PUTNAM 2009 WEEK 7: GENERATING FUNCTIONS

In this worksheet we will consider infinite power series

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \ldots
$$

We will not worry about their convergence at all: we will just add and multiply them formally. This is interesting because this gives a compact way to "store" information about the sequence $a_{0}, a_{1}, a_{2}, \ldots$ and this is very useful for combinatorics. The power series $f(x)$ is called a generating function of the sequence $a_{0}, a_{1}, a_{2}, \ldots$

Easier Problems

1. Take a sequence $1,2,4,8, \ldots$. Prove that its generating function is $\frac{1}{1-2 x}$.
2. (a) Prove that $(1+x)^{n}$ is the generating function of the sequence

$$
\binom{n}{0},\binom{n}{1},\binom{n}{2},\binom{n}{3}, \ldots
$$

(b) Using the identity $(1+x)^{n}(1+x)^{m}=(1+x)^{n+m}$, prove the Vandermonde identity

$$
\sum_{j=0}^{k}\binom{n}{j}\binom{m}{k-j}=\binom{n+m}{k}
$$

(Hint: Interpret the x^{k} term on both sides of the identity).
3. Give a formula for

$$
\sum_{i=1}^{n} i^{2}\binom{n}{i}
$$

where n is a non-negative integer.
4. (a) Prove that

$$
f(x)=\frac{1}{1-x-x^{2}}
$$

is the generating function for the Fibonacci sequence

$$
a_{0}=1, a_{1}=1, a_{2}=2, a_{3}=3, \ldots
$$

(b) Rewrite $f(x)$ using partial fractions. (c) Write a closed-form formula for the Fibonacci sequence.
5. Find a closed-form formula for A_{n}, where

$$
\begin{gathered}
A_{0}=2, A_{1}=5, A_{n}=5 A_{n-1}-6 A_{n-2} . \\
1
\end{gathered}
$$

6. For nonnegative integers n and k, define $Q(n, k)$ to be the coefficient of x^{k} in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{n}$. Prove that

$$
Q(n, k)=\sum_{j=0}^{k}\binom{n}{j}\binom{n}{k-2 j} .
$$

Harder Problems

7. (a) Suppose that in base $p, n=n_{0}+n_{1} p+\cdots+n_{k} p^{k}$ and $a=a_{0}+$ $a_{1} p+\cdots+a_{k} p^{k}$. Show that

$$
\binom{n}{a} \equiv \prod_{i=1}^{k}\binom{n_{i}}{a_{i}} \quad(\bmod p)
$$

(b) how many odd binomial coefficients are there in the 2009-th row of Pascal's triangle?
8. Let $x_{0}=1$ and for $n \geq 0$, let

$$
x_{n+1}=3 x_{n}+\left\lfloor x_{n} \sqrt{5}\right\rfloor .
$$

In particular, $x_{1}=5, x_{2}=26, x_{3}=136, x_{4}=712$. Find a closed-form expression for $x_{2007} \cdot(\lfloor a\rfloor$ means the largest integer $\leq a$.)
9. Show that for each positive integer n, the number of partitions of n into unequal parts is equal to the number of partitions of n into odd parts. For example, if $n=6$, there are 4 partitions into unequal parts, namely

$$
1+5, \quad 1+2+3, \quad 2+4, \quad 6
$$

And there are also 4 partitions into odd parts,

$$
1+1+1+1+1+1, \quad 1+1+1+3, \quad 1+5, \quad 3+3
$$

10. A finite sequence $a_{1}, a_{2}, \ldots, a_{n}$ is called p-balanced if any sum of the form $a_{k}+a_{k+p}+a_{k+2 p}+\cdots$ is the same for any $k=1,2, \ldots, p$. Prove that if a sequence with 50 members is p-balanced for $p=3,5,7,11,13,17$, then all its members are equal to zero.
