PUTNAM 2009 WEEK 6: GEOMETRY, VECTORS, COMPLEX NUMBERS.

Easier Problems

1. Draw two lines through each vertex of a triangle $A B C$ and assume that they divide an opposite side into three equal segments. These six lines form a hexagon. Prove that diagonals of this hexagon intersect in one point. (Hint: this is a simple problem).
2. Let a convex polygon P be contained in a square of side one. Show that the sum of the squares of the sides of P is less than or equal to 4 .
3. Points A and B move clock-wise around circumferences C_{1} and C_{2} with equal angular speeds. Prove that the vertex C of the equilateral triangle $A B C$ also moves around some circumference.
4. Let $A B C D E F$ be a hexagon inscribed in a circle of radius r. Show that if $|A B|=|C D|=|E F|=r$, then the midpoints of $B C, D E, F A$ are the vertices of an equilateral triangle.
5. Let a, b, c, d be four different complex numbers. Prove that the corresponding points of the plane lie on a circle (or on a line) if and only if $\frac{a-c}{a-d} / \frac{b-c}{b-d}$ is a real number.

Harder Problems

6. Take points A, C, E, F on a circle. Let $t(A)$ (resp. $t(C)$) be the line tangent to the circle at A (resp. at C). Let $C E, E F, F A$ be the lines that pass through the corresponding points. Now define $Q=t(A) \cap C E, R=$ $A C \cap E F, S=t(C) \cap F A$. Prove that points Q, R, S are collinear.
7. Let u_{1}, \ldots, u_{n} be vectors on the plane such that $\left|u_{i}\right| \leq 1$ for any i. Show that one can choose signs in the expression $\pm u_{1} \pm u_{2} \pm \ldots \pm u_{n}$ such that the resulting vector has length at most $\sqrt{2}$.
8. For any line L and a point P of the plane such that $P \notin L$, let $\pi_{P, L}$ be the projection onto L away from P. It is defined as follows: take any point $Q \neq P$. Then $\pi_{P, L}(Q)$ is the point where L intersects the line $P Q$.

Now consider four points A, B, C, D such that no three of them lie on a line. Let M_{1} be any point of the line $A B$. Now we define inductively

$$
M_{2}=\pi_{D, B C}\left(M_{1}\right), M_{3}=\pi_{A, C D}, M_{4}=\pi_{B, D A}, M_{5}=\pi_{C, A B}, \ldots
$$

Prove that $M_{13}=M_{1}$.
9. Let n be a positive integer. Find the number of pairs P, Q of polynomials with real coefficients such that $P^{2}+Q^{2}=X^{2 n}+1$ and $\operatorname{deg} P>\operatorname{deg} Q$.

