PUTNAM 2014 WEEK 10 POLYNOMIALS

Basic definitions and facts

A polynomial $a_{0} x^{n}+\ldots+a_{n}, a_{0} \neq 0$, has degree n, leading term a_{0}, and constant term a_{n}. A polynomial with $a_{0}=1$ is called monic.

Division with remainder (long division): for any polynomials $f(x)$ and $g(x)$ we can write $f(x)=g(x) q(x)+r(x)$ with $\operatorname{deg} r(x)<\operatorname{deg} g(x)$ (by convention, $\operatorname{deg} 0=-\infty$). The greatest common divisor of polynomials $f(x)$ and $g(x)$ can always be written as $a(x) f(x)+b(x) g(x)$.

A polynomial $f(x)$ has root α if and only if $x-\alpha$ divides $f(x)$. Any complex polynomial admits a unique factorization into linear complex factors $f(x)=c\left(x-\alpha_{1}\right) \ldots\left(x-\alpha_{n}\right)$. A multiple root is a root repeated several times in this factorization.

Coefficients can be expressed in terms of roots (Vieta formulas), for example $-a_{1} / a_{0}=\alpha_{1}+\ldots+\alpha_{n}$ and $(-1)^{n} a_{n} / a_{0}=\alpha_{1} \ldots \alpha_{n}$.

Rational roots theorem: if a polynomial with integer coefficients has a rational root p / q then p divides a_{n} and q divides a_{0}.

Interpolation: a degree n polynomial is uniqiely determined by its values at $n+1$ points.

Easier Problems

1. Consider two polynomials, $P(x)$ and $Q(x)$. Suppose that each of them has the property that the sum of its coefficients at odd powers of x is equal to the sum of its coefficients at even powers of x. For example, we can take $P(x)=1+3 x+2 x^{2}$ and $Q(x)=-1+4 x^{2}+3 x^{3}$. Is it true that $P(x) Q(x)$ has the same property?
2. Suppose a polynomial $x^{3}+p x+q$ has roots α, β, γ. Express $\alpha^{3}+$ $\beta^{3}+\gamma^{3}$ in terms of p and q.
3. Find the remainder when you divide $x^{81}+x^{49}+x^{25}+x^{9}+x$ by $x^{3}-x$.
4. It is known that a quadratic equation has either 0,1 , or 2 unique real solutions. But consider the equation

$$
\frac{(x-a)(x-b)}{(c-a)(c-b)}+\frac{(x-b)(x-c)}{(a-b)(a-c)}+\frac{(x-c)(x-a)}{(b-c)(b-a)}=1
$$

where a, b, and c are distinct. Notice that $x=a, x=b$, and $x=c$ are all solutions - how can this equation have three solutions?
5. Show that a polynomial $f(x)$ has a multiple root if and only if the greatest common divisor of $f(x)$ and $f^{\prime}(x)$ is not a constant.
6. Show that the polynomial

$$
1+x+\frac{x^{2}}{2!}+\ldots+\frac{x^{n}}{n!}
$$

has no multiple roots.

Harder Problems

7. Solve

$$
\left(x^{2}-3 x-4\right)\left(x^{2}-5 x+6\right)\left(x^{2}+2 x\right)+30=0 .
$$

8. (The interpolation formula) Suppose a_{1}, \ldots, a_{n} are distinct numbers, and b_{1}, \ldots, b_{n} are given numbers, and $P(x)$ is a degree at most $n-1$ polynomial such that $P\left(a_{i}\right)=b_{i}$ for all i. Show that

$$
\begin{gathered}
P(x)=b_{1} \frac{\left(x-a_{2}\right)\left(x-a_{3}\right) \cdots\left(x-a_{n}\right)}{\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right) \cdots\left(a_{1}-a_{n}\right)}+b_{2} \frac{\left(x-a_{1}\right)\left(x-a_{3}\right) \cdots\left(x-a_{n}\right)}{\left(a_{2}-a_{1}\right)\left(a_{2}-a_{3}\right) \cdots\left(a_{2}-a_{n}\right)} \\
+\cdots+b_{n} \frac{\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n-1}\right)}{\left(a_{n}-a_{1}\right)\left(a_{n}-a_{2}\right) \cdots\left(a_{n}-a_{n-1}\right)} .
\end{gathered}
$$

9. Let $p(x)$ be a polynomial of even degree with a positive leading coefficient. Suppose $p(x) \geq p^{\prime \prime}(x)$ for every x. Show that $p(x) \geq 0$ for every x.
10. If $P(x)$ is a polynomial of degree n such that $P(k)=k /(k+1)$ for $k=0, \ldots, n$, determine $P(n+1)$.
11. A repunit is a positive integer whose digits in base 10 are all ones. Find all polynomials f with real coefficients such that if n is a repunit, then so is $f(n)$.
12. Let k be a positive integer. Prove that there exist polynomials $P_{0}(n), P_{1}(n), \ldots, P_{k-1}(n)$ (which may depend on k) such that for any integer n,

$$
\left\lfloor\frac{n}{k}\right\rfloor^{k}=P_{0}(n)+P_{1}(n)\left\lfloor\frac{n}{k}\right\rfloor+\cdots+P_{k-1}(n)\left\lfloor\frac{n}{k}\right\rfloor^{k-1} .
$$

$(\lfloor a\rfloor$ means the largest integer $\leq a$.)

