PUTNAM 2010 WEEK 2 FIBONACCI! (AND OTHER SEQUENCES)

Easier Problems

1. Fibonacci numbers $1,1,2,3,5,8,13,21,34,55, \ldots$ are defined by

$$
F_{1}=1, \quad F_{2}=1, \quad \ldots, \quad F_{n+2}=F_{n+1}+F_{n} .
$$

Prove that any two consecutive Fibonacci numbers are coprime.
2. Find lines in the Pascal triangle that add up to Fibonacci numbers.

| | | | | 1 | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | 1 | | 1 | | | | |
| | | 1 | | 2 | | 1 | | | |
| | 1 | | 3 | | 3 | | 1 | | |
| 1 | | 4 | | 6 | | 4 | | 1 | |
| | \ldots |

3. In how many ways can a $2 \times n$ rectangle be tiled with 2×1 dominoes?
4. Prove that

$$
\begin{aligned}
& \text { (a) } F_{n-1} F_{n+1}-F_{n}^{2}=(-1)^{n} \quad \text { (Cassini identity); } \\
& \text { (b) } \quad F_{n-r} F_{n+r}-F_{n}^{2}=(-1)^{n-r+1} F_{r}^{2} .
\end{aligned}
$$

5. What happens if you put a random positive number in your (infinite precision) calculator, and repeatedly hit the sequence of buttons " $1 / x^{\prime \prime}$, " + " and " 1 "? (In other words, what happens if you iterate $x \mapsto(1 / x)+1$?). How is this problem related to Fibonacci numbers?
6. $[\sqrt{44}]=6,[\sqrt{4444}]=66$. Generalize and prove.
7. Using the formula

$$
\left(1^{3}-0^{3}\right)+\left(2^{3}-1^{3}\right)+\left(3^{3}-2^{3}\right)+\ldots+\left(n^{3}-(n-1)^{3}\right)=n^{3},
$$

find a closed formula for $1^{2}+2^{2}+\ldots+n^{2}$. Generalize to the sum of cubes.
8. Find the sum

$$
1 \cdot 1!+2 \cdot 2!+\ldots+n \cdot n!
$$

Harder Problems

9. Two players take turns removing stones from the pile. The rules are simple: if the pile contains $2 n$ stones then the player must leave n stones in the pile. If the pile contains $2 n+1$ stones then the player has a choice of leaving n or $n+1$ stones. The game ends when one person removes the last stone, thus winning. How many stones should be in the pile for the first player to have a winning strategy?
10. Returning to Fibonacci numbers, prove that

$$
\arctan \frac{1}{F_{2 n}}=\arctan \frac{1}{F_{2 n+1}}+\arctan \frac{1}{F_{2 n+2}} .
$$

Use this identity to compute the infinite series

$$
\arctan \frac{1}{1}+\arctan \frac{1}{2}+\arctan \frac{1}{5}+\arctan \frac{1}{13}+\arctan \frac{1}{34}+\ldots
$$

11. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ satisfies

$$
a_{m+n}+a_{m-n}=\frac{a_{2 m}+a_{2 n}}{2}
$$

for all nonnegative integers with $m \geq n$. If $a_{1}=1$, compute a_{2010}. 12. You have n coins $C_{1}, C_{2}, \ldots, C_{n}$. For each k, C_{k} is biased so that, when tossed, it has probability $1 /(2 k+1)$ of falling heads. If the n coins are tossed, what is the probability that the number of heads is odd? Express the answer as a rational function of n.
13. Consider two lists. List A consists of the positive powers of 10 $(10,100,1000, \ldots)$ written in base 2 . List B consists of the positive powers of 10 written in base 5 .

Powers of 10	List A	List B
10	$1010(4$ digits $)$	$20(2$ digits $)$
100	$1100100(7$ digits $)$	$400(3$ digits $)$
1000	$1111101000(10$ digits $)$	$13000(5$ digits $)$
10000	$10011100010000(14$ digits $)$	$310000(6$ digits $)$

Show that, for any integer $n>1$, there is exactly one number in exactly one of the lists that is exactly n digits long.

