PUTNAM 2012 WEEK 4. INEQUALITIES.

Easier Problems

1. In each case, which number is larger (or largest): (a) $\sqrt{19}+\sqrt{99}$ or $\sqrt{20}+\sqrt{98}$? (b) 2000 ! or 1000^{2000} ? (c) $1999^{1999}, 2000^{1998}$, or 1998^{2000} ? 2. Prove that $\sqrt{a b} \leq(a+b) / 2$ with equality if and only if $a=b$.

Digression. The previous problem is the $n=2$ case of the powerful AG (arithmetic mean - geometric mean) inequality

$$
\left(\prod_{i=1}^{n} a_{i}\right)^{1 / n} \leq \frac{1}{n} \sum_{i=1}^{n} a_{i}
$$

if the a_{i} are non-negative real numbers. To see this, let's take logarithms of both sides. Then we have to prove that

$$
\frac{1}{n} \sum_{i=1}^{n} \ln \left(a_{i}\right) \leq \ln \left(\frac{1}{n} \sum_{i=1}^{n} a_{i}\right)
$$

In fact, the analogous inequality holds for any concave function $f(x)$:

$$
\frac{1}{n} \sum_{i=1}^{n} f\left(a_{i}\right) \leq f\left(\frac{1}{n} \sum_{i=1}^{n} a_{i}\right) .
$$

This is called Jensen's inequality. You can read its proof in any real analysis textbook.
3. What changes in Jensen's inequality if $f(x)$ is a convex function? What does this inequality say if $f(x)=x^{2}$? If $f(x)=1 / x$?
4 . Let a_{1}, \ldots, a_{n} be positive, with a sum of 1 . Show that

$$
\sum a_{i}^{2} \geq 1 / n
$$

5. Given a, b, c positive real numbers such that $(a+1)(b+1)(c+1) \leq 8$, prove that $a b c \leq 1$ (Hint: Lagrange multipliers).
6. Determine the maximum value of $\left(\sin A_{1}\right)\left(\sin A_{2}\right) \cdots\left(\sin A_{n}\right)$ if

$$
\left(\tan A_{1}\right)\left(\tan A_{2}\right) \cdots\left(\tan A_{n}\right)=1
$$

Harder Problems

8. Prove or disprove: if x and y are real numbers with $y \geq 0$ and $y(y+1) \leq(x+1)^{2}$, then $y(y-1) \leq x^{2}$.
9. Let $f(x)=a_{1} \sin x+a_{2} \sin 2 x+\ldots+a_{n} \sin n x$, where a_{1}, \ldots, a_{n} are real numbers. Given that $|f(x)| \leq|\sin x|$ for all x, prove that

$$
\left|a_{1}+2 a_{2}+\ldots+n a_{n}\right| \leq 1
$$

Digression. Another very useful inequality is the Cauchy-Schwarz inequality

$$
\left|a_{1} b_{1}+\cdots+a_{n} b_{n}\right| \leq \sqrt{a_{1}^{2}+\cdots+a_{n}^{2}} \sqrt{b_{1}^{2}+\cdots+b_{n}^{2}}
$$

An incarnation of the same inequality is

$$
\left|\int_{0}^{1} f(x) g(x) d x\right| \leq \sqrt{\int_{0}^{1} f^{2}(x) d x} \sqrt{\int_{0}^{1} g^{2}(x) d x}
$$

The proof can be found in any linear algebra textbook.
10. Show that if the series

$$
\sum_{n=1}^{\infty} \frac{1}{a_{n}}
$$

is convergent, where a_{1}, a_{2}, \ldots are positive real numbers, then the series

$$
\sum_{n=1}^{\infty} \frac{n^{2}}{\left(a_{1}+\ldots+a_{n}\right)^{2}} a_{n}
$$

is also convergent.
11. Let f be a continuous and monotonically increasing function such that $f(0)=0$ and $f(1)=1$. Prove that
$f(0.1)+f(0.2)+\cdots+f(0.9)+f^{-1}(0.1)+f^{-1}(0.2)+\cdots+f^{-1}(0.9) \leq 9.9$ (here $f^{-1}(x)$ is the inverse function of $f(x)$).
12. Find all polynomials whose coefficients are equal to 1 or -1 and which have only real roots.

