Basic principles from real analysis:

Calculus. Riemann Sums: if a function is integrable, e.g. if it is continuous on a closed finite interval, then the integral is the limit of the Riemann sums.

Continuity. Remember these via pictures! The Intermediate Value Theorem (if f is continuous on $[a, b]$, then every value between $f(a)$ and $f(b)$ is of the form $f(c)$ for $a \leq c \leq b$). The Extreme Value Theorem (a continuous function on $[a, b]$ attains its sup and inf). Rolle's Theorem (if f is continuous on $[a, b]$ and differentiable on (a, b), and $f(a)=f(b)$, then there is a point $u \in(a, b)$ at which $\left.f^{\prime}(u)=0\right)$. The Mean Value Theorem (if f is continuous on $[a, b]$ and differentiable on (a, b), then there is a point $u \in(a, b)$ at which $f^{\prime}(u)=\frac{f(b)-f(a)}{b-a}$.

Convergence. Sequences that converge: a bounded monotone sequence converges. A sum (series) in which the entries have alternating sign and which decrease in absolute value converge. A monotone sum whose corresponding integral is bounded converges (the integral comparison test). A sequence bounded above and below by two other convergent sequences must converge (the squeeze principle).

Taylor's Formula with Remainder: if h has continuous nth derivatives, then for any $x>0$ and integer $n>0$, there exists $\theta_{n} \in[0, x]$ such that

$$
h(x)=h(0)+h^{\prime}(0) x+h^{\prime \prime}(0) \frac{x^{2}}{2!}+\cdots+h^{(n-1)}(0) \frac{x^{n-1}}{(n-1)!}+h^{(n)}\left(\theta_{n}\right) \frac{x^{n}}{n!}
$$

1. Suppose $f(x)$ is a polynomial of odd degree. Then $f(x)=0$ has a real root. (Follow-ups: Any square matrix with an odd number of rows has a real eigenvalue. Euler's Theorem: Any orthogonal linear transformation of \mathbb{R}^{3} that preserves orientation is a rotation around some axis.)
2. Find all values of α for which the curves $y=\alpha x^{2}+\alpha x+\frac{1}{24}$ and $x=$ $\alpha y^{2}+\alpha y+\frac{1}{24}$ are tangent to each other.
3. Prove that

$$
e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

4. Suppose that $f:[0,1] \rightarrow \mathbb{R}$ has a continuous derivative and that $\int_{0}^{1} f(x) d x=$ 0 . Prove that for every $\alpha \in(0,1)$,

$$
\left|\int_{0}^{\alpha} f(x) d x\right| \leq \frac{1}{8} \max _{0 \leq x \leq 1}\left|f^{\prime}(x)\right|
$$

5. Recall integration by parts:

$$
\int f d g=f g-\int g d f
$$

Substitute $f(x)=1 / x, g(x)=x$, and manipulate, to get

$$
\int \frac{1}{x} d x=1+\int \frac{1}{x} d x
$$

Hence $0=1$. What has gone wrong?
6. Prove Bernoulli's Inequality: $(1+x)^{a} \geq 1+a x$ for $x>-1$ and $a \geq 1$, with equality when $x=0$.
7. What happens if you put a random positive number in your (infinite precision) calculator, and repeatedly hit the sequence of buttons " $1 / x$ ", "+" and " 1 "? (In other words, what happens if you iterate $x \mapsto 1 / x+1$?)
8. Prove that

> (a) $\quad 2=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\ldots}}}}}$
> (b) $\quad 3=\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+5 \sqrt{1+\ldots}}}}}$
9. Is $\sqrt{2}$ the limit of a sequence of numbers of the form

$$
\sqrt[3]{n}-\sqrt[3]{m}, \quad n, m=0,1,2, \ldots ?
$$

10. Let f be an infinitely differentiable real-valued function defined on the real numbers. If

$$
f\left(\frac{1}{n}\right)=\frac{n^{2}}{n^{2}+1}, \quad n=1,2,3, \ldots
$$

compute the values of the derivatives $f^{(k)}(0), k=1,2,3, \ldots$

