Problem Solving Seminar. Worksheet 6. Algebraic Techniques.
Move everything to one side. Factor. Expand. Complete the square! $x^{n}-y^{n}=$ ?, $x^{2 m+1}+y^{2 m+1}=$ ?. A degree $n$ polynomial is determined by its values at $n+1$ points. Coefficients of a polynomial in terms of its roots. How to get sums of powers of roots? Rational roots theorem (if a polynomial with integer coefficients has a rational root then ???). Long division of polynomials.

1. $a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
2. $1 /(x+1)(x+2)(x+3)=? /(x+1)+? /(x+2)+? /(x+3)$.
3. If $P(x)$ is a polynomial of degree $n$ such that $P(k)=k /(k+1)$ for $k=0, \ldots$, $n$, determine $P(n+1)$.
4. Show that $\sqrt{2}$ is irrational.
5. Suppose all $2 \times 2$ minors of a $3 \times 3$ matrix with integral coefficients are divisible by 5 . Show that its determinant is divisible by 25 .
6. Solve the system of equations

$$
\begin{aligned}
& 2 x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=6 \\
& x_{1}+2 x_{2}+x_{3}+x_{4}+x_{5}=12 \\
& x_{1}+x_{2}+2 x_{3}+x_{4}+x_{5}=24 \\
& x_{1}+x_{2}+x_{3}+2 x_{4}+x_{5}=48 \\
& x_{1}+x_{2}+x_{3}+x_{4}+2 x_{5}=96
\end{aligned}
$$

7. It is known that a quadratic equation has either 0,1 , or 2 unique real solutions. But consider the equation

$$
\frac{(x-a)(x-b)}{(c-a)(c-b)}+\frac{(x-b)(x-c)}{(a-b)(a-c)}+\frac{(x-c)(x-a)}{(b-c)(b-a)}=1
$$

where $a, b$, and $c$ are distinct. Notice that $x=a, x=b$, and $x=c$ are all solutions - how can this equation have three solutions?
8. Show that each number in the sequence $49,4489,444889,44448889, \ldots$ is a perfect square.
9. Find the remainder when you divide $x^{81}+x^{49}+x^{25}+x^{9}+x$ by $x^{3}-x$.
10. (The interpolation formula) Suppose $a_{1}, \ldots, a_{n}$ are distinct numbers, and $b_{1}$, $\ldots, b_{n}$ are given numbers, and $P(x)$ is a degree at most $n-1$ polynomial such that $P\left(a_{i}\right)=b_{i}$ for all $i$. Show that

$$
\begin{gathered}
P(x)=b_{1} \frac{\left(x-a_{2}\right)\left(x-a_{3}\right) \cdots\left(x-a_{n}\right)}{\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right) \cdots\left(a_{1}-a_{n}\right)}+b_{2} \frac{\left(x-a_{1}\right)\left(x-a_{3}\right) \cdots\left(x-a_{n}\right)}{\left(a_{2}-a_{1}\right)\left(a_{2}-a_{3}\right) \cdots\left(a_{2}-a_{n}\right)} \\
+\cdots+b_{n} \frac{\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n-1}\right)}{\left(a_{n}-a_{1}\right)\left(a_{n}-a_{2}\right) \cdots\left(a_{n}-a_{n-1}\right)} .
\end{gathered}
$$

11. Prove that $(2+\sqrt{5})^{1 / 3}+(2-\sqrt{5})^{1 / 3}$ is rational.
12. Solve

$$
\left(x^{2}-3 x-4\right)\left(x^{2}-5 x+6\right)\left(x^{2}+2 x\right)+30=0
$$

