PUTNAM 2009 WEEK 6: GEOMETRY, VECTORS, COMPLEX NUMBERS.

Easier Problems

1. Draw two lines through each vertex of a triangle *ABC* and assume that they divide an opposite side into three equal segments. These six lines form a hexagon. Prove that diagonals of this hexagon intersect in one point. (Hint: this is a *simple* problem).

2. Let a convex polygon *P* be contained in a square of side one. Show that the sum of the squares of the sides of *P* is less than or equal to 4.

3. Points *A* and *B* move clock-wise around circumferences C_1 and C_2 with equal angular speeds. Prove that the vertex *C* of the equilateral triangle *ABC* also moves around some circumference.

4. Let ABCDEF be a hexagon inscribed in a circle of radius r. Show that if |AB| = |CD| = |EF| = r, then the midpoints of BC, DE, FA are the vertices of an equilateral triangle.

5. Let *a*, *b*, *c*, *d* be four different complex numbers. Prove that the corresponding points of the plane lie on a circle (or on a line) if and only if $\frac{a-c}{b-d}/\frac{b-c}{b-d}$ is a real number.

Harder Problems

6. Take points A, C, E, F on a circle. Let t(A) (resp. t(C)) be the line tangent to the circle at A (resp. at C). Let CE, EF, FA be the lines that pass through the corresponding points. Now define $Q = t(A) \cap CE$, $R = AC \cap EF$, $S = t(C) \cap FA$. Prove that points Q, R, S are collinear.

7. Let u_1, \ldots, u_n be vectors on the plane such that $|u_i| \le 1$ for any *i*. Show that one can choose signs in the expression $\pm u_1 \pm u_2 \pm \ldots \pm u_n$ such that the resulting vector has length at most $\sqrt{2}$.

8. For any line *L* and a point *P* of the plane such that $P \notin L$, let $\pi_{P,L}$ be the projection onto *L* away from *P*. It is defined as follows: take any point $Q \neq P$. Then $\pi_{P,L}(Q)$ is the point where *L* intersects the line *PQ*.

Now consider four points A, B, C, D such that no three of them lie on a line. Let M_1 be any point of the line AB. Now we define inductively

$$M_2 = \pi_{D,BC}(M_1), \ M_3 = \pi_{A,CD}, \ M_4 = \pi_{B,DA}, \ M_5 = \pi_{C,AB}, \dots$$

Prove that $M_{13} = M_1$.

9. Let *n* be a positive integer. Find the number of pairs *P*, *Q* of polynomials with real coefficients such that $P^2 + Q^2 = X^{2n} + 1$ and deg $P > \deg Q$.