PUTNAM 2014 WEEK 8: NUMBER THEORY.

Basic number theory concepts to remember: modular arithmetic, unique factorization, greatest common divisor (a, b) can be written as a linear combination ax+by, Chinese Remainder Theorem, positional notation, Fermat's little theorem $a^{p} \equiv a(\bmod p)$.

Easier Problems

1. Find the smallest positive integer n such that one half of n is a square, one third of n is a cube, and one fifth of n is a fifth power.
2. Compute the last two digits of 47^{99}.
3. If $2 n+1$ and $3 n+1$ are both perfect squares, show that $40 \mid n$.
4. Let n be a positive integer. Suppose that 2^{n} and 5^{n} begin with the same digit. Then there is only one possible value for this common initial digit. Find, with proof, that digit.
5. Let p_{n} denote the nth prime, and let π_{n} the count of primes less than n. For example:

$$
\begin{array}{ll}
\{p\}: & 2,3,5,7,11,13,17,19,23,29, \ldots \\
\{\pi\}: & 0,0,1,2,2,3,3,4,4,4, \ldots
\end{array}
$$

Let q_{n} denote the number of terms of π less than n. What can you say about q_{n} ? (Try a few small cases!) Why is this true?

Harder Problems

6. Prove that for each positive integer n, the number $10^{10^{10^{n}}}+10^{10^{n}}+$ $10^{n}-1$ is not prime.
7. Start with a finite sequence $a_{1}, a_{2}, \ldots, a_{n}$ of positive integers. If possible, choose two indices $j<k$ such that a_{j} does not divide a_{k}, and replace a_{j} and a_{k} by $\operatorname{gcd}\left(a_{j}, a_{k}\right)$ and $\operatorname{lcm}\left(a_{j}, a_{k}\right)$, respectively. Prove that if this process is repeated, it must eventually stop and the final sequence does not depend on the choices made. (Note: gcd means greatest common divisor and lcm means least common multiple.)
8. Let f be a non-constant polynomial with positive integer coefficients. Prove that if n is a positive integer, then $f(n)$ divides $f(f(n)+1)$ if and only if $n=1$.
9. Let p be a prime number. Show that

$$
\binom{p a}{p b} \equiv\binom{a}{b} \quad(\bmod p) .
$$

10. Prove that there are exactly three right-angled triangles T whose sides are integers and such that the area of T is equal to the perimeter of T (the triangle with sides $6,8,10$ is one example).
