend
uniquely to morphisms:

F →M0,12, Ei →M0,12.

From the universal family S → T 0 restricted to T 0∩F , T 0∩Ei we can determine
the classes of the curves F , Ei. (We use here that the class of a curve B → M0,n

is determined by the universal family over an open set of B). One will eventually
have to do further blow-ups to resolve the map P1

R 99K M0,12, but since one can
check that one has an equality of numerical classes:

C = F + E1 + E2 + 2E3,

this proves that any other extra components in the characteristic 3 fiber will map
constantly to M0,12. Note that the characteristic 3 fiber of T → SpecR contains E3
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with multiplicity 2, since we blow-up a node of the fiber. We then prove that each
of the classes of these curves is a sum of F -curves by using Prop. 3.3.

7.3. Universal family over an open set in P1
R.

Let X ′, Y ′, Z ′ be coordinates on the dual projective plane P̌2
R. The incidence

variety in P2
R × P̌2

R, with equationXX ′ + Y Y ′ + ZZ ′ = 0 parametrizes pencils of
lines through points in P2

R. We consider the subvariety I ⊆ P1
R × P̌2

R of pencils of
lines through points of C ∼= P1

R:

I : (ωu2 + uv)X ′ + (ωuv + v2)Y ′ − ωuvZ ′ = 0.

The first projection I → P1
R is a P1-bundle. Each point q of the 12 points in the

dual Hesse configuration defines a rational section sq . If q 6= m,n, p, 1, a, then one
simply has sq = I ∩ (P1

R × Lq), where Lq ⊆ P̌2 is the line dual to the point q. If
q ∈ {m,n, p, 1, a}, then one has to discard the fiber at q. Note that over a general
point in P1

K the sections are disjoint.
One obtains a simpler description of the universal family as follows. From now

on we will work in the chart v = 1 on P1
R. Each section sq gives a rational map

A1
R 99K P2

R. Composing with the projection P2
R 99K P1

R from the point (0, 0, 1), one
obtains a family over A1

R that defines the same map P1
R 99KM0,12. This is simply

S = A1
R × P1, with the projection π : S → A1

R,

with sections given by the following equations. We denote by X ′, Y ′ the coordi-
nates on P1 (with u as before the coordinate on A1

R):

m : X ′ = 0,

n : Y ′ = −uX ′,
p : Y ′ = 0,

a : Y ′ = ωuX ′,

b : (1− u)Y ′ = ωu(ω − u)X ′,

c : (1− u)Y ′ = −u(ωu+ 2)X ′,

1 : Y ′ = ω2uX ′,

2 : (ω2u− 1)Y ′ = u(ωu+ 2)X ′,

3 : (ω2u− 1)Y ′ = ωu(u− 1)X ′,

α : (2ωu+ 1)Y ′ = ωu(1− u)X ′,

β : (2ωu+ 1)Y ′ = −u(ωu+ 2)X ′,

γ : (2ωu+ 1)Y ′ = ωu(ω − u)X ′.

7.4. The component F of the characteristic 3 fiber.

As ω = 1, all sections but m,n, p, become equal, given by equation Y ′ = uX ′.
We blow-up the total space S along ω = 1, Y ′ = uX ′. Locally, in coordinates, we
have:

Y ′ = uX ′ + (ω − 1)Y1,
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with the exceptional divisor cut by ω = 1 and introducing a new coordinate Y1.
The proper transforms of the sections that intersect this chart have equations:

a : Y1 = uX ′,

b : (1− u)Y1 = u(ω + 1− u)X ′,

c : (1− u)Y1 = u(ω + 2− u)X ′,

1 : Y1 = (ω + 1)uX ′,

2 : (ω2u− 1)Y1 = −u(ωu+ ω + 2)X ′,

3 : (ω2u− 1)Y1 = −u(ωu+ 1)X ′,

α : (2ωu+ 1)Y1 = u
(
1 + u(ω − 1)

)
X ′,

β : (2ωu+ 1)Y1 = u(ω + 2)(ωu+ 1)X ′,

γ : (2ωu+ 1)Y1 = u
(
ω + 1 + u(ω − 1)

)
X ′.

The “attaching” section (call this y) has equation X ′ = 0. For general u, the twelve
sections are distinct, and we obtain the universal family over the proper transform
F of P1

F3
. A general point in F parametrizes a curve in the boundary

δmnp = M0,10 ×M0,4 = M0,{a,b,c,1,2,3,α,β,γ,y} ×M0,{m,n,p,y}.

It is easy to see that the cross-ratio of sectionsm,n, p, y do not depend on u, thus
the projection of F onto M0,4 is constant. Thus the class of F is given by the class
of the curve in M0,10 obtained by making ω = 1 in the above equations.

An easy computation gives that the class of F is given by:

F = ∆2,c,β + ∆3,a,α + ∆1,b,γ + ∆1,a,β + ∆2,b,α + ∆3,c,γ+

+ ∆3,b,β + ∆1,c,α + ∆2,a,γ + ∆1,2,3 + ∆a,b,c + ∆α,β,γ −∆m,n,p.

(where we use Notation 5.7). Note that F · δm,n,p = −1 since F · ψy = 1 on M0,10.

7.5. The first blow-up.

We blow-up P1
R at the point u = 1 in A1

F3
, i.e., along ω = 1, u = 1. Locally, in

coordinates, we have u − 1 = (ω − 1)a, with exceptional divisor E1 : ω = 1 and
new coordinate a.

The following is an argument that we will repeat several times in what follows.
The family S → P1

R pulls back to give an arithmetic threefold over T , which is
itself a blow-up of S. By abuse of notations, we will keep denoting this with S.
The proper transforms of the twelve sections in (7.3) give (rational) sections of the
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new map S → T , with equations:

m : X ′ = 0,

n : Y ′ = −X ′
(
1 + (ω − 1)a

)
,

p : Y ′ = 0,

a : Y ′ = X ′ω
(
1 + (ω − 1)a

)
,

b : Y ′a = X ′ω(a− 1)
(
1 + (ω − 1)a

)
,

c : Y ′a = X ′ω(ω + a)
(
1 + (ω − 1)a

)
,

1 : Y ′ = X ′ω2
(
1 + (ω − 1)a

)
,

2 : Y ′ω(a− 1) = X ′(a+ ω)
(
1 + (ω − 1)a

)
,

3 : Y ′ω(a− 1) = X ′a
(
1 + (ω − 1)a

)
,

α : Y ′(1− 2a) = X ′a
(
1 + (ω − 1)a

)
,

β : Y ′(1− 2a) = X ′(a+ ω)
(
1 + (ω − 1)a

)
,

γ : Y ′(1− 2a) = X ′(1− a)
(
1 + (ω − 1)a

)
.

Along E1 : ω = 1, the sections a, 1, β become equal to Y ′ = X ′. By blowing-up
the total space along ω = 1, Y ′ = X ′, the 12 sections become distinct above the
generic point of E1. The curve E1 thus lies in the boundary

δa1β
∼= M0,10 ×M0,4.

Making ω = 1 in the above equations, allows one to compute the class of its first
projection E′1 ⊂M0,10. As a curve in M0,12 it is given by:

E′1 = ∆m,b,c + ∆p,3,α + ∆n,2,γ + ∆m,2,3 + ∆p,b,γ + ∆n,c,α+

+ ∆m,α,γ + ∆p,2,c + ∆n,3,b + ∆2,b,α + ∆3,c,γ + ∆mnp −∆1,a,β .

The second projection E′′1 ⊂M0,4 is an F -curve with class:

E′′1 = −∆1,a,β + ∆1,a + ∆1,β + ∆a,β .

Then E1 = E′1 + E′′1 has numerical class:

E1 = ∆m,b,c + ∆p,3,α + ∆n,2,γ + ∆m,2,3 + ∆p,b,γ + ∆n,c,α + ∆m,α,γ+

+ ∆p,2,c + ∆n,3,b + ∆2,b,α + ∆3,c,γ + ∆mnp − 2∆1,a,β + ∆1,a + ∆1,β + ∆a,β .

7.6. The second blow-up.

In the notations of (7.5) we further blow-up P1
R at the point a = −1 in E1, i.e.,

along ω = 1, a = −1. Locally, in coordinates, we have a + 1 = (ω − 1)b, with
exceptional divisor E2 : ω = 1 and new coordinate b. The proper transforms of the
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sections have equations:

m : X ′ = 0,

n : Y ′ = −X ′
(
(ω − 1)2b− ω + 2

)
,

p : Y ′ = 0,

a : Y ′ = X ′ω
(
(ω − 1)2b− ω + 2

)
,

b : Y ′
(
(ω − 1)b− 1

)
= X ′ω

(
(ω − 1)b− 2

)(
(ω − 1)2b− ω + 2

)
,

c : Y ′
(
(ω − 1)b− 1

)
= X ′ω(ω − 1)(b+ 1)

(
(ω − 1)2b− ω + 2

)
,

1 : Y ′ = X ′ω2
(
(ω − 1)2b− ω + 2

)
,

2 : Y ′ω
(
(ω − 1)b− 2

)
= X ′(ω − 1)(b+ 1)

(
(ω − 1)2b− ω + 2

)
,

3 : Y ′ω
(
(ω − 1)b− 2

)
= X ′

(
(ω − 1)b− 1

)(
(ω − 1)2b− ω + 2

)
,

α : Y ′
(
3− 2(ω − 1)b

)
= X ′

(
(ω − 1)b− 1

)(
(ω − 1)2b− ω + 2

)
,

β : Y ′(−2b+ ω2 − 1) = X ′(b+ 1)
(
(ω − 1)2b− ω + 2

)
,

γ : Y ′
(
3− 2(ω − 1)b

)
= X ′

(
(ω − 1)b− 2

)(
(ω − 1)2b− ω + 2

)
.

Along E2 : ω = 1, one has:

m = α = γ : X ′ = 0,

n = b = 3 : Y ′ = −X ′,
p = c = 2 : Y ′ = 0,

a = 1 : Y ′ = X ′,

β : Y ′b = X ′(b+ 1).

FIGURE 3. Components E2 and E3 of the characteristic 3 fiber.

Blowing-up the total space along the above loci (where some of the sections
become equal along E2), the twelve sections become disjoint above the generic
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point of E2. See also Fig. 3. The curve E2 has numerical class:

E2 = ∆m,α,β,γ + ∆p,2,c,β + ∆3,b,n,β + ∆1,a,β −∆m,α,γ −∆p,2,c −∆n,3,b −∆1,a.

7.7. The third blow-up.

In the notations of (7.5) we further blow-up P1
R at the point E1 ∩ F , i.e., along

ω = 1, a =∞. By passing to the other chart of the blow-up in (7.5), if we let s = 1
a

(thus ω− 1 = (u− 1)s), we blow-up the point u = 1, s = 0. Locally, in coordinates,
we have s = (u − 1)t, with exceptional divisor E3 : u = 1 and new coordinate t.
The proper transforms of the twelve sections have equations:

m : X ′ = 0,

n : Y ′ = −X ′u,
p : Y ′ = 0,

a : Y ′ = X ′ωu,

b : Y ′ = X ′ωu
(
1− (u− 1)t

)
,

c : Y ′ = X ′u
(
u(u− 1)t− (ω + 2)(u− 1)t+ 1

)
,

1 : Y ′ = X ′ω2u,

2 : Y ′
(
1− (u− 1)t

)
ω = X ′u

(
1 + ω(u− 1)t

)
,

3 : Y ′
(
1− (u− 1)t

)
ω = X ′u,

α : Y ′
(
(u− 1)t− 2

)
= X ′u,

β : Y ′
(
(u− 1)t− 2

)
= X ′u

(
1 + ω(u− 1)t

)
,

γ : Y ′
(
(u− 1)t− 2

)
= X ′u

(
1− (u− 1)t

)
.

Along E3 : u = 1, the sections a, b, c, 1, 2, 3, α, β, γ become equal to Y ′ = X ′. We
blow-up the total space along u = 1, Y ′ = X ′. Locally, in coordinates, we have
Y ′ = X ′+ (u−1)Y1, with the exceptional divisor cut by ω = 1 and new coordinate
Y1. The proper transforms of the nine sections have equations:

a : Y1 = X ′
(
u(u− 1)t+ 1

)
,

b : Y1 = X ′
(
− ωu+ (u− 1)t+ 1

)
,

c : Y1 = X ′
(
u2t− (ω + 2)ut+ 1

)
,

1 : Y1 = X ′
(
ω2 + (ω + 1)(u− 1)t

)
,

2 : Y1

(
1− (u− 1)t

)
ω = X ′

(
ωut+ ωt+ 1− (u− 1)t

)
,

3 : Y1

(
1− (u− 1)t

)
ω = X ′

(
ωt− (u− 1)t+ 1

)
,

α : Y1

(
(u− 1)t− 2

)
= X ′

(
1− t+ (ω + 2)(u− 1)t

)
,

β : Y1

(
(u− 1)t− 2

)
= X ′

(
ωut− t+ 1− (ω + 2)(u− 1)t

)
,

γ : Y1

(
(u− 1)t− 2

)
= −X ′

(
ut+ t− 1 + (ω + 2)(u− 1)t

)
.

The “attaching section” is X ′ = 0. Along u = 1 the sections become:

b = 2 = α : Y ′ = (1− t)X ′,
c = 3 = γ : Y ′ = (1 + t))X ′,

a = 1 = β : Y ′ = X ′.

By blowing-up the total space along the above loci (where some of the sections
become equal along E3), the twelve sections become disjoint above the generic
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point of E3. See also Fig. 3. The curve E3 is thus containd in several boundary
components:

E3 ⊂ δ2,b,α ∩ δ3,c,γ ∩ δ1,a,β ∩ δm,n,p.
From the blow-up of thes above loci, one can see that the only cross-ratios that

change with t are the ones coming from the triples b, 2, α and c, 3, γ. The curve E3

is thus the sum of two F -curves:

E3 =
(
−∆2,b,γ + ∆2,b + ∆2,γ + ∆b,γ

)
+
(
−∆3,c,γ + ∆3,c + ∆3,γ + ∆c,γ

)
.

7.8. The classes F , Ei are sums of F -curves.

Recall that F -curve classes are represented by curves as in Figure 4.

FIGURE 4. F -curves are given by a partition I, J,K,L 6= ∅ of {1, . . . , n}.

Note that the markings from I, J,K,L stay fixed. Such a curve has class:

−∆I −∆J −∆K −∆L + ∆I∪J + ∆I∪K + ∆I∪L,

(with the convention that we omit the terms ∆I if |I| = 1). Perhaps the easi-
est curves that are sums of F -curves are components of fibers of forgetful maps
M0,n →M0,n−1 that forget one marking p ∈ {1, . . . , n}:

FIGURE 5
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Claim 7.9. Let {p} ∪ I1 ∪ . . . ∪ Ik (k ≥ 3) be a partition of the set {1, . . . , n} and let B
be the curve in M0,n given as in Figure 5 (where the markings in I1, . . . , Ik stay fixed, as
do their attaching points, and p is the only moving point). Then B has class:

B = −∆I1 − . . .−∆Ik + ∆I1∪{p} + . . .+ ∆Ik∪{p},

(we omit the terms ∆Ij if |Ij | = 1). Moreover, B is a sum of (k − 2) F -curves.

Proof. This is a straightforward computation. If we denote by yj the attaching
point corresponding to the component with markings from Ij , note that B comes
from a curve in M0,k+1 = M0,{p,y1,...,yk}. Then B ·∆Ij equals −B ·ψyj (on M0,k+1),
and thus B ·∆Ij = −1. One can check directly that B is the sum of the following
F -curves corresponding to the partitions:

{p}, I1, I2, I3 ∪ . . . ∪ Ik,

{p}, I1 ∪ I2, I3, I4 ∪ . . . ∪ Ik,
. . .

{p}, I1 ∪ . . . ∪ Ik−2, Ik−1, Ik.

�

We now prove that the classes F,Ei are sums of F -curves. Clearly, E3 is the
sum of two F -curves. The curve E2 is a sum of two F -curves by Claim 7.9 (note
also that E2 comes from a curve in M0,5, thus a sum of F -curves by Cor. 2.9).

For the curves F and E1, we will use Prop. 3.3. Note that the two curves
have numerical classes equal to classes of (proper transforms of) lines in surfaces
Blp1,...,pnP2 as in Thm. 3.1. To see this, consider the configuration of all F3-rational
points in P2

F3
except for (2, 1, 0):

m = (1, 0, 0), n = (1, 1, 0), p = (0, 1, 0),

a = (1, 1, 1), b = (0, 1, 1), c = (2, 1, 1),

1 = (0, 2, 1), 2 = (2, 2, 1), 3 = (1, 2, 1),

α = (1, 0, 1), β = (2, 0, 1), γ = (0, 0, 1).

The configuration has the same pairs of points collinear as the Hesse configura-
tion. In addition, the following points give concurrent lines (see Figure 6):

mnp, 1aβ, 2bα, 3cγ.

Let S be the blow-up S of P2
F3

at the above twelve points. Thm. 3.1 gives a map:

S →M0,12;F3
,

Theorem 3.1 allows one to compute the class of any curve in S. It is straightfor-
ward to check that the class of the proper transform of the line 1aβ equals the class
of E1. We will use this to prove that E1 is a sum of F -curves.

Moreover, the line mnp lies in the boundary component

δmnp ∼= M0,10 ×M0,4.

Taking its projection onto M0,10 and embedding it again in M0,12 (attach a fixed
P1 marked by m,n, p) gives a curve with the same class as F . One can also argue
geometrically: if we blow-up P2

R at the point (1, 1, 1) ∈ P2
F3

, the exceptional divisor
A is isomorphic to P2

F3
and the proper transforms of the R-points of the Hesse

configuration intersect A at the above points. When resolving the map

P2
R 99KM0,12,
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FIGURE 6. A configuration of 12 points in P2
F3

.

the line 1aβ is the component E1 in the proper transform of our conic C. Simi-
larly, one can express the class of the line mnp in terms of the class of F using the
geometry of the ruled surface which is the proper transform of P2

F3
.

7.10. The class E1 is a sum of F -curves.

We now use the proof of Prop. 3.3 (Case II), as E1 is the class of the line 1aβ in
P2
F3

. Since E1 ⊂ δ1aβ , the curve E1 is a sum of its projections E′1 in M0,10 and E′′1 in

M0,4 (see 7.5). Note that E′′1 is an F -curve; hence, we are left to write E′1 as a sum
of F -curves. As indicated in the proof of Prop. 3.3, we remove the points 1, a, β
from P2

F3
and place an extra point x1 at a general point of the line 1aβ. Repeating

the construction of Theorem 3.1 for this new configuration, we obtain a curve in

M0,10 = M0,{2,3,b,c,α,γ,m,n,p,x1},

corresponding to the proper transform of a general line L1 through x1. The curve
E′1 in M0,12 is obtained from L1 by adding at x1 an extra component P1 with mark-
ings 1, a, β (and no moduli). The class of L1 in the blow-up of P2

F3
at the points

2, 3, b, c, α, γ,m, n, p, x1 is the sum of the class of the (proper transform of the) line
2x1 and the exceptional divisor B2 corresponding to the point 2. The class of B2 in
M0,10 is given by:

−∆m,3 −∆p,c −∆n,γ −∆b,α + ∆m,2,3 + ∆2,p,c + ∆2,n,γ + ∆2,b,α + ∆2,x1
.

To see this, we use again the proof of Prop 3.3 (Case I): The curve B2 is a com-
ponent of the forgetful map M0,10 →M0,9 that forgets the marking 2. The point in
M0,9 to which B2 maps is determined by the cross-ratio of the lines joining 2 with
the other points. The class of B2 in M0,12 is given by (see Figure 7):

B2 = −∆m,3−∆p,c−∆n,γ−∆b,α+∆m,2,3+∆2,p,c+∆2,n,γ+∆2,b,α+∆1,2,a,β−∆1,a,β .

In order to find the class of the line 2x1, we repeat the argument. As before, we
further remove the points 2, x1 and place an extra point x2 at a general point of the
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FIGURE 7. The curve B2 in M0,12.

line 2x1. Repeating the construction of Theorem 3.1 for this new configuration, we
obtain a curve in

M0,9 = M0,{3,b,c,α,γ,m,n,p,x2},

corresponding to the proper transform of a general line L2 through x2. The class
of L2 in the blow-up of P2

F3
at the points 3, b, c, α, γ,m, n, p, x2 is the sum of the

class of the (proper transform of the) line 3x2 and the exceptional divisor B3 cor-
responding to the point 3. The class of B3 in M0,9 is given by:

−∆p,α −∆b,n −∆c,γ + ∆3,p,α + ∆3,b,n + ∆3,c,γ + ∆3,m + ∆3,x2 .

FIGURE 8. The curves B3 and Bm in M0,12.

The class of B3 in M0,12 is given by:

B3 = −∆p,α−∆b,n−∆c,γ + ∆3,p,α + ∆3,b,n + ∆3,c,γ + ∆3,m + ∆1,2,3,a,β −∆1,2,a,β .

In order to find the class of the line 3x2, we further remove the points 3, x2 and
place an extra point x3 at a general point of the line 3x2. Repeating the construction
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of Theorem 3.1 for this new configuration, we obtain a curve in

M0,8 = M0,{b,c,α,γ,m,n,p,x3},

corresponding to the proper transform of a general lineL3 through x3. The classL3

in the blow-up of P2
F3

at the points b, c, α, γ,m, n, p, x3 is the sum of the class of the
(proper transform of the) line mx3 and the exceptional divisor Bm corresponding
to the point m. The class of Bm in M0,12 is given by:

Bm = −∆b,c −∆α,γ −∆n,p + ∆m,b,c + ∆m,α,γ + ∆m,n,p + ∆1,2,3,a,β,m −∆1,2,3,a,β .

In order to find the class of the line mx3, we further remove the points m,x3

and place an extra point x4 at a general point of the line mx3. Repeating the con-
struction of Theorem 3.1 for this new configuration, we obtain a curve in

M0,7 = M0,{b,c,α,γ,n,p,x4},

corresponding to the proper transform of a general line L4 through x4. The class
L4 in the blow-up of P2

F3
at the points b, c, α, γ, n, p, x3 is the sum of the class of the

(proper transform of the) line γx4 and the exceptional divisor Bγ corresponding
to the point γ. The class of Bγ in M0,12 (see Figure 9) is given by:

Bγ = −∆p,b + ∆γ,p,b + ∆γ,α + ∆γ,n + ∆γ,c + ∆1,2,3,a,β,γ,m −∆1,2,3,a,β,m.

FIGURE 9. The curves Bγ and Bn in M0,12.

In order to find the class of the line γx4, we further remove the points γ, x4 and
place an extra point x5 at a general point of the line γx4. Repeating the construc-
tion of Theorem 3.1 for this new configuration, we obtain a curve in

M0,6 = M0,{b,c,α,n,p,x5},

corresponding to the proper transform of a general line L5 through x5. The class
L5 in the blow-up of P2

F3
at the points b, c, α, n, p, x3 is the sum of the class of the

(proper transform of the) line nx5 and the exceptional divisor Bn corresponding
to the point n. The class of Bn in M0,12 (see Figure 9) is given by:

Bn = −∆c,α + ∆n,c,α + ∆n,p + ∆n,b + ∆1,2,3,a,β,γ,m,n −∆1,2,3,a,β,m,n.
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Note that all of the curves B2, B3, Bm, Bγ , Bn are sums of F -curves by Claim
7.9. At this point we can continue to follow the algorithm, or just notice that

E′1 −B2 −B3 −Bm −Bγ −Bn =
(
−∆b,c,p + ∆b,c + ∆b,p + ∆c,p

)
+(

−∆b,c,p,α + ∆α,b + ∆α,c + ∆α,p + ∆b,c,p

)
that is, the difference is the sum of an F -curve and a curve as in Claim 7.9 (see
Figure 10). It follows that E′1 (and hence, E1) is a sum of F -curves.

FIGURE 10

7.11. The class F is a sum of F -curves.

The class of F can be obtained from the class of E′1 (see 7.5) by interchanging:

m↔ 1, n↔ β, p↔ a, c↔ γ.

(with 2, 3, α, b not changed). Therefore, F is also a sum of F -curves.

Remark 7.12. One can see that the intersections with (K + ∆) add up. We have:

KM0,12
=

1

11

(
− 2δ2 + 5δ3 + 10δ4 + 13δ5 + 14δ6

)
,

(K + ∆) · C = 39, (K + ∆) · F = 16, (K + ∆) · E1 = 17,

(K + ∆) · E2 = 2, (K + ∆) · E3 = 2.

Note that K · C = 7, and thus the usual lower bound for the dimension of the
Hom scheme Hom(P1,M0,12) at [C] (2.4) is −1. This shows that K · C satisfies the
necessary lower-bound for C to be rigid (although not by a large margin). The
same computation also shows that the components of the characteristic 3 fiber are
in fact not rigid. This happens also in our second example (see Rmk. 9.15).

8. RIGID MATROIDS

The calculation above shows that many rigid curves defined using configura-
tions of points often break arithmetically simply because the configuration itself
has primes of bad reduction. Here we use the following definition:
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Definition 8.1. Let L be a finite connected matroid of rank r (see [KT] for the
definition of connected matroids), let R be a domain with the field of fractions K,
and let p ⊂ R be a prime ideal. We say that L has p as a prime of bad reduction
over R if there exists a family of sections

pi : SpecRp → Pr−1
Rp

such that the matroid of the configuration of points {pi(0)} ⊂ Pr−1
K is isomor-

phic to L, while the matroid of the specialization {pi(p)} ⊂ Pr−1
R/p has rank r, is

connected, and is a strict subset of L (i.e., the specialization has less linearly inde-
pendent subsets).

A matroid L is called arithmetically rigid if it has no primes of bad reduction.

Example 8.2. Let L be a matroid of rank 2. Without loss of generality we can
assume that L is uniform, i.e. any two points are linearly independent. Of course
L can not be arithmetically rigid (unless it has at most three points), so let’s fix a
realization of L over a field of fractionsK of a Dedekind domainR, i.e. a collection
of elements p1, . . . , pn ∈ K. We can extend them to a collection of sections pi :
SpecR → P1

R. Primes of bad reduction correspond to places where two sections
intersect. If there are no places of bad reduction then we can arrange so that p0 = 0,
p1 = 1, p2 = ∞. Then the remaining points p3, . . . , pn form what’s known as a
clique of exceptional units: we have

pi, 1− pi, pi − pj ∈ R∗ for any i, j.

How about rank 3? We can obtain examples by simply considering rigid ma-
troids which are realizable only in prime characteristic, e.g. the Fano matroid. So
let’s impose an extra condition that a matroid is realizable in characteristic 0.

It is easy to see using Lafforgue’s theory [La] of compact moduli spaces of hy-
perplane arrangements that if L is not rigid then L is not arithmetically rigid. In
other words, if there exists an algebraic curve B over an algebraically closed field
of characteristic 0 and sections p1, . . . , pn : B → Pr−1

B , such that the matroid of
{pi(b)} is isomorphic to L for any b ∈ B and yet configurations {pi(b)} and {pi(b′)}
are not projectively equivalent for some b, b′ then B is not proper and one of the
infinite points is a prime of bad reduction.

Quite surprisingly, we know only two examples of arithmetically rigid matroids
of rank 3 realizable in characteristic 0. One is a uniform matroid (4 general points
in P2), which is useless for our purposes. Another is a quite remarkable configu-
ration that represents the golden ratio. We learned about it from the book [G].

Example 8.3. Let τ be a root of τ2 − 3τ + 1 = 0. Let R = Z[τ ] and K = Q(τ).
Consider the following configuration of nine points of P2

R (in coordinates X,Y, Z):

a = (1, 0, 0), b = (0, 1, 0), c = (0, 0, 1),

d = (1, 1, 1), e = (2− τ, 1− τ, 1), f = (1, 1, 0),

g = (0, 1− τ, 1), h = (1, 0, 1), i = (1, τ, 0).
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Consider the following lines (see Fig. 11):

L1 = abif : Z = 0,

L2 = ach : Y = 0,

L3 = age : Y = (1− τ)Z,

L4 = bcg : X = 0,

L5 = bdh : X = Z,

L6 = cei : Y = τX,

L7 = cdf : Y = X,

L8 = dgi : Y = τX − (τ − 1)Z = 0,

L9 = efh : Y = X − Z.

FIGURE 11. Grünbaum configuration (with added conics C1 and C2)

The only possible non-trivial 3× 3 minors of the 3× 9 matrix of coordinates of
points a, . . . , i are ±1, ±τ , ±(τ − 1), and ±(τ − 2). All these minors are units in
Z[τ ], and therefore the Grünbaum configuration has no primes of bad reduction
in Z[τ ]. It is quite easy to check (see [G]) that the Grünbaum configuration is rigid
and Q[τ ] is its field of definition. Therefore, this matroid is arithmetically rigid.

We find it remarkable that if we pick any smooth conic through five of the nine
points, the construction in Thm. 3.1 and Cor. 3.4 gives a morphism:

P1
R →M0,9;R,

whose generic fiber P1
K (when base-changed to C) is a moving curve on M0,9. For

example, if we let C1 be the conic through the points a, b, c, d, e, by Cor. 3.4, we
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have that the numerical class of C1 is given by:

C1 = ∆b,f,i + ∆a,f,i + ∆c,h + ∆a,h + ∆e,g + ∆a,g + ∆b,g+

+ ∆c,g + ∆b,h + ∆d,h + ∆c,f + ∆d,f + ∆c,i + ∆e,i+

+ ∆d,g,i + ∆e,f,h + ∆g,i + ∆f,h + 2∆f,g + 2∆g,h + 2∆h,i

Since

KM0,9
=

1

4

(
− δ2 + δ3 + 2δ4

)
it follows that K · C1 = −4 and thus by (2.4), the curve C1 moves on M0,9.

Similarly, if we let C2 be the conic through the points a, d, e, h, i, by Cor. 3.4, we
have that the numerical class of C2 is given by:

C2 = ∆b,f,i + ∆a,b,f + ∆a,c + ∆c,h + ∆a,g + ∆e,g + ∆b,d+

+ ∆b,h + 2∆b,c,g + ∆b,e + ∆c,d,f + ∆c,f + ∆c,e+

+ ∆c,i + ∆d,g + ∆g,i + ∆e,f + ∆f,h + 2∆f,g + ∆g,h

It follows that K · C2 = −3 and thus by (2.4), the curve C2 moves as well.

9. ARITHMETIC BREAK OF A “TWO CONICS” CURVE - PART I

Now we are going to construct a curve in M0,12 by applying a “Two conics”
construction. We will use the configuration in Example 8.2. Up to symmetries,
there is only one choice: consider the following two (smooth) conics:

C1 = abcde : XY − τXZ + (τ − 1)Y Z = 0,

C2 = adehi : (τ − 2)Y 2 + Z2 − (τ − 1)XY −XZ + Y Z = 0.

Let p be the fourth intersection point of C1 and C2:

p = (
1− τ

2
,−τ, 1) = (1, 2(τ − 1), 2(2− τ)).

Let S be the blow-up of P2
R at p and let Ep ∼= P1

R be the exceptional divisor.
Consider the natural fibration π : S → P1

R that resolves the projection from p.
The proper tranforms of the nine lines, the two conics and the exceptional divisor
Ep give twelve sections of π. After blowing up the R-points where the sections
intersect, one obtains a family of stable 12-pointed rational curves over P1

K that
intersects the interior of M0,12. Denote by C this curve in M0,12. According to
Theorem 6.5, the corresponding map P1

K → M0,12 is rigid. Despite the fact that
the Grünbaum arrangement is arithmetically rigid, we will prove that C breaks in
characteristic 5 into several components, each a sum of F -curves.

Notation 9.1. We will denote 1, . . . , 9, u, v, p the markings corresponding to the
sections given by L1, . . . , L9, C1, C2, Ep.

9.2. The class of C.

One can compute the numerical class of C from Prop. 6.4:

C = ∆1,2,3,u,v + ∆2,4,6,7,u + ∆3,6,9,u,v + ∆5,7,8,u,v + ∆1,4,5,u+

+ ∆1,6,8,v + ∆2,5,9,v + ∆1,7,9 + ∆3,4,8 + ∆2,8 + ∆3,5 + ∆3,7 + ∆4,9+

+ 2∆4,v + ∆5,6 + ∆7,v + ∆8,9 + ∆8,u + ∆9,u + ∆u,p + ∆v,p.

9.3. Family S → P1
R in local coordinates.

The blow-up S of p is an arithmetic surface in P2
R × P1

R with equation:(
Y − 2(τ − 1)X

)
v =

(
Z − 2(2− τ)X

)
u,
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(where u, v are the coordinates on P1
R). The exceptional divisor Ep is cut by

Y − 2(τ − 1)X = Z − 2(2− τ)X = 0.

We will need to consider both charts v = 1 and u = 1.

9.4. Chart v = 1.

The proper transforms of the twelve sections are :

p : Z = 2(2− τ)X,

1 : Z = 0,

2 : 2(τ − 1)X +
(
Z − 2(2− τ)X

)
u = 0,

3 : 2(τ − 1)X +
(
Z − 2(2− τ)X

)
u = (1− τ)Z,

4 : X = 0,

5 : X = Z,

6 : 2(τ − 1)X +
(
Z − 2(2− τ)X

)
u = τX,

7 : 2(τ − 1)X +
(
Z − 2(2− τ)X

)
u = X,

8 : 2(τ − 1)X +
(
Z − 2(2− τ)X

)
u = τX − (τ − 1)Z,

9 : 2(τ − 1)X +
(
Z − 2(2− τ)X

)
u = X − Z,

u : X
(
τ + u

)
+ Z

(
τ − 1

)
u = 0,

v : X
(
(−2τ + 6)u2 + (−τ + 5)u+ 1

)
+ Z

(
(τ − 2)u2 + u+ 1

)
= 0

9.5. Chart u = 1.

The proper transforms of the twelve sections are :

p : Y = 2(τ − 1)X

1 : Y v + 2X
(
(1− τ)v + 2− τ

)
= 0,

2 : Y = 0,

3 : Y v + 2X
(
(1− τ)v + 2− τ

)
= (2− τ)Y,

4 : X = 0,

5 : Y v + 2X
(
(1− τ)v + 2− τ

)
= X,

6 : Y = τX,

7 : Y = X,

8 : Y v + 2X
(
(1− τ)v + 2− τ

)
= (τ − 1)X − (τ − 2)Y,

9 : Y v + 2X
(
(1− τ)v + 2− τ

)
= X − Y,

u : −X
(
1 + τv

)
+ Y

(
τ − 1

)
v = 0,

v : X
(
(2− 2τ)v2 + (7− 4τ)v + 7− 3τ

)
+ Y

(
v2 + v + (τ − 2)

)
= 0

9.6. Break of the curve C in characteristic 5 (outline).

This is similar to the argument in Section 7. Consider the induced rational map:

P1
R 99KM0,12.

In order to resolve this map, one has to blow-up the arithmetic surface P1
R sev-

eral times along the characteristic 5 fiber P1
F5

of P1
R → SpecR (at τ = −1). We now

outline the strategy. We blow-up of the arithmetic surface P1
R along four distinct

points in P1
F5

; in chart v = 1 they are given by:

u = 0, u = 2, u = −1, u =∞.
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Let the corresponding exceptional divisors be E1, E2, E3, E4. We blow-up one
more point on E2, resulting in an exceptional curve E5 (See Fig. 12). We let T be
the resulting arithmetic surface. We will abuse notations and denote by E2 the
proper transform of E2 in T .

FIGURE 12. Components of the characteristic 5 fiber.

Notation 9.7. Let F denote the proper transform of the characteristic 3 fiber P1
F3

.

We construct a family π : S → T with 12 sections, such that over an open set of
the characteristic zero fiber of T → SpecR, this is the universal family. It is easy to
see that along a dense open T 0 ⊆ T the sections are disjoint and thus define a map
T 0 →M0,12. Moreover, we can enlarge T 0 such that that its intersection with each
of F , Ei is non-empty. Simply blow-up the total space S along the sections that
become equal over the generic points of these curves; occasionally one will have
to blow-up several times. This is an easy calculation, which we omit. The result
is a family over T 0 of semistable rational curves with twelve disjoint sections. By
contracting unstable components in fibers, we obtain a family of stable curves over
T 0. The maps T 0 ∩ F →M0,12, T 0 ∩ Ei →M0,12 extend uniquely to morphisms

F →M0,12, Ei →M0,12.

Just as in Section 7, from the universal family S → T 0 restricted to T 0 ∩ F ,
T 0∩Ei we can determine the classes of the curves F , Ei. One will eventually have
to do further blow-ups to resolve the map P1

R 99K M0,12, but since one can check
directly the equality of numerical classes:

C = F + E1 + E2 + E3 + E4 + E5,

this proves that any other extra components in the characteristic 5 fiber will map
constantly to M0,12. It is easy to see that each of the curvesEi is a sum of F -curves.
In the next section we give a similar argument that shows F is a sum of F -curves.

9.8. The class of F .
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As τ = −1, if u is general, the equations in (9.4) describe the curve F as a curve
that lies in the boundary component:

δ578p
∼= M0,9 ×M0,5.

As a result we have an equality of numerical classes F = F ′ + F ′′, where F ′,
resp., F ′′ are the two projections of F onto M0,9 and M0,5 respectively.

9.9. The class of F ′.

This can be determined directly from the equations in (9.8). Alternatively, one
can use the fact that in characteristic 5 the conics C1 and C2 become tangent at d
(hence, p = d) (see Section 10). The class of F ′ as a curve in

M0,9 = M0,{1,2,3,4,6,9,u,v,x},

(where x is the attaching point) is given by:

F ′ = ∆1,2,3,u,v + ∆3,6,9,u,v + ∆2,4,6,u + ∆u,v,x + ∆1,4,u+

∆1,6,v + ∆2,9,v + ∆1,9 + ∆3,4 + ∆4,9 + 2∆4,v + ∆9u.

As a curve in M0,12, the class of F ′ is:

F ′ = ∆1,2,3,u,v + ∆3,6,9,u,v + ∆5,7,8,u,v,p + ∆2,4,6,u − 2∆5,7,8,p+

+ ∆1,6,v + ∆1,4,u + ∆2,9,v + ∆1,9 + ∆3,4 + ∆4,9 + 2∆4,v + ∆9u.

9.10. The class of F ′′ (see Fig. 13).

We use the equations in (9.8). We blow-up the total space S along τ + 1 =
Z −X = 0 in order to separate the sections 5, 7, 8, p. In local coordinates Z −X =
(τ + 1)W , with exceptional divisor cut by τ = −1 and new coordinate W . The
proper transforms of the four sections are given by:

p : W = (2− τ)X,

5 : W = 0,

7 : X(τ − 2) +
(
W +X(τ − 2)

)
u = 0,

8 : X(τ − 2) +W (τ − 1) +
(
W +X(τ − 2)

)
u = 0.

The “attaching section” is given by X = 0. As a curve in M0,5, F ′′ has class
∆5,7,8 + ∆5,7,p + ∆5,8,p + ∆7,8,p. As classes in in M0,12, we have:

F ′′ = −2∆5,7,8,p + ∆5,7,8 + ∆5,7,p + ∆5,8,p + ∆7,8,p.

9.11. The class of E1 (see Fig. 14).

We use the notations from (9.4). We blow-up P1
R at the point τ = −1, u = 0.

In local coordinates: u = (τ + 1)a with exceptional divisor E1 : τ = −1 and new
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FIGURE 13. The component F ′′.

coordinate a. The proper transforms of the twelve sections have equations:

p : Z = 2(2− τ)X,

1 : Z = 0,

2 : 2(τ − 1)X +
(
Z + 2(τ − 2)X

)
(τ + 1)a = 0,

3 : 2(τ − 1)X +
(
Z + 2(τ − 2)X

)
(τ + 1)a = (1− τ)Z,

4 : X = 0,

5 : X = Z,

6 : 2(τ − 1)X +
(
Z + 2(τ − 2)X

)
(τ + 1)a = τX,

7 : (τ − 2)X +
(
Z + 2(τ − 2)X

)
a = 0,

8 : 2(τ − 1)X +
(
Z + 2(τ − 2)X

)
(τ + 1)a = τX − (τ − 1)Z,

9 : 2(τ − 1)X +
(
Z + 2(τ − 2)X

)
(τ + 1)a = X − Z,

u : X
(
τ + (τ + 1)a

)
+ Z

(
τ2 − 1

)
a = 0,

v : X
(
10a2 + (τ + 6)a+ 1

)
+ Z

(
5(τ − 1)a2 + (τ + 1)a+ 1

)
= 0.

Along E1 : τ = −1 the sections become:

p = 5 = 8 : Z = X,

1 = 9 : Z = 0,

2 = 4 = 6 = u : X = 0,

3 : X = 2Z,

7 : (2− a)X + aZ = 0,

v : Z = −X.

It follows that E1 has numerical class:

E1 = ∆2,4,6,7,u −∆2,4,6,u + ∆5,7,8,p + ∆1,7,9 −∆5,8,p −∆1,9 + ∆3,7 + ∆7,v.
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FIGURE 14. The components E1 and E4 of the characteristic 5 fiber.

9.12. The classes E2 and E5 (see Fig. 15)

We use the notations from (9.4). We blow-up P1
R at the point τ = −1, u = 2. In

local coordinates: u = 2 + (τ + 1)a with exceptional divisor E2 : τ = −1 and new
coordinate a. The proper transforms of the twelve sections have equations:

p : Z = 2(2− τ)X,

1 : Z = 0,

2 : 2(τ − 1)X +
(
Z + 2(τ − 2)X

)(
(τ + 1)a+ 2

)
= 0,

3 : 2(τ − 1)X +
(
Z + 2(τ − 2)X

)(
(τ + 1)a+ 2

)
= (1− τ)Z,

4 : X = 0,

5 : X = Z,

6 : 2(τ − 1)X +
(
Z + 2(τ − 2)X

)(
(τ + 1)a+ 2

)
= τX,

7 : 2(τ − 1)X +
(
Z + 2(τ − 2)X

)(
(τ + 1)a+ 2

)
= X,

8 : (3τ − 7)X + Z +
(
Z + 2(τ − 2)X

)
a = 0,

9 : 2(τ − 1)X +
(
Z + 2(τ − 2)X

)(
(τ + 1)a+ 2

)
= X − Z,

u : X
(
(τ + 1)a+ τ + 2

)
+ Z(τ − 1)

(
(τ + 1)a+ 2

)
= 0,

v : X
(
10a2 + (38− 7τ)a+ 35− 10τ

)
+ Z

(
5(τ − 1)a2 + (9τ − 11)a+ 4τ − 5

)
.

Along E2 : τ = −1 the sections become:

p = 5 = 7 : Z = X,

1 = 6 = v : Z = 0,

2 : X = 2Z,

3 = 4 : X = 0,

9 = u : Z = −X.
8 : −aX + (a+ 1)Z = 0.
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FIGURE 15. The components E2 and E5 of the characteristic 5 fiber.

It follows that E2 has class:

E2 = ∆1,6,8,v + ∆5,7,8,p −∆1,6,v −∆5,7,p + ∆3,4,8 + ∆8,9,u + ∆2,8 −∆3,4 −∆9,u.

We now blow-up the point a = 2 on E2. In local coordinates, a = 2 + (τ + 1)b,
with exceptional divisor E5 : τ = −1 and new coordinate b. The sections 8, 9 and
u coincide along E5 and after blowing up this locus, the sections are separated at
a general point of E5. The class of E5 is the class of an F -curve:

E5 = −∆8,9,u + ∆8,9 + ∆8,p + ∆9,p

9.13. The class of E3 (see Fig. 16).

We use the notations from (9.4). We blow-up P1
R at the point τ = −1, u = −1. In

local coordinates: u = −1 + (τ + 1)a with exceptional divisor E3 : τ = −1 and new
coordinate a. The proper transforms of the twelve sections along E3 are given by:

p = 5 = 7 = 8 = u = v : Z = X,

1 : Z = 0,

2 : Z = 2X,

3 : Z = −X,
4 = 9 : X = 0,

6 : Z = 3X.

We blow-up the total space S along τ = −1, Z = X . In local coordinates:
Z = X + (τ + 1)W with exceptional divisor E : τ + 1 = 0 and new coordinate W .
The proper transforms of the six sections that were meeting along E3 have local
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FIGURE 16. The component E3 of the characteristic 5 fiber.

equations:

p : W = (2− τ)X,

5 : W = 0,

7 : Xa(2τ − 3) +W
(
a(τ + 1)− 1

)
= 0,

8 : Xa(2τ − 3) +W
(
a(τ + 1) + τ − 2

)
= 0,

u : Xaτ +W (τ − 1)
(
(τ + 1)a− 1

)
= 0,

v : X
(
5a2 + (τ − 2)a

)
+W

(
5(τ − 1)a2 + (−3τ + 7)a+ τ − 2

)
= 0.

The “attaching section” is given by X = 0. Along E3 : τ + 1 = 0 we have:

p : W = 3X,

5 = 7 = 8 : W = 0,

u : W = 3aX,

v : W = −aX.
The sections 5, 7, 8 are separated when blowing up along v = τ + 1 = 0. The

curve E3 is contained in the boundary components δ123469, δ49,δ578 and it comes
from a curve in M0,6, as only the markings u, v move as the parameter a moves
along E3 (all other cross-ratios are fixed). It follows that:

E3 = −∆5,7,8,u,v,p + ∆5,7,8,u,v + ∆5,7,8,p −∆5,7,8 + ∆u,p + ∆v,p

9.14. The class of E4 (see Fig. 14).

We blow-up P1
R at the point τ = −1, u = ∞. We use the chart u = 1 and the

equations of the twelve sections in (9.4). We blow-up P1
R at the point τ = −1, v = 0.

Consider the chart given by v = (τ + 1)b, with exceptional divisor E4 : τ + 1 = 0
and new coordinate b. For all but the 5’th section, the proper transforms of the
sections have the same equations (simply substitute v = (τ + 1)b). The proper
transform of the 5’th section has equation:

5 : (2− τ)X +
(
Y − 2(τ − 1)X

)
b = 0.
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Along E4 : τ + 1 = 0, we have:

p = 7 = 8 : Y = X

1 = 4 = u : X = 0,

2 = 9 = v : Y = 0,

3 : Y = 2X,

5 : Y b+X(3− b) = 0,

6 : Y = −X.

It follows that E4 has numerical class:

E4 = ∆1,4,5,u + ∆2,5,9,v + ∆5,7,8,p −∆1,4,u −∆2,9,v −∆7,8,p + ∆3,5 + ∆5,6.

Remark 9.15. In the notations of Section 9 we have:

(K + ∆) · C = 28, (K + ∆) · F ′ = 14, (K + ∆) · F ′′ = 2,

(K + ∆) · E1 = 3, (K + ∆) · E2 = 3, (K + ∆) · E3 = 2,

(K + ∆) · E4 = 3, (K + ∆) · E5 = 1.

Note that K · C = 6, and thus the lower bound for the dimension of the Hom
scheme Hom(P1,M0,12) at [C] is 0, and as in Rmk. 7.12 we note that C is rigid, but
not by a large margin. Similarly, the components of the characteristic 5 fiber are
not rigid.

10. ARITHMETIC BREAK OF A “TWO CONICS” CURVE - PART II

We give a different description of the curve F ′. As of now, the curve F ′ is
coming from a curve in M0,9, and although we know its class, it is less clear how
it decomposes as a sum of F -curves. We note that the curve F ′ is the irreducible
fiber in characteristic 5 of a different family, this one over Spec(Z). We will prove
that this new family breaks in characteristic 3 into several components, all of which
can be written as sums of F -curves.

10.1. Set-up.

Consider a configuration similar to the one in Section 9, but one in which we
drop the lines L5, L7, L8 and impose that the conics C1 and C2 are tangent at d (see
Fig. 17). Namely, consider the following configuration of nine points:

a′ = (1, 0, 0), b′ = (0, 1, 0), c′ = (0, 0, 1),

d′ = (1, 1, 1), e′ = (3, 2, 1), f ′ = (1, 1, 0),

g′ = (0, 2, 1), h′ = (1, 0, 1), i′ = (1,−1, 0).

(Only in characteristic 5 this is the same as the previous configuration!) We have:
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FIGURE 17. New configuration

L′1 = a′b′i′f ′ : Z = 0,

L′2 = a′c′h′ : Y = 0,

L′3 = a′g′e′ : Y = 2Z,

L′4 = b′c′g′ : X = 0,

L′6 = c′e′i′ : Y = −X,

L′9 = e′f ′h′ :
3

2
Y = Z −X

C ′1 = a′b′c′d′e′ : 2XY − 3XZ + Y Z = 0,

C ′2 = a′d′e′h′i′ :
3

4
Y 2 + Z2 +

3

4
XY −XZ − 3

2
Y Z = 0.

Note that this configuration of lines and (tangent at d) conics is now rigid. Using
the pencil of lines through the point d, we obtain as before a curve in M0,9. More
precisely, let S′ be the blow-up P2

Z at d and let Ex be the exceptional divisor. There
are nine sections of S′ → P1

Z given by the proper transforms of the lines and conics,
as well as the exceptional divisor Ex. This induces a rational map:

P1
Z 99KM0,9 = M0,{1,2,3,4,6,9,u,v,x}

with F ′ being the image of the morphism P1
Q →M0,9.

10.2. Breaking in characteristic 3 (outline).
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We work on M0,9 = M0,{1,2,3,4,6,9,u,v,x}. This is similar to the arguments in
Section 7 and Section 9. Consider the induced rational map:

P1
Z 99KM0,9.

In order to resolve this map, one has to blow-up the arithmetic surface P1
Z sev-

eral times along the characteristic 3 fiber P1
F3

of P1
Z → SpecZ. We first blow-up P1

Z
at one point in P1

F3
, resulting in an exceptional divisor E1.

Notation 10.3. Let G denote the proper transform of the characteristic 3 fiber P1
F3

.

Next, we blow-up the intersection point ofG andE1, resulting in an exceptional
divisor E2. We blow-up another point in E1 and we let E3 denote the correspond-
ing exceptional divisor (see Fig. 18).

FIGURE 18. The components of the characteristic 3 fiber.

We let T ′ be the resulting arithmetic surface. We abuse notations and denote
by E1 the proper transform of E1 in T ′. Just as in Section 9, from the P1-bundle
S′ → P1

Z, we construct a family over T ′ with nine sections, such that over a dense
open set T ′0, this gives the universal family. Moreover, T ′0 intersects non-emptily
each of curves G, Ei. Therefore, one has morphisms:

G→M0,9, Ei →M0,9,

As before, one can determine the classes of G, Ei and check directly that:

F ′ = G+ E1 + 2E2 + E3.

This proves that any other extra components in the characteristic 3 fiber will
map constantly to M0,9. Note that the exceptional divisor E2 appears in this fiber
with multiplicity 2, since we blow-up a node of the fiber. It is easy to see that each
of the curves G, Ei is a sum of F -curves.

10.4. Local coordinates on S′.
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Recall that S′ is the blow-up of P2
Z at d = (1, 1, 1). This is an arithmetic threefold

in P2
Z × P1

Z with local equation in P2
Z × A1

Z given by:

Z = X +
(
Y −X

)
v.

(Here X,Y, Z are the coordinates on P2
Z and v is the coordinate on A1

Z.) The excep-
tional divisor Ex is cut by Y = X . By substituting Z in the equations (10.1), we
obtain equations for the proper transforms of the nine sections:

x : Y = X,

1 : X(1− v) + Y v = 0,

2 : Y = 0,

3 : Y (1− 2v) + 2X(v − 1) = 0,

4 : X = 0,

6 : Y = −X,
9 : Y (2v − 3)− 2Xv = 0,

u : Y v + 3X(1− v) = 0,

v : Y (4v2 − 6v + 3) + 4X(v − v2) = 0.

10.5. The class of G.

By passing to characteristic 3 in (10.4), it follows that G is contained in the
boundary components δ1v , δ2u, δ9x and as a a curve in M0,6 is described by:

x = 9 : Y = 1,

1 = v : Y =
v − 1

v
,

2 = u : Y = 0,

3 : Y =
v − 1

v + 1
,

4 : Y =∞,
6 : Y = −1

The class of G in M0,9 can be computed to be:

G = ∆2,4,6,u + ∆1,2,3,u,v + ∆1,6,v + ∆1,4,v + ∆3,4 + ∆3,6 − 2∆1,v −∆2,u −∆9,x.

10.6. Class of E1 (see Fig. 19).

In the notations of (10.4), we blow-up P1
Z along 3 = 0, v = 0. In local coordinates,

we have v = 3a, with exceptional divisor E1 : 3 = 0 and new coordinate a. The
proper transforms of the nine sections have equations:

x : Y = X,

1 : X(1− 3a) + 3Y a = 0,

2 : Y = 0,

3 : Y (1− 6a) + 2X(3a− 1) = 0,

4 : X = 0,

6 : Y = −X,
9 : Y (2a− 1)− 2Xa = 0,

u : Y a+X(1− 3a) = 0,

v : Y (12a2 − 6a+ 1) + 4X(a− 3a2) = 0.
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FIGURE 19. The component E1 of the characteristic 3 fiber.

By passing to characteristic 3 in the above equations, we obtain that E1 is con-
tained in the boundary components δ1,4 and δ3,6 and thus comes from a curve in
M0,7 (thus a sum of F -curves by Cor. 2.9). As a curve in M0,9, we have:

E1 = ∆3,6,9,u,v + ∆1,4,9 + ∆1,4,u + ∆1,4,v + ∆2,9,v+

∆u,v,x + ∆2,u + ∆9,u + ∆9,x − 3∆1,4 −∆3,6.

10.7. The class of E2 (see Fig. 20).

We will blow-up the intersection point of G and E1. For this it is necessary
to look in the other chart of the first blow-up, given by 3 = vs (with s = 1

a the
new coordinate on E1). In this chart we have E1 : v = 0, G : s = 0. The proper
transforms of the nine sections have equations:

x : Y = X,

1 : X(1− v) + Y v = 0,

2 : Y = 0,

3 : Y (1− 2v) + 2X(v − 1) = 0,

4 : X = 0,

6 : Y = −X,
9 : Y (2− s)− 2X = 0,

u : Y +Xs(1− v) = 0,

v : Y (4v − 6 + s) + 4X(1− v) = 0.

We blow-up P1
Z at v = s = 0. In local coordinates, we have v = sw, with

exceptional divisor E2 : s = 0 and new coordinate w (and thus 3 = vs = s2w). The
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proper transforms of the nine sections have equations:

x : Y = X,

1 : X(1− sw) + Y sw = 0,

2 : Y = 0,

3 : Y (1− 2sw) + 2X(sw − 1) = 0,

4 : X = 0,

6 : Y = −X,
9 : Y (2− s)− 2X = 0,

u : Y +Xs(1− sw) = 0,

v : Y (4sw − 6 + s) + 4X(1− sw) = 0.

Along E2(s = 0) the sections become:

x = 9 : Y = X,

1 = 4 = v : X = 0,

2 = u : Y = 0,

3 = 6 : Y = −X.

FIGURE 20. The components E2 and E3 of the characteristic 3 fiber.

Blowing up the total space along the locus 1 = 4 = v (s = X = 0), we obtain an
arithmetic threefold with local equation X = sX1, exceptional divisor s = 0 and
new coordinate X1. The proper transforms of the sections 1, 4, v are given by:

1 : X1(1− sw) + Y w = 0,

4 : X1 = 0,

v : Y (4w − 2sw + 1) + 4X1(1− sw) = 0.
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Along E2 (s = 0) these sections become:

1 : X1 + Y w = 0,

4 : X1 = 0,

v : Y (w + 1) +X1 = 0.

The “attaching section” is cut by Y = 0. It follows that E2 has class an F -curve:

E2 = −∆1,4,v + ∆1,4 + ∆1,v + ∆4,v.

10.8. The class of E3 (see Fig. 20).

In the notations of (10.6), we blow up the point a = −1 on E1. In local coordi-
nates, we have a = 3b− 1, with exceptional divisor E3 : 3 = 0 and new coordinate
b. The proper trasnforms of the nine sections have equations:

x : Y = X,

1 : X(4− 9b) + 3Y (3b− 1) = 0,

2 : Y = 0,

3 : Y (7− 18a) + 2X(9b− 4) = 0,

4 : X = 0,

6 : Y = −X,
9 : Y (6b− 3)− 2X(3b− 1) = 0,

u : Y (3b− 1) +X(4− 9b) = 0,

v : Y
(
12(3b− 1)2 − 6(3b− 1) + 1

)
+ 4X(3b− 1)(4− 9b) = 0.

Along E3 (3 = 0) the sections become:

x = u = v : Y = X,

1 = 4 = 9 : X = 0,

2 : Y = 0,

3 = 6 : Y = −X.

We blow up the total space along the locus 1 = 4 = 9 (3 = X = 0). The new
arithmetic threefold is locally cut by X = 3X1, with exceptional divisor 3 = 0 and
new coordinate X1. The proper transforms of the sections 1, 4, 9 are given by:

1 : X1(4− 9b) + Y (3b− 1) = 0,

4 : X1 = 0,

9 : Y (2b− 1)− 2X1(3b− 1) = 0.

The “attaching section” is Y = 0. Along E3 (3 = 0) the sections become:

1 : Y = X1,

4 : X1 = 0,

9 : Y (b+ 1) +X1 = 0.

It follows that E3 has the same class as an F -curve:

E3 = −∆1,4,9 + ∆1,4 + ∆1,9 + ∆4,9.

REFERENCES

[BPV] W. Barth, C. Peters, A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik
und ihrer Grenzgebiete (3) Vol. 4, Springer-Verlag, Berlin (1984).

[CT1] A.-M. Castravet, J. Tevelev, Exceptional Loci on M0,n and hypergraph curves. Preprint
arXiv:0809.1699v1 [math.AG].



46 ANA-MARIA CASTRAVET AND JENIA TEVELEV

[CT2] A.-M. Castravet, J. Tevelev, Hypertrees, projections, and moduli of stable rational curves, to
appear in Crelle’s journal. Preprint arXiv:1004.2553v1 [math.AG].

[Ch] D. Chen, Square-tiled surfaces and rigid curves on moduli spaces. Preprint arXiv:1003.0731v1
[math.AG].

[Do] I. Dolgachev, Luigi Cremona and cubic surfaces, Luigi Cremona (1830–1903) (Italian), 55–
70, Incontr. Studio, 36, Instituto Lombardo di Scienze e Lettere, Milan, (2005). Preprint
arXiv:math/0408283.
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