PUTNAM 2009 WEEK 8: ALGEBRA AND GROUPS.

Easier Problems

1. (The interpolation formula) Suppose a_{1}, \ldots, a_{n} are distinct numbers, and b_{1}, \ldots, b_{n} are given numbers, and $P(x)$ is a degree at most $n-1$ polynomial such that $P\left(a_{i}\right)=b_{i}$ for all i. Show that

$$
\begin{gathered}
P(x)=b_{1} \frac{\left(x-a_{2}\right)\left(x-a_{3}\right) \cdots\left(x-a_{n}\right)}{\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right) \cdots\left(a_{1}-a_{n}\right)}+b_{2} \frac{\left(x-a_{1}\right)\left(x-a_{3}\right) \cdots\left(x-a_{n}\right)}{\left(a_{2}-a_{1}\right)\left(a_{2}-a_{3}\right) \cdots\left(a_{2}-a_{n}\right)} \\
+\cdots+b_{n} \frac{\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n-1}\right)}{\left(a_{n}-a_{1}\right)\left(a_{n}-a_{2}\right) \cdots\left(a_{n}-a_{n-1}\right)}
\end{gathered}
$$

2. If $P(x)$ is a polynomial of degree $n-1$ such that $P(k)=k /(k+1)$ for $k=0, \ldots, n-1$, determine $P(n)$.
3. In the additive group of ordered pairs of integers (m, n) [with addition defined componentwise: $(m, n)+\left(m^{\prime}, n^{\prime}\right)=\left(m+m^{\prime}, n+n^{\prime}\right)$] consider the subgroup H generated by three elements:

$$
(3,8),(4,-1),(5,4)
$$

Then H has another set of generators of the form

$$
(1, b),(0, a)
$$

for some integers a, b with $a>0$. Find a.
4. $[\sqrt{44}]=6,[\sqrt{4444}]=66$. Generalize and prove.
5. A is a subset of a finite group G (with group operation called multiplication) and A contains more than one half of the elements of G. Prove that each element of G is the product of two elements of A.

Harder Problems

6. Let A and B be two elements in a group such that $A B A=B A^{2} B$, $A^{3}=1$, and $B^{2009}=1$. Prove $B=1$.
7. Show that four points on the parabola $y=x^{2}$ with coordinates

$$
\left(a, a^{2}\right),\left(b, b^{2}\right),\left(c, c^{2}\right),\left(d, d^{2}\right)
$$

(a, b, c, d distinct) lie on a circle if and only if $a+b+c+d=0$.
8. Let $f(x)$ be a polynomial of degree n such that some power of $f(x)$ is divisible by some power of its derivative $f^{\prime}(x)$. Prove that $f(x)$ has a unique root of multiplicity n.
9. The product of two of the four zeros of the quartic equation $x^{4}-18 x^{3}+$ $k x^{2}+200 x-1984=0$ is -32 . Find k.
10. Suppose that a finite group has exactly n elements of order p, where p is a prime. Prove that either $n=0$ or p divides $n+1$.

