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ABSTRACT. It is well known that a 2-dimensional cyclic quotient singularity W

has the same singularity category as a finite dimensional associative algebra R
introduced by Kalck and Karmazyn. We study the deformations of the algebra
R induced by the deformations of the surface W to a smooth surface. We show
that they are Morita–equivalent to path algebras R̂ of acyclic quivers for general
smoothings within each irreducible component of the versal deformation space of
W (as described by Kollár and Shepherd-Barron). Furthermore, R̂ is semi-simple
if and only if the smoothing is Q-Gorenstein (one direction is due to Kawamata).
We provide many applications. For example, we describe strong exceptional col-
lections of length 10 on all Dolgachev surfaces and classify admissible embeddings
of derived categories of quivers into derived categories of rational surfaces.

1. INTRODUCTION

In the classical papers from 1974, Pinkham [P2] and Gabriel [G] studied defor-
mations of varieties with Gm-action and finite dimensional associative algebras,
respectively. These papers included famous examples of reducible versal defor-
mation spaces of the cone W over a rational normal curve in P4 (Figure 1, left) and
of the 4-dimensional algebra R = C[x, y, z]/(x, y, z)2 (Figure 1, right), respectively.
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FIGURE 1. Versal deformation spaces of W and R

We observe that there is a remarkable embeddingψ : DefW → Def R. The Artin
component of DefW (that parametrizes deformations induced by deformations of
the minimal resolution of W ) maps to the deformations of R to the path algebra
of the Kronecker quiver, whereas the Q-Gorenstein component (that parametrizes
deformations of W such that the relative canonical divisor is Q-Cartier) maps to
the deformations of R to the matrix algebra Mat2(C). We will construct the map ψ
for all cyclic quotient singularitiesW and show that ψ sends each irreducible com-
ponent of DefW to a uniquely determined irreducible component of Def R.
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Throughout the paper we fix a cyclic quotient singularity (c.q.s.) of type 1
∆ (1,Ω).

This is a surface germ P ∈ W étale-locally isomorphic to the germ (0 ∈ C2/µ∆),
where a generator ζ ∈ µ∆ acts on C2 with weights ζ, ζΩ for coprime 0 < Ω < ∆.
Equivalently, a c.q.s. is a 2-dimensional toroidal singularity, where the toric bound-
ary divisors are the images of the coordinate axes in C2. The exceptional divisor
of the minimal resolution of W is a chain of rational curves with self-intersections
−e1, . . . ,−el determined by the Hirzebruch–Jung continued fraction of ∆/Ω.

It is possible to embed the surface germ P ∈W into a projective surface W that
satisfies several technical assumptions 1.10. The surface W carries a vector bundle
F̄ of rank ∆, see Section 4 or [KKS, Prop. 6.7]. We call F̄ a Kawamata vector bundle.
It is the maximal iterated extension [K2] of the ideal sheaf OW (−Ā) of one of the
toric boundaries of W . Concretely, we choose Ā so that its proper transform in the
minimal resolution of W intersects the exceptional curve of self intersection −e1.

The Kalck-Karmazyn algebra R of the algebra R := C[[x, y]]µ∆ = ÔP,W is a ∆-
dimensional associative algebra which induces an equivalence between the singu-
larity categories of R and R [KK]. It was originally introduced by explicit genera-
tors and relations. We will use its description as the endomorphism algebra

R = EndW (F̄ )

of the Kawamata bundle. It is non-commutative unless Ω = 1 or ∆− 1. For exam-
ple, ifW the cone over the rational normal curve in P4 thenR = C[x, y, z]/(x, y, z)2.
In this case W is of type 1

4 (1, 1). The first non-commutative Kalck–Karmazyn al-
gebra is R = C⟨x, y⟩/(x2, y3, xy, y2x) for the singularityW of type 1

5 (1, 2).
Our results can be informally summarized as follows.

Corollary 1.1 (Theorem 1.12). There is a natural map of versal deformation spaces

ψ : DefP∈W → DefR .

A general deformation of W within a given irreducible component of DefP∈W induces a
deformation of R to a ∆–dimensional hereditary algebra, which is Morita–equivalent to
the path algebra R̂ of an acyclic quiver without relations.

Finite-dimensional hereditary algebras are rigid, and each of them corresponds
to a dense open subset of an irreducible component of DefR [G]. It follows that ψ
induces a map between the sets of irreducible components of DefP∈W and DefR.

In order to study how the Kawamata vector bundle F̄ and the Kalck–Karmazyn
algebra R deform under deformations of W to a smooth surface Y , we use an
interplay of two techniques, one coming from the study of semi-orthogonal de-
compositions (s.o.d.) of derived categories and another from birational geome-
try. By [KKS], the surface W admits a s.o.d. Db(W ) = ⟨AW ,BW ⟩, where AW ≃
Db(R-mod). We show that this s.o.d. deforms to Db(Y ) = ⟨AY ,BY ⟩, where
AY ≃ Db(R̂-mod).

Incidentally, this gives a large amount of admissible embeddings of derived cat-
egories Db(R̂-mod) of acyclic quivers without relations into derived categories of
smooth projective surfaces Y (which one can choose to be rational). While Orlov
proved [O] that the embedding always exists if dimY is sufficiently large, there
are strong restrictions in the case of surfaces. In fact, very few examples were
known before our work. In particular, Belmans and Raedschelders [BR, Sect.4] ask
whether there are bounds on the lengths of paths of realizable quivers and which
acyclic quivers Qa,b,c with 3 vertices, where a, b, c are the number of arrows be-
tween them, are realizable. Our results show that lengths of paths are unbounded,
and we have the following partial answer for the 3 vertices quiver’s question.
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Corollary 1.2. (Prop. 6.11) The quiver Qa,b,c is realizable by the algebra R̂ if and only if
there exists an extremal P-resolution (see Definition 2.9) with Wahl singularities of indices
a and b and with δ = c. See Lemma 6.12 for the list of possible c for fixed values of a, b.

Our second tool is birational geometry. LetW be the total space of a smoothing
of W to Y over a smooth curve. Special fibers of small birational modelsW → W
provide partial resolutions of singularities W →W that can be deformed to Y via
a Q-Gorenstein deformation. For example, irreducible components of DefP∈W are
parametrized by P-resolutions W+ → W of Kollár and Shepherd-Barron [KSB].
The algebra R̂ is the endomorphism algebra of a strong exceptional collection of
vector bundles associated with a smoothing of another partial resolution W− →
W , which we call the N-resolution. It is the negative analog of the P-resolution.

Geometric applications can be obtained by considering normal projective sur-
faces W with pg(W ) = q(W ) = 0 which contain an N-resolution that contracts to
some c.q.s. P ∈ W . Assume in addition that W is unobstructed in deformations,
and that W \ {P} is simply-connected. These surfaces are abundant, and their
smoothings Y could be: rational surfaces, Enriques surfaces, proper elliptic sur-
faces, and surfaces of general type (see e.g. [LP, HP, U]). In Section 8, we consider
applications to the following proper elliptic surfaces.

Definition 1.3. A Dolgachev surface Dp,q is a minimal elliptic fibration Y → P1

with H2(Y,OY ) = H1(Y,Z) = 0 and with exactly two multiple fibers of coprime
multiplicities p and q. It is simply-connected and has Kodaira dimension 1.

In [CL], Lee and Cho construct an exceptional collection of maximum length
12 of line bundles on Dolgachev surfaces D2,3. Other Dolgachev surfaces cannot
have exceptional collections of length 12 even numerically by results of Vial [V].
On the other hand, our exceptional collections never have full length because they
only categorify the Milnor fiber of the smoothing. Our results imply the following.

Corollary 1.4. (Theorem 8.4) Let p, q ≥ 2 be coprime integers. Dolgachev surfaces Dp,q

carry a strong exceptional collection Ē9, . . . , Ē0 associated with an N-resolution, where
(1) R̂ = End(Ē9 ⊕ . . . ⊕ Ē0) is the endomorphism algebra of the quiver with vertices

P̄0, . . . , P̄9 and with pq − p− q arrows connecting each P̄i to P̄9 for i = 0, . . . , 8.
(2) The semi-orthogonal complement of ⟨Ē9, . . . , Ē0⟩ in Db(Dp,q) has Mukai lattice Z2

with Euler pairing given by the Gram matrix
[
−1 3(pq − p− q)
0 −1

]
. This lattice has

a full numerical exceptional collection if and only if p = 3, q = 2.

We now provide the definitions and the notation that will be used throughout
this paper. We work with schemes of finite type over SpecC. We use notation
W → B for a flat deformation of normal surfaces with the special fiber W and
the total space W . We also use notation Y ⇝ W for a smoothing over a smooth
curve germ 0 ∈ B with general fiber Y . A deformation over a smooth curve is
called Q-Gorenstein if KW is Q-Cartier. We refer to [H1, S. 3] for a general theory
of Q-Gorenstein deformations. Quotient singularities of dimension 2 admitting a
Q-Gorenstein smoothing are called T-singularities [KSB]. They are either Du Val
singularities or c.q.s. of the form 1

dn2 (1, dna − 1) for 0 < a < n coprime [KSB,
Prop. 3.10]. The special case is a Wahl singularity 1

n2 (1, na− 1).

Definition 1.5. A c.q.s. surface (Γ1 ∪ . . . ∪ Γr ⊂ W ) is a surface germ that contains
a chain of smooth projective rational curves Γ1, . . . ,Γr that are toric boundary di-
visors at c.q.s. P0, . . . , Pr, the surface is smooth elsewhere (we also allow Pi to be
smooth points). We choose a toric boundary divisor germ Γ0 at P0 complementary
to Γ1 and Γr+1 at Pr complementary to Γr. A c.q.s. resolution of a c.q.s. P ∈ W is a
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c.q.s. surface that admits a contraction (Γ1∪. . .∪Γr ⊂W )→ (P ∈W ). A c.q.s. sur-
face is called a Wahl surface if P0, . . . , Pr are Wahl singularities. A Wahl resolution
is a c.q.s. resolution W → W such that W is a Wahl surface. In addition, we im-
pose the following minimality assumption: a Wahl resolution W should admit a
Q-Gorenstein smoothing Y ⇝W that blows down to a smoothing Y ⇝W .
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FIGURE 2. Chain of curves in a Wahl (or c.q.s.) surface W

Kollár and Shepherd-Barron proved that irreducible components C of the re-
duced versal deformation space DefP∈W are in a one-to-one correspondence with
P -resolutions [KSB, Th. 3.9] ofW , i.e. c.q.s. resolutionsW →W with T-singularities
and relatively ample canonical class. Concretely, a smoothing Y ⇝W from C with
total space W lifts to a smoothing Y ⇝ W with total space W given by the rela-
tive canonical model ofW . We will use an analogous one-to-one correspondence
with M-resolutions of Behnke and Christophersen [BC]. An M-resolution is a Wahl
resolution W+ → W such that KW+ is relatively nef. The versal Q-Gorenstein
deformation space DefQG

Γ1∪...∪Γr⊂W+ of an M-resolution is smooth. Blowing down
deformations [W] gives a map DefQG

Γ1∪...∪Γr⊂W+ → DefP∈W , which is a Galois cov-
ering of an irreducible component C and the Galois group is a reflection group.
In particular, C is also smooth and every deformation in C is the blow-down of a
Q-Gorenstein deformation in DefQG

Γ1∪...∪Γr⊂W+ after a finite base change.

Example 1.6. The minimal resolution of singularities of P ∈ W is an example of
an M-resolution. The corresponding component of the versal deformation space
DefP∈W is called the Artin component. It parametrizes deformations of W that
admit a simultaneous resolution of singularities after a finite base change.

Notation 1.7. Every Wahl surface W , including an M-resolution W+, has the
following numerical invariants ni, ai, δi. For i = 0, . . . , r, the Wahl singularity
Pi ∈ W has type 1

n2
i
(1, niai − 1), where the Hirzebruch-Jung continued fraction

of n2
i

niai−1 goes in the direction from Γi to Γi+1. For smooth points, ni = ai = 1.
For i = 1, . . . , r, let δi := ni−1ni|KW · Γi| (a non-negative integer).

Definition 1.8. Let W+ be an M-resolution of a c.q.s. P ∈ W with invariants
ni, ai, δi as in Notation 1.7. The corresponding N-resolution W− is a Wahl reso-
lution of P ∈ W with curves Γ̄i and singularities P̄i of type 1

n̄2
i
(1, n̄iāi − 1) such

that −KW− is relatively nef, i.e., KW− · Γ̄i ≤ 0 for i = 1, . . . , r, and

(1) The singularity P̄r is the same as P0. Moreover, for every i = 1, . . . , r, the con-
traction of the chain Γ̄r−i+1∪ . . .∪ Γ̄r ⊂W− is the same c.q.s as the contraction
of the chain Γ1 ∪ . . . ∪ Γi ⊂W+. We denote that c.q.s. by 1

∆i
(1,Ωi).

(2) δ̄r−i+1 = δi for i = 1, . . . , r.

The N-resolution associated with the M-resolution exists ans is unique (Section 2).
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Example 1.9. By [KSB, Ex. 3.15], the c.q.s. 1
19 (1, 7) admits three M-resolutions (for

the notation see Section 2), where the first M-resolution is the minimal resolution:
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)
]− (2).

We list the corresponding N-resolutions and the quivers for the path algebra R̂.
All this information can be computed using the program [Z].
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Assumption 1.10. For technical reasons, we need to compactify all surfaces, which
requires imposing the following assumptions throughout the paper.
(1) W is a normal, projective c.q.s. surface smooth outside of {P0, . . . , Pr}.

If Γ1 ∪ . . . ∪ Γr ⊂ W is a c.q.s. resolution of P ∈ W , then the surface W is
determined as the contraction of the chain Γ1, . . . ,Γr to the point P ∈W .

(2) H1(W,OW ) = H2(W,OW ) = 0. Since c.q.s. are rational singularities, if W
is a c.q.s. resolution of W then (2) is equivalent to the same vanishing on W

or, equivalently, on the minimal resolution of W . For example, W can be a
rational surface. Since rational singularities are Du Bois, (2) is equivalent to
the same vanishing on any projective deformation Y of W .

(3) There is a Weil divisor Ā onW that generates the local class group Cl(P ∈W ).
By Lemma 3.1, we can choose effective smooth divisors Ā, ˜̄A ⊂ W such that
the germ P ∈ (Ā∪ ˜̄A) ⊂W is etále-locally isomorphic to 0 ∈ (x = 0)∪(y = 0) ⊂
1
∆ (1,Ω). Proper transforms Γ0 (resp. Γr+1) of Ā (resp. ˜̄A) in a c.q.s. resolution
W of W intersect the chain Γ1 ∪ . . . ∪ Γr only at P0 (resp. Pr), where they are
equivalent to toric boundaries opposite to Γ1 (resp. Γr) as in Figure 2.

(4) H2(W,TW ) = 0. By Lemma 3.2, there are no local-to-global obstructions to
Q-Gorenstein deformations of a Wahl resolution W of W or the pair (W,∆)
where ∆ = Γ0+Γ1+ . . .+Γr+Γr+1 if (2) and (3) also hold. A general example
satisfying (4) is any surface W such that −KW is big [HP, Prop. 3.1].

Definition 1.11. Let Y ⇝ W be a projective Q-Gorenstein smoothing of a Wahl
surface W over a smooth curve germ 0 ∈ B satisfying Assumption 1.10. By [H2],
for each Pi ∈ W and after shrinking B, we have an associated exceptional vec-
tor bundle Ei of rank ni on Y , which we call a Hacking vector bundle. Bundles
Er, . . . , E0 form a Hacking exceptional collection on Y , see Section 5.

Our main theorem is the following (see Section 6 for more detailed results).

Theorem 1.12. Let W+ be an M-resolution of P ∈ W satisfying Assumption 1.10.
Fix a projective Q-Gorenstein smoothing Y ⇝ W+ which is sufficiently general in its
irreducible component of the versal deformation space of W . This component also contains
a Q-Gorenstein smoothing Y ⇝W−, where W− is the N-resolution associated to W+.
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(1) Let Ēr, . . . , Ē0 be a Hacking exceptional collection on Y associated with the
N-resolution W−. This collection is strong: Extk(Ēi, Ēj) = 0 for k > 0 and i > j.

(2) In contrast, let Er, . . . , E0 be a Hacking exceptional collection on Y associated with
the M-resolution W+. Then we have Extk(Ei, Ej) = 0 for k ̸= 1 and i > j.

(3) For i = 1, . . . , r, we have Hom(Ēr+1−i, Ēr−i) ≃ Ext1(Ei, Ei−1)
∨ ≃ Cδi .

(4) The Kawamata bundle F̄ on W deforms to a vector bundle F ≃
r⊕

i=0

Ē
nr−i

i on Y .

Since F has rank ∆, we note that ∆ = n0n̄r + n1n̄r−1 + . . .+ nrn̄0.
(5) The Kalck–Karmazyn algebra R̄ = End(F̄ ) deforms to the algebra End(F ), which is

hereditary and Morita-equivalent to the path algebra R̂ = End(Ēr ⊕ . . .⊕ Ē0).

Remark 1.13. The algebra R̂ is a path algebra of a quiver with vertices Ēr, . . . , Ē0

and with arrows connecting Ēi to Ēj for i > j so that the total number of paths
connecting Ēi to Ēj is equal to (see Lemma 6.9)

hom(Ēi, Ēj) = n̄j āi − n̄iāj = n̄in̄j

( δ̄j+1

n̄j n̄j+1
+ · · ·+ δ̄i

n̄i−1n̄i

)
. (1.1)

It follows from this formula that the quiver is connected unless the algebra is
semisimple, in which case the N-resolution is the M-resolution of a T-singularity.

Remark 1.14. One of the ingredients of the proof is a result of Kawamata [K1],
where Theorem 1.12 was proved in the case when Y ⇝ W is a Q-Gorenstein
smoothing of a cyclic T-singularity 1

dn2 (1, dna − 1) (see also [C]). In this case all
δi = 0, the M-resolution is equal to the N-resolution, Hacking vector bundles are
pairwise orthogonal, and End(F ) is a direct sum of d copies of Matn(C).

In Section 7 we illustrate these results in the simplest case of the Artin compo-
nent, when W+ → W is a minimal resolution of singularities. In this case only,
the exceptional collection Er, . . . , E0 on Y is a collection of line bundles, which
is a deformation of an exceptional collection of line bundles on W+. However,
while the latter has both Hom and Ext1 in the forward direction, the former has
Ext1 only. As in the general case, the dual collection Ēr, . . . , Ē0 associated with
the N-resolution W− →W is a strong exceptional collection of vector bundles.
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FIGURE 3. Braiding from W+ to W− for three Wahl singularities

Remark 1.15. Antiflips of [HTU] are the main tool in the proof of Theorem 1.12.
We use them to produce Q-Gorenstein smoothings Y ⇝ W of different Wahl res-
olutions W → W over different curve germs in a given irreducible component of
the versal deformation space of W , see Definition 3.3. Antiflips generate a “geo-
metric” braid group action on the infinite set of all Wahl resolutions W → W
compatible with the “categorical” braid group action by mutations of exceptional
collections on Y , see Theorem 3.9. After applying finitely many antiflips to the
Q-Gorenstein smoothing Y ⇝W+ of the M -resolution, we obtain a Q-Gorenstein
smoothing Y ⇝ W− of the N-resolution associated to W+. Going back from W−
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to W+ can be done over the same curve B. This decomposes a birational map of
total spaces of deformationsW− 99KW+ into a sequence of r(r+1)

2 flips and flops.

We will also describe the derived category of the total space W of a deforma-
tion. We recall that a semi-orthogonal decomposition (s.o.d) of a triangulated category
T is a sequence of full triangulated subcategories ⟨A0, . . . ,Ar⟩ satisfying two con-
ditions: (1) Hom(Aj ,Ai) = 0 for j > i, and (2) for every object T ∈ T , there exist
morphisms 0 = Tr → . . . → T0 = T such that the cone Ai of Ti → Ti−1 belongs
to Ai. The objects Ai are functorial in T , i.e. we have projection functors T → Ai.

Theorem 1.16. Let Y ⇝W be a projective Q-Gorenstein smoothing of a Wahl surfaceW
satisfying Assumption 1.10 (1), (2), (3). After possibly shrinking B, Db(W) admits a B-
linear1 s.o.d. ⟨AW

r , . . . ,AW
0 ,BW⟩ compatible with respect to restrictions to W and Y

⟨AW
r , . . . ,AW

0 ,BW ⟩ Li∗W←−−−− ⟨AW
r , . . . ,AW

0 ,BW⟩ Li∗Y−−−−→ ⟨AY
r , . . . ,AY

0 ,BY ⟩.

EachAY
i is generated by the Hacking bundleEi and and eachAW

i ≃ Db(Ri-mod), where
Ri is the Kalck-Karmazyn algebra associated to Pi ∈W . Furthermore, BW ⊂ Dperf(W).

See Section 5 for results about deformations of a c.q.s. surface over any smooth
base B, for example for the whole versal Q-Gorenstein deformation of W . The
categories AW

i , AY
i and AW

i categorify Wahl singularities Pi ∈ W , their Milnor
fibers in Y and terminal singularities Pi ∈ W , respectively. The categories BW and
BY categorify the complement of the chain Γ1 ∪ . . .∪Γr ⊂W and the complement
of its Milnor fiber in Y , which are topologically equivalent.
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2. N-RESOLUTION ASSOCIATED WITH AN M-RESOLUTION

Let 0 < Ω < ∆ be coprime integers, and let P ∈ W be a c.q.s. of type 1
∆ (1,Ω).

We fix an M-resolution W+ → W . We will construct its N-resolution W− → W in

1I.e. preserved by tensoring with a pullback of any object T ∈ Dperf(B).
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Lemma 2.7 and prove its uniqueness in Corollary 2.11. In this section we do not
consider deformations of surfaces or derived categories. We write

∆

Ω
= [e1, . . . , eℓ] = e1 −

1

. . . −
1

el

.

If ∆
Ω = [e1, . . . , eℓ] and ∆

∆−Ω = [b1, . . . , bs], then the Hirzebruch–Jung continued
fraction [bs, . . . , b1, 1, e1, . . . , eℓ] is equal to 0 (and in particular is well-defined,
i.e. there is no division by 0). This follows from the Riemenschneider’s diagram
[R] and can be interpreted as the consecutive contraction of (−1)-curves in the
chain of P1’s of self-intersections −bs, . . . ,−b1,−1,−e1, . . . ,−eℓ. The contraction
process terminates with a single P1 of self-intersection 0. Since ∆

Ω′ = [eℓ, . . . , e1]
implies Ω′Ω ≡ 1(mod∆), then we also have [e1, . . . , eℓ, 1, bs, . . . , b1] = 0.

Notation 2.1. Various operations with Hirzebruch–Jung continued fractions will
include the notation [

(
n
a

)
], which abbreviates the Hirzebruch–Jung continued frac-

tion of n2

na−1 of a Wahl singularity. For example, for our M-resolution we have

[bs, . . . , b1]− (1)− [

(
n0
a0

)
]− (c1)− [

(
n1
a1

)
]− (c2)− . . .− (cr)− [

(
nr
ar

)
] = 0. (2.1)

Here [
(
ni

ai

)
] represents the Wahl singularity Pi and (ci) represents the curve Γi, so

that its proper transform in the minimal resolution ofW+ has self-intersection−ci.

By [Ch, S], there is a bijection between P-resolutions of P ∈ W and the follow-
ing set of zero continued fractions: K(∆/Ω) = {[k1, . . . , ks] = 0 : 1 ≤ ki ≤ bi}.
The M-resolution [BC] is constructed by resolving all Du Val singularities of the
P-resolution (they are of type Am for some m’s), and partially resolving each T-
singularity 1

dn2 (1, dna − 1) with d > 1 by its crepant Wahl resolution, which has
d− 1 rational curves and d Wahl singularities of type 1

n2 (1, na− 1).

Notation 2.2. Suppose the M-resolution W+ → W corresponds to a zero-fraction
[k1, . . . , ks] ∈ K(∆/Ω). As in Notation 1.7, the surface W+ contains curves Γ1, . . . ,
Γr and Wahl singularities at Pi of type 1

n2
i
(1, niai − 1). We have

δi = ni−1niKW+ · Γi ≥ 0

for all i = 1, . . . , r. Let di := bi − ki ≥ 0. Furthermore, d1 + . . . + ds = r + 1.
Let di1 , . . . , die be the set of nonzero di with i1 < i2 < . . . < ie.

Proposition 2.3. δ1, . . . , δr can be computed as follows: for k = 1, . . . , e− 1,

δdi1
+...+dik

εdi1+...+dik

= [bik+1, . . . , bik+1−1]

if ik+1 > ik + 1, or δdi1
+...+dik

= 1 if ik+1 = ik + 1. All other δi are equal to 0.

Proof. This is in the algorithm [PPSU, Cor. 10.1] for a P-resolution, adapted to its
M-resolution. See also [HTU, Prop. 4.1]. □

Example 2.4. Consider ∆
Ω = 89

33 = [3, 4, 2, 2, 4]. Take the P-resolution W+ given by

[

(
2

1

)
]− (1)− [

(
3

1

)
]− (2)− [

(
2

1

)
] = [4]− (1)− [5, 2]− (2)− [4] → [3, 4, 2, 2, 4].

We have ∆
∆−Ω = [2, 3, 2, 5, 2, 2]. The element in K(∆/Ω) corresponding to W+ is

[2, 2, 1, 5, 1, 2] = 0. Thus d1 = 0, d2 = 1, d3 = 1, d4 = 0, d5 = 1, and d6 = 0.
Therefore, by Proposition 2.3, we have δ1 = 1 and δ2 = 5.
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Lemma 2.5. Let 0 < B < A be integers with gcd(A,B) = 1. Let
A

A−B
= [x1, . . . , xp] and

A

B
= [y1, . . . , yq].

Then
(1) A2

AB−1 = [y1, . . . , yq−1, yq + xp, xp−1, . . . , x1],
(2) A2

A2−(AB−1) = [x1, . . . , xp, 2, yq, . . . , y1], and
(3) [xp, . . . , x1]− (1)− [y1, . . . , yq−1, yq + xp, xp−1, . . . , x1] contracts to [xp, . . . , x1].

Proof. See [HP, Lem.8.5] or [PSU, Cor.2.1 and 2.2]. □

We use the geometric procedure in [PPSU, Cor.10.1], which interprets the zero
continued fraction of the Wahl resolution (2.1) as follows:
(1) At the beginning of (2.1) we have di1 Wahl chains [

(
n0

a0

)
] as follows:

[bs, . . . , b1]− (1)− [

(
n0
a0

)
]− (1)− [

(
n0
a0

)
]− (1)− . . .− (1)− [

(
n0
a0

)
]︸ ︷︷ ︸

di1

−(cdi1
)− . . . .

We can blow-down the (−1)-curves and new (−1)-curves consecutively until
we obtain the new chain

[bs, . . . , bi1+1, bi1 − di1 , bi1−1, . . . , b1]− (cdi1
)− [

(
ndi1

adi1

)
]− . . .− (cr)− [

(
nr
ar

)
].

(2) If bi1 − di1 = 1, then we contract this (−1)-curve and all new (−1)-curves in
the subchain [bs, . . . , bi1+1, bi1 − di1 , bi1−1, . . . , b1] until there are none.

(3) Then the original (−cdi1
)-curve becomes a (−1)-curve, and we have

ndi1

ndi1
− adi1

= [b1, . . . , bi1−1, bi1 − di1 , bi1+1, . . . , bi2−1].

(4) We now repeat starting in (1) with the di2 .
(5) We end with [. . . , bie − die , . . . , bi1 − di1 , . . .] = 0, which is the zero continued

fraction corresponding to the M-resolution.

Proposition 2.6. For every j = 0, . . . , r, we have that

[

(
n0
a0

)
]− (c1)− [

(
n1
a1

)
]− (c2)− . . .− (cj)− [

(
nj
aj

)
]− (1)−

[. . . , bie−die , . . . , bip−dip , . . . , bip−1
−k, . . . , bip−2

, . . . bi1 , . . .] = 0,

for some p and some k depending on j.

Proof. As explained above, the blowing-down process of the M-resolution pro-
duces the zero continued fraction [. . . , bie − die , . . . , bi1 − di1 , . . .] by subtracting 1
from the bip for each of the Wahl singularities from n0, a0 to nr, ar. Let us consider

[

(
n0
a0

)
]− (c1)− [

(
n1
a1

)
]− (c2)− . . .− (cr)− [

(
nr
ar

)
]− (1)− [. . . , bie , . . . , bi1 , . . .] = 0.

Then we do the same process of subtracting 1 but now we start with bie and we
finish with bi1 . This proves the claim via stopping at the Wahl singularity [

(
nj

aj

)
]

during this process. □

Lemma 2.7. An N-resolution W− → W associated to the M-resolution W+ → W
can be constructed as follows. It has Wahl singularities P̄i of type 1

n̄2
i
(1, n̄iāi − 1) for

i = 0, . . . , r, which we will describe from the bottom up via ñp, ãp such that n̄r−i = ñi,
ār−i = ãi for i = 0, . . . , r. The algorithm is as follows.
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• If i1 = 1 (i.e. d1 ̸= 0), then ñp = ãp = 1 for p = 0, . . . , d1 − 1. In other words, we
start with d1 smooth points.

• If i1 > 1, then ñp

ñp−ãp
= [b1, . . . , bi1−1] for p = 0, . . . , di1 − 1.

• Let q =
k∑

j=1

dij . Then ñp

ñp−ãp
= [b1, . . . , bik+1−1] for p = q, . . . , q + dik+1

− 1.

The curves Γ̄i for i = 1, . . . , r are as follows. If Γ̄i passes through one or two Wahl sin-
gularities, then its proper transform in the minimal resolution is a (−1)-curve. Otherwise
(i.e. no Wahl singularities) it is a (−2)-curve.

Example 2.8. In Example 2.4, n̄0 = 35, n̄1 = 5, n̄2 = 2. The N-resolution is

[

(
35

13

)
]− (1)− [

(
5

2

)
]− (1)− [

(
2

1

)
] = [3, 4, 2, 2, 7, 2, 3, 2]− 1− [3, 5, 2]− 1− [4].

Before proving Lemma 2.7 in general, let us do it just for extremal M-resolutions.

Definition 2.9. A Wahl resolution W → W of P ∈ W is called extremal if the
exceptional divisor consists of a single curve Γ1. We have two Wahl singularities
P0, P1 (which may be smooth points). The type of Pi is 1

n2
i
(1, niai−1) and we have

δ1 = n0n1 |KW · Γ1| and − n20n21 Γ2
1 = ∆ = n20 + n21 ± δ1n0n1, (2.2)

where ± is the sign of KW · Γ1. If δ1 = 0, then we have the M-resolution of
∆
Ω = 2n2

2na−1 for some 0 < a < n coprime [BC]. If W is an extremal M -resolution
with δ1 > 0, then W is an extremal P-resolution introduced and studied in [HTU].

Lemma 2.10. An extremal M-resolution has a unique N-resolution.

Proof. If δ1 = 0, then we have the M-resolution of ∆
Ω = 2n2

2na−1 for some 0 < a < n

coprime [BC]. Here N-resolution and M-resolution coincide, and there is only one
index i1 and di1 = 2 (as at the end of Lemma 2.5 with D = 2). If W+ is an extremal
M -resolution with δ1 > 0, then we have an extremal P-resolution of [HTU]. Here
we have only two indices i1, i2. We have di1 = di2 = 1, and

[b1, . . . , bi1 − 1, . . . , bi2 − 1 . . . , bs] = 0.

We now prove that the N-resolution proposed in Lemma 2.7 is indeed an N-
resolution. By Lemma 2.5 (3), [bs, . . . , b1]− (1)− [

(
n̄1

ā1

)
]− (1)− [

(
n0

a0

)
] can be blown-

down to [bs, . . . , bi2 − 1, bi2−1, . . . , b1]− (1)− [
(
n0

a0

)
] and that can be blown-down to

[b1, . . . , bi1 − 1, . . . , bi2 − 1 . . . , bs], which is zero, and so ∆
Ω = [

(
n̄1

ā1

)
] − (1) − [

(
n0

a0

)
].

Hence we do get a Wahl resolution W →W in this way.
We now check that KW · Γ < 0, where Γ is the central curve, and δ̄1 = δ1.

Let pk

qk
= [b1, . . . , bk−1], p1 = 1, p0 = q1 = 0, and q0 = −1. Then

pi1qi2 − pi2qi1
pi1qi2−1 − pi2−1qi1

= [bi2−1, . . . , bi1+1] =
δ1
ε′1

by [HTU, Lemma 4.2]. But, by definition, we have pi1 = n0, qi1 = n0 − a0, pi2 =
n̄1, and qi2 = n̄1 − ā1. Therefore δ1 = n̄1a0 − n0ā1. On the other hand, a toric
computation shows that KW ·Γ = −1+

(
1− n̄1−ā1

n̄1

)
+
(
1− a0

n0

)
= − n̄1a0−n0ā1

n̄1n0
, and

so KW · Γ is negative and δ̄1 = δ1.
Finally, for uniqueness let us consider some Wahl chain [

(
ñ1

ã1

)
] such that

[bs, . . . , b1]− (1)− [

(
ñ1
ã1

)
]− (1)− [

(
n0
a0

)
] = 0,

but then we also have [
(
ñ1

ã1

)
] − (1) − [

(
n0

a0

)
] − (1) − [bs, . . . , b1] = 0, and so [

(
ñ1

ã1

)
] is

determined, being dual to the contraction of [
(
n0

a0

)
]− (1)− [bs, . . . , b1]. □
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Proof of Lemma 2.7. Note that the δ̄i are determined by the Wahl resolution, but in
the proof we will check that δ̄i = δr+1−i as required by the definition of the N-
resolution. We will also need to prove property (1) in the definition.

The strategy is to consider the chain

[bs, . . . , b1]− (1)− [

(
n̄0
ā0

)
]− (1)− [

(
n̄1
ā1

)
]− (1)− . . .− (1)− [

(
n̄r
ār

)
], (2.3)

and to prove that it is contractible and contracts to zero. In this way, we would
have that [

(
n̄0

ā0

)
] − (1) − [

(
n̄1

ā1

)
] − (1) − . . . − (1) − [

(
n̄r

ār

)
] = [e1, . . . , eℓ] =

∆
Ω . Notice

that [
(
n̄r

ār

)
] could correspond to [2, . . . , 2] if d1 ̸= 0. Let us consider di1 , . . . , die

(the set of nonzero di) and write [bs, . . . , b1] = [. . . , bie , . . . , bie−1 , . . . , bi1 , . . .] with
i1 < i2 < . . . < ie. By definition, we have either n̄0

n̄0−ā0
= [b1, . . . , bie−1] when

ie > 1, or P̄0 is a smooth point. In any case, by Lemma 2.5 (3), we have

[. . . , bie , . . . , bie−1
, . . . , bi1 , . . .]− (1)− [

(
n̄0
ā0

)
] = [. . . , bie − 1, . . . , bie−1

, . . . , bi1 , . . .].

We continue with the following singularities, applying Lemma 2.5 (3) each time
since n̄p

n̄p−āp
= [b1, . . . , bik−1] for some k depending on p. We recall that ie > ie−1 >

. . . > i1, and so this contraction process makes sense. In this way, we arrive to

[. . . , bie − die , . . . , bie−1 − die−1 , . . . , bi1 − di1 , . . .],

and this is the zero continued fraction of the M-resolution. Therefore the original
chain is contractible, and it contracts to zero.

We now show that the δ̄i’s are indeed the ones from the algorithm. First we
know that there are no problems with δ̄i = 0, they obviously coincide. Let us
consider δ̄p corresponding to the break ik < ik+1. In the blowing-down process of
(2.3), consider the step

[. . . , bik+1
− dik+1

+ 1, . . . , bik , . . . , b1]− (1)− [

(
n̄p−1

āp−1

)
]− (1)− [

(
n̄p
āp

)
]− (1)− . . . .

This is about computing δ̄p for [
(
n̄p−1

āp−1

)
] − (1) − [

(
n̄p

āp

)
] = ∆′

Ω′ for some ∆′,Ω′.
The strategy is to compute δ̄p in this situation, and show that it coincides with our
definition. For that we compute the dual continued fraction ∆′

∆′−Ω′ . But then

[bik+1
− dik+1

+ 1, . . . , bik , . . . , b1]− (1)− ∆′

Ω′

is either 0 or we can complete it as

[yu . . . , y1, bik+1
− dik+1

+ 1, . . . , bik , . . . , b1]− (1)− ∆′

Ω′

to make it zero, where yj ≥ 2, and bik+1
− dik+1

+ 1 ≥ 2. Hence

∆′

∆′ − Ω′ = [b1, . . . , bik , . . . , bik+1
− dik+1

+ 1, y1, . . . , yu].

But this is the situation of an extremal N-resolution where we must subtract −1 in
positions ik and ik+1 to make it zero. Then the computation of δ̄p is identical to
what we did in Lemma 2.10.

To prove property (1) in Definition 1.8, we use Proposition 2.6. Note that when
we eliminate Wahl singularities in the N-resolution, we subtract 1 from the bip
from ie to i1, and that is exactly what we have in Proposition 2.6. □

Corollary 2.11. Every M-resolution has a unique associated N-resolution.
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Proof. We know this is true for r = 1 by Lemma 2.10. For r ≥ 2 we go by induction
on r. We have that Γ1 ∪ . . . ∪ Γr−1 is an M-resolution of 1

∆r−1
(1,Ωr−1), and so we

can apply induction for all singularities, deltas, and 1
∆i

(1,Ωi) except for n̄0, ā0. Let
∆r−1

Ωr−1
= [f1, . . . , ft]. Then we have [bs, . . . , b1]− (1)− [

(n′
0

a′
0

)
]− (1)− [f1, . . . , ft] = 0,

and this implies [
(n′

0

a′
0

)
] − (1) − [f1, . . . , ft] − (1) − [bs, . . . , b1] = 0, and so [

(n′
0

a′
0

)
] is

determined by 1
∆r−1

(1,Ωr−1) and 1
∆ (1,Ω). □

Example 2.12. Using the computer program [Z], we find all M-resolutions and N-
resolutions of the c.q.s. 1

85 (1, 49). We have 85
49 = [2, 4, 5, 2, 2], and 85

36 = [3, 2, 3, 2, 2, 4].
This c.q.s. has a deformation space with 5 irreducible components. For each of
them, we list the corresponding: zero continued fraction, dimension of the com-
ponent, the vector of the δi, the M-resolution, and the N-resolution.

[1, 2, 2, 2, 2, 1], dimension is 10, (0, 2, 3, 0, 0)
(2)− (4)− (5)− (2)− (2) (minimal resolution)
[
(
26
15

)
]− (1)− [

(
26
15

)
]− (1)− [

(
26
15

)
]− (1)− [

(
5
3

)
]− (1)− (2)

[2, 1, 3, 2, 2, 1], dimension is 8, (1, 7, 0, 0)
(2)− [

(
2
1

)
]− (5)− (2)− (2)

[
(
26
15

)
]− (1)− [

(
26
15

)
]− (1)− [

(
26
15

)
]− (1)− [

(
3
2

)
]− (1)

[1, 2, 3, 2, 1, 3], dimension is 6, (0, 8, 1)
(2)− (4)− [

(
3
1

)
]− (2)

[
(
26
15

)
]− (1)− [

(
19
11

)
]− (1)− (2)

[2, 2, 3, 1, 2, 4], dimension is 2, (5)
(2)− [

(
7
2

)
] (extremal P-resolution)

[
(
12
7

)
]− (1)

[3, 1, 3, 2, 1, 4], dimension is 2, (5)
[
(
3
2

)
]− (1)− [

(
4
1

)
] (extremal P-resolution)

[
(
19
11

)
]− (1)− [

(
3
2

)
]

3. BRAID GROUP ACTION ON WAHL RESOLUTIONS

Given a c.q.s.W , we will show how to connect the M-resolutionW+ and the N-
resolution W− by a sequence of antiflips, which are generators of the braid group
Br+1 action on the set of Wahl resolutions W → W with r + 1 Wahl singularities.
This action comes from natural operations on deformations of Wahl resolutions.

We first describe the action of B2 ≃ Z on extremal Wahl resolutions W → W ,
where either KW ·Γ1 > 0 (extremal P -resolutions), KW ·Γ1 < 0 (K-negative resolu-
tions), or KW ·Γ1 = 0 when δ1 = 0 (K-trivial resolutions). We will refer to the action
of a generator of B2 as the right antiflip and to its inverse as the left antiflip.

A Q-Gorenstein smoothing W → B of an extremal Wahl resolution W over a
smooth curve can be blown-down to a smoothing W → B of W . This gives a
threefold contractionW →W , which is KW -positive, KW -negative, or KW -trivial
depending on the three cases above. The antiflip is defined differently in each case.

Antiflips: K-positive case. Consider a Q-Gorenstein smoothingW+ → B of an
extremal P-resolution W+ over a smooth curve. One can ask if the morphism of
threefolds W+ → W given by blowing down the deformation admits an antiflip
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(a relative anticanonical model with terminal singularities). This was studied in
[HTU] following an earlier work of Mori, Kollár, and Prokhorov [M1], [KM], [M2],
[MP]. See [U, S. 2] for a summary of results. A terminal antiflip exists if and only if
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FIGURE 4. Universal family of antiflips (on the left)

of the extremal P-resolution (on the right)

the boundary divisor Γ0+Γ1+Γ2 ⊂W+ deforms inW+ and the axial multiplicities
at P0, P1 satisfy α2

0−δα0α1+α
2
1 > 0. Each antiflip is a Q-Gorenstein smoothing of a

K-negative extremal Wahl resolution W →W and each of them appears this way
for some W+. Terminal antiflips admit a universal family (see [HTU] for explicit
equations) illustrated in Figure 4 in a concrete example, where δ = 4.

Take an extremal P-resolution [
(
n0

a0

)
]−(c)−[

(
n1

a1

)
] (in our example [

(
3
2

)
]−(1)−[

(
5
2

)
])

and consider its Q-Gorenstein smoothingW+ with a vector of axial multiplicities
(α0, α1) in the first quadrant (see the right side of Figure 4). The corresponding
antiflip W exists if α2

0 − δα0α1 + α2
1 > 0. When (α0, α1) is in the interior of a 2-

dimensional cone σ of the fan F on the left side of Figure 4 then the special fiber
W ⊂ W is a K-negative extremal Wahl resolution. We ignore 1-dimensional cones
of F until Section 6, where they will become crucial in the proof of Prop. 6.1. The
fan F itself depends only on δ but it is decorated with data of Wahl singularities
(n, a) determined by certain recurrence relations. Decorations of the cone σ deter-
mine Wahl singularities of W . If δ1 > 1 then is infinite and excludes the region
α2
0−δα0α1+α

2
1 ≤ 0. In our example, we getK-negative extremal Wahl resolutions

with singularities with data [
(
5
2

)
]−(1)−[

(
23
10

)
], [
(
23
10

)
]−(1)−[

(
87
38

)
], etc. (see Figure 6).

Expressing (α0, α1) as a linear combination of generators of the cone σ ⊂ F gives
axial multiplicities of the anticanonical model (the smoothingW of W ).

There are two particular “initial” K-negative extremal Wahl resolutions W−
0

and W−
1 that correspond to cones adjacent to the boundary of the first quadrant.

Each of them preserves one of the Wahl singularities in W+ (including the case
of smooth points). To be precise, let −c1 be the self-intersection of the proper
transform of Γ1 is the minimal resolution of W+. The singularities of W−

0 are P̄0

and P̄1 = P0 with

n̄0 = δ1n0 + n1, ā0 = δ1a0 + a1 − (c1 − 1)n1 and n̄1 = n0, ā1 = a0. (3.1)

The singularities of W−
1 are P̄0 = P1 with n̄0 = n1, ā0 = a1 and P̄1 with n̄1 =

δ1n1 + n0, ā1 = δ1a1 + a0 + (c1 − 1)n0. The proper transform of Γ1,i ⊂ W−
i

for i = 0, 1 in the minimal resolution is a (−1)-curve, and δ̄1 = δ1 in both cases.
We refer to W−

0 → W as the right antiflip (or just the antiflip) of an extremal P -
resolution W+ →W and to W−

1 →W as the left antiflip. By Lemma 2.10, the right
antiflip is the N-resolution of the extremal P-resolution.
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FIGURE 5. Initial negative extremal Wahl resolutions

Given Q-Gorenstein smoothings W−
i of W−

i (i = 0, 1) over smooth curves Bi,
the blow-down deformations (Γ1,i ⊂ W−

i )→ (P ∈ Wi) are birational contractions
of KW−

i
-negative curves of flipping type (k2A extremal neighborhoods [HTU]).

The flipsW−
i 99KW

+
i give Q-Gorenstein smoothingsW+

i → Bi of the same central
fiber W+. In particular, general fibers of W−

i and W+
i are isomorphic for each i.

The curves B0, B1 are from the same component of DefP∈W
2.

Antiflips: K-negative case. Antiflips of K-negative extremal resolutions W
correspond to counter-clockwise and clockwise rotations in Figure 4 through the
sequence of two-dimensional cones of the fan F . The right (resp. left) antiflip of a
K-negative extremal resolution [

(
n0

a0

)
]− (1)− [

(
n1

a1

)
] different from W−

1 (resp. W−
0 )

is a K-negative extremal resolution [
(n′

0

a′
0

)
] − (1) − [

(n′
1

a′
1

)
] such that [

(
n0

a0

)
] = [

(n′
1

a′
1

)
]

(resp. [
(n′

0

a′
0

)
] = [

(
n1

a1

)
]). Their Q-Gorenstein smoothings blow-down to smoothings

of W from the same irreducible component of DefP∈W . For example, universal
family of Figure 4 gives a sequence of right antiflips in Figure 6 infinite in both
directions. The right (resp. left) antiflip of W−

1 (resp. W−
0 ) is actually a flip.
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FIGURE 6. Right antiflips of extremal Wahl resolutions.

Antiflips: K-trivial case. Here W+ is [
(
n
a

)
]− (1)− [

(
n
a

)
] (unless n = 1 in which

case it is a (−2)-curve with two smooth points) and W = 1
2n2 (1, 2na − 1) [BC].

The blow-down W of a Q-Gorenstein smoothing W+ of W+ is a Q-Gorenstein
smoothing of W . The contractionW+ → W is crepant and can be flopped giving
a threefoldW− (which we call an antiflip ofW+) with a central fiber W− ≃ W+

(see [BC] or [K1, S. 5]), which we call an antiflip of W+ in the K-trivial case.

2The threefolds W−
i are anticanonical models of W+

i for i = 0, 1. Since anticanonical models are
unique (whenever they exist), we see that curves B0 and B1 are necessarily different.
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Before we consider the action of the braid group Br+1 on r + 1 strands, we
address some global questions, namely existence of “good” divisors Γ0 and Γr+1

and vanishing of local-to-global obstructions to deformations of Wahl resolutions.

Lemma 3.1. Let P ∈ W be a c.q.s. surface satisfying Assumption 1.10 (1), (3). We can
choose effective, smooth divisors Ā and ˜̄A such that the germ P ∈ (Ā ∪ ˜̄A) ⊂ W is etále-
locally isomorphic to the germ 0 ∈ (x = 0) ∪ (y = 0) ⊂ C2/µ∆. Proper transforms Γ0 of
Ā and Γr+1 of ˜̄A in any Wahl resolution W of W intersect the chain Γ1 ∪ . . .∪Γr only at
the end-points P0 and Pr, where they give toric boundaries opposite to Γ1 (resp. Γr).

Proof. We start by choosing Ā to be a Weil divisor generating the local class group
of P ∈ W . We can make it effective by adding a sufficiently ample Cartier di-
visor H . Then ∆ · Ā is Cartier and effective. We can add another multiple of
H to make ∆ · Ā base-point-free. By Bertini theorem, we can find a smooth di-
visor D ∈ |∆ · Ā| which does not pass through P . Consider a cyclic cover π :

Ŵ = SpecW

∆−1⊕
k=0

OW (−kĀ) → W , where we use the canonical section sD ∈

H0(W,OW (D)) to define the algebra structure using the map OW (−∆ · Ā) sD→OW

(see [KK] for a theory of cyclic covers). Then Ŵ is smooth and W = Ŵ/µn. More

precisely, π∗OŴ =
∆−1⊕
k=0

OW (−kĀ) is an eigenvalue decomposition with respect to

a primitive root ζ ∈ µ∆, where ζ acts on OW (−kĀ) with weight ζ−k. The cover
is branched over D, where it is locally given by (x, y) 7→ (x, y∆), where y = 0 is a
local equation of D, and over P , where P̂ = π−1(P ) is a smooth point and ζ acts
on the tangent space of P̂ with eigenvalues (ζa, ζ ã), where a and ã are coprime
to ∆. Then µn acts on H0(Ŵ , π∗H) with eigenspaces H0(W,OW (H − kĀ)) for
k = 0, . . . ,∆− 1. The µ∆-action is free everywhere else.

Required divisorsA, Ã onW can be found as equivariant sections ofH0(Ŵ , π∗H)
with eigenvalues (ζa, ζ ã). We require them to be smooth (in particular they restrict
to given µ∆-eigenspaces in the tangent space of P̂ ) and be transversal to the branch
divisor π−1(D). We claim that these divisors exist if H is sufficiently ample. Since
these geometric conditions on global sections are open (in fixed µ∆-eigenspaces of
H0(Ŵ , π∗H)), it suffices to prove that there exist sections as above having required
geometric properties in finitely many equivariant affine charts Uα that cover Ŵ
and equivariantly trivialize O(π∗H). Since π∗H is ample, any local section of
OŴ (Uα) is a restriction of a global section of π∗(kH) for a sufficiently large k. So it
suffices to prove that there exist equivariant sections of OŴ (Uα) which have re-
quired geometric properties, which is clear. For example, in the equivariant affine
chart containing P̂ , we can take any equivariant regular function that restricts to
the given eigenspace in the tangent space of P̂ , and in particular is smooth at P̂ ,
and then shrink the affine neighborhood to make it smooth everywhere in it. □

Lemma 3.2. Let π : W →W be a c.q.s. resolution satisfying Assumption 1.10.
(1) We can choose divisors Γ0 and Γr+1 as in Lemma 3.1 so that there are no local-to-

global obstructions to deformations of a pair (W,∆), where ∆ is the boundary Γ0 +
Γ1 + . . .+ Γr + Γr+1, i.e. the morphism Def(W,∆) →

∏
Pi∈W

DefPi∈(W,∆) is smooth.

(2) IfW is a Wahl resolution then there are no local-to-global obstructions to Q-Gorenstein
deformations of W or (W,∆), for example there exists a Q-Gorenstein smoothing
Y ⇝W with a lifting of ∆ for any choice of axial multiplicities α0, . . . , αr.

Proof. The versal Q-Gorenstein deformation a Wahl singularity 1
n2 (1, na − 1) is

(xy = zn + t) ⊂ 1
n (1,−1, a, n), where t is a deformation parameter and xy = 0 is



16 JENIA TEVELEV AND GIANCARLO URZÚA

the local equation of ∆. So the morphism DefQG
Pi∈(W,∆) → DefQG

Pi∈W is obviously
smooth and we only need to prove the first statement.

We have a subsheaf TW (− log
r∑

i=1

Γi) ⊂ TW of derivations that preserve ideal

sheaves of Γ1, . . . ,Γr. It is well-known that Rπ∗TW (− log
r∑

i=1

Γi) is a subsheaf of

TW with the quotient sheaf supported at P ∈ W 3. By Assumption 1.10 (4), it fol-

lows thatH2(W,TW (− log
r∑

i=1

Γi)) = H2(W,TW ) = 0. Since the sheaf TW (− log
r∑

i=1

Γi)

is the sheaf of infinitesimal automorphisms of the pair (W,Γ1+ . . .+Γr), it follows
that there are no local-to-global obstructions to deformations of the pair.

We need to find Γ0 and Γr+1 that satisfy Lemma 3.1 and cohomology vanishing
H2(W,TW (− log∆)) = 0. Let q : W → W be an orbifold stack associated to W .

An exact sequence 0→TW (− log
r+1∑
i=0

Γi)→TW (− log
r∑

i=1

Γi)→NΓ0/W
⊕NΓr+1/W→

0 on W pushes forward to 0 → TW (− log∆) → TW (− log
r∑

i=1

Γi) → F ⊕ F̃ → 0,

where F (resp. F̃ ) is a sheaf supported on Γ0 (resp. Γr+1). It suffices to prove that
H1(Γ0, NΓ0/W

) = H1(Γr+1, NΓr+1/W ) = 0. Pushing forward an exact sequence
0 → OW → OW (Γ0) → NΓ0/W

→ 0, and using Assumption 1.10 (2), it suffices
to prove that H1(W,OW (Γ0)) = 0. This holds after twisting Γ0 with a sufficiently
ample Cartier divisor H in Lemma 3.1. The same proof works for Γr+1. □

We will define the action of generators of Br+1 on Wahl resolutions with r + 1
singularities by treating every irreducible curve in its exceptional divisor as an
extremal Wahl resolution. Relations of the braid group are checked in Theorem 3.9.

Definition 3.3. Let W → W be a Wahl resolution with exceptional divisor Γ1 ∪
. . . ∪ Γr and toric boundaries Γ0 and Γr+1 as in Lemmas 3.1 and 3.2. The neigh-
borhood of Γi ⊂W contains a subchain [

(
ni−1

ai−1

)
]− (ci)− [

(
ni

ai

)
] of an extremal Wahl

resolution. The contractionW →Wi of Γi ⊂W gives a c.q.s. surface. The image of
Γi is a c.q.s. 1

∆Γi
(1,ΩΓi

), which has as toric boundary the image of Γi−1 and Γi+1.
By Lemma 3.2, we can choose two deformations of Wi (the same ones if the ex-
tremal resolution is a P-resolution or a K-trivial resolution) which (1) are equisin-
gular at singularities of Wi other than 1

∆Γi
(1,ΩΓi), (2) lift the boundary of Wi, and

(3) smoothen 1
∆Γi

(1,ΩΓi) as in the discussion of antiflips of extremal Wahl resolu-
tions in the beginning of this section. These deformations of Wi are blow-downs
of Q-Gorenstein deformations of W and another Wahl resolution Ri(W ) → W ,
respectively. We call Ri(W ) the right antiflip of W → W at Γi. The left antiflip is
defined is a similar way. The singularities of Ri(W ) and Li(W ) are the same as for
W except at the positions i−1 and i, where we have the singularities produced by
the antiflip of an extremal Wahl resolution [

(
ni−1

ai−1

)
]− (ci)− [

(
ni

ai

)
].

Corollary 3.4. Given a sequence of Wahl resolutions W0,W1, . . . ,Wk → W with Wahl
chains Γj

0, . . . ,Γ
j
r+1 for j = 0, . . . , k, suppose Wi = Rli(Wi−1) for i = 1, . . . , k.

3It suffices to prove that Rkπ∗TW (− log
r∑

i=1
Γi) = 0 for k > 0. We work in a toric etále neigh-

borhoods of P ∈ W and its partial resolution Γ1 + . . . + Γr ⊂ W . Then Rkπ∗TW (− log∆) = 0
for k > 0 because TW (− log∆) ≃ OW ⊗ C2 in this etále neighborhood. We have an exact sequence

0 → TW (− log∆) → TW (− log(
r∑

i=1
Γi)) → F → 0, where F is supported on Γ0 ∪ Γ̃r+1. Then

Rkπ∗F = 0 for k > 0 and we have a required vanishing.
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(1) There is a sequence of Q-Gorenstein smoothings Yi ⇝ Wi for i = 0, 1, . . . , k over
smooth curve germs Bi that belong to the same component of DefP∈W .

(2) If KWi−1
· Γi−1

li
≥ 0 for i = 1, . . . , k, i.e. on every step we antiflip an extremal P-

resolution or a K-trivial resolution, then we can assume that B1 = . . . = Bk = B
is the same curve in DefP∈W and (Wi−1 ⊂ Wi−1) → (0 ∈ B) is the flip (or flop)
of (Wi ⊂ Wi) → (0 ∈ B) for all i = 1, . . . , k with respect to the contraction of
Γi
li
⊂Wi. In particular, the smooth fibers Yi of these families are isomorphic.

Proof. (1) is clear. To prove (2), choose a Q-Gorenstein smoothing (Wk ⊂ Wk) →
(0 ∈ B) over a smooth curve germ B with all axial multiplicities equal to 1, which
exists by Lemma 3.2. Then we apply a sequence of flips (or flops if δili = 0) to
contractions of Γi

li
⊂ Wi for i = k, k − 1, . . . , 1. □

Proposition 3.5. Let W → W be a Wahl resolution with a chain of 3 curves Γ1,Γ2,Γ3,
and singularities P0, P1, P2, P3 where the type of Pi is 1

n2
i
(1, niai − 1). Consider W ′ :=

R2(W ) the right antiflip of W → W at Γ2. Hence we have a Wahl resolution W ′ → W
with a chain of 3 curves Γ′

1,Γ
′
2,Γ

′
3, and singularities P ′

0 = P0, P
′
1, P

′
2 = P1, P

′
3 = P3.

Let δ′i = n′i−1n
′
i |KW ′ · Γ′

i|. Then we have the following three situations:

(-/-): Γ2 ·KW < 0 and Γ′
2 ·KW ′ < 0.

(1) n′1 = δ2n1 − n2, a′1 = δ2a1 − a2, n′2 = n1, a′2 = a1, δ′2 = δ2.
(2) n′0n′1 Γ′

1 ·KW ′ = ±δ1(δ2n1−n2)+δ2n0

n1
, where ± is the sign of KW · Γ1.

(3) n′2n′3 Γ′
3 ·KW ′ = ±δ3n1−δ2n3

n2
, where ± is the sign of KW · Γ3.

(-/+): Γ2 · KW < 0 and Γ′
2 · KW ′ > 0. Let −c′2 be the self intersection of the proper

transform of Γ′
2 in the minimal resolution of W ′.

(1) n′1 = n2 − δ2n1, a′1 = a2 − δ2a1 − (c′2 − 1)n′1, n′2 = n1, a′2 = a1, δ′2 = δ2, and
δ′2 = (c′2 − 1)n′1n1 + n1a

′
1 − n′1a1.

(2) n′0n′1 Γ′
1 ·KW ′ = ±δ1(n2−δ2n1)−δ2n0

n1
, where ± is the sign of KW · Γ1.

(3) n′2n′3 Γ′
3 ·KW ′ = ±δ3n1−δ2n3

n2
, where ± is the sign of KW · Γ3.

(+/-): Γ2 · KW ≥ 0 and Γ′
2 · KW ′ ≤ 0. Let −c2 be the self intersection of the proper

transform of Γ2 in the minimal resolution of W .
(1) n′1 = δ2n1 + n2, a′1 = δ2a1 + a2 − (c2 − 1)n2, n′2 = n1, a′2 = a1, δ′2 = δ2.
(2) n′0n′1 Γ′

1 ·KW ′ = ±δ1(δ2n1+n2)+δ2n0

n1
, where ± is the sign of KW · Γ1.

(3) n′2n′3 Γ′
3 ·KW ′ = ±δ3n1+δ2n3

n2
, where ± is the sign of KW · Γ3.

In particular, we have in all cases that

KW · Γ1 = KW ′ · (Γ′
1 + Γ′

2) and KW ′ · Γ′
2 = KW · (Γ1 + Γ2).

Proof. We only prove the case (+/-), the others follow similar computations. The
new singularities P ′

1, P ′
2 in (1) are computed by the formulas (3.1). In particular

δ′2 = δ2. To find δ′1 and δ′3, we contract Γ2 ⊂ W and Γ′
2 ⊂ W ′, and do intersection

theory on the singular surfaces involved. We will only compute δ′1.
Let π : W → W̃ and π′ : W ′ → W̃ be the contractions of Γ2 ⊂ W and Γ′

2 ⊂
W ′ respectively. We have KW ≡ π∗(KW̃ ) − ε+Γ2, and KW ′ ≡ π′∗(KW̃ ) + ε−Γ

′
2.

Intersection with Γ2 and Γ′
2 gives ε+ = δ2n1n2

∆̃
and ε− =

δ2n1n
′
2

∆̃
, where ∆̃ = n21 +

n22+δ2n1n2. AsKW ′ ·Γ′
1 =

±δ′1
n0n′

1
, we use both of the previous equations to intersect

with Γ′
1, and we find (2). We note that KW · Γ1 > 0 implies KW ′ · Γ′

1 > 0. □

Lemma 3.6. Let W0 → W be a Wahl resolution. Then we have the braid relation
R2R1R2(W0) = R1R2R1(W0).
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Proof. We have in principle 7 distinct surfaces in this proof: W0, R2(W0) = W1,
R1(W1) = W2, R2(W2) = W3, R1(W0) = W ′

1, R2(W
′
1) = W ′

2, and R1(W
′
2) = W ′

3.
We want to show that W3 = W ′

3. For each Wi → W we have a chain of 2 curves
Γ1,i,Γ2,i, singularities P0,i, P1,i, P2,i, and δj,i. We have the analogue notation with
’ for the Wahl resolutions W ′

i →W .
By Proposition 3.5, we have that

KW0
· Γ1,0 = KW1

· (Γ1,1 + Γ2,1) = KW2
· Γ2,2.

We also have that P0,0 = P1,2 and P1,0 = P2,2. Therefore the antiflipping of Γ1,0 is
equal to the antiflipping of Γ2,2, and so P1,3 = P ′

1,3 and P2,3 = P ′
2,3. Morover, by

Proposition 3.5 again, we have

KW ′
1
· Γ′

1,1 = KW ′
2
· (Γ′

1,2 + Γ′
2,2) = KW3

· Γ′
2,3,

and Γ1,1 is the antiflip of Γ1,0. Hence the contraction of Γ′
2,3 and Γ2,3 define the

same c.q.s and have same δ.
Recall that W3 → W and W ′

3 → W contract the Wahl chain to the same c.q.s.
On the other hand, as Γ′

2,3 and Γ2,3 contract to the same c.q.s., we also have that
Γ′
1,3 and Γ1,3 contract to the same c.q.s. They are both extremal Wahl resolutions

over the same c.q.s., and so, since c.q.s. at most have two extremal P-resolutions
with the same δ [HTU], we have that δ1,3 = δ′1,3. Moreover, since P1,3 = P ′

1,3, we
have that P0,3 = P ′

0,3. Therefore we obtain R2R1R2(W0) = R1R2R1(W0). □

We will describe the sequence of right antiflips W0,W1,W2 . . . that terminates
with a N-resolution of a given M-resolution W0 := W+ → W with r + 1 singu-
larities. For r = 1, the N-resolution is equal to the right antiflip of an extremal
M-resolution by Lemma 2.10.

Proposition 3.7. If r = 2, then we arrive to the N-resolution after applying three right
antiflips as shown in Figure 7, whereR2(W0) =W1,R1(W1) =W2, andR2(W2) =W3.
In this way, by Lemma 3.6, we have W− = R2R1R2(W0) = R1R2R1(W0).
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FIGURE 7. The antiflipping process for 3 singularities

Proof. We will do the explicit computation following Prop. 3.5. We first antiflip at
Γ2,0 ⊂W0 as in Figure 7. By Prop. 3.5 we have that Γ1,1 ·KW1 = δ1δ2n1+δ1n2+δ2n0

n1n0n̄2
≥

0 using the notation in Figure 7. Next we antiflip at Γ1,1 ⊂W1. By using Prop. 3.5,
one can verify that Γ2,2 · KW2 = δ1

n0n1
≥ 0. Finally, we antiflip at Γ2,2 ⊂ W2. We

compute using Prop. 3.5 that Γ1,3 ·KW3
= − δ2

¯̄n2n̄1
. Moreover the c.q.s. contraction

of Γ1,0 in W0 is the c.q.s. of the contraction of Γ2,2 in W2, which is the c.q.s. of the
contraction of Γ2,3 inW3. HenceR2R1R2(W0) is the N-resolution by Definition 1.8.

□
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Theorem 3.8. After applying r(r + 1)/2 right antiflips of curves contained in the Wahl
resolutions starting with W+ → W , we get the corresponding N-resolution W− → W .
On every step, we antiflip either an extremal P-resolution or a curve with δ = 0.

Proof. The proof goes by induction on r. By Lemma 2.10, Prop. 3.7, we have it
for r = 1, 2. Let us say we have it for r. Consider an M-resolution W+ → W
with the exceptional divisor Γ1 ∪ . . . ∪ Γr+1. We know that there is a unique N-
resolution W− →W of W+ →W with curves Γ̄1, . . . , Γ̄r+1 and singularities n̄i, āi
for i = 0, . . . , r with δ̄i.

We note that the N-resolution for the contraction of the chain Γ1 ∪ . . .∪Γr ⊂W
to some c.q.s. has the same n̄i, āi for i = 0, . . . , r−1, and same δ̄i for i = 1, . . . , r−1
as the N-resolution W−. This is just part of the algorithm to find the N-resolution.

Let us first antiflip the curves Γr+1, . . . ,Γ1 in that order, starting with W0 =

W+ → W an ending with Wr+1 → W . Then by using Proposition 3.7 for each
consecutive pair Γi,Γi+1, where we have only the first two flips in Figure 7 for
each pair, we have
• ni+1,r+1 = ni, ai+1,r+1 = ai for i = 0, . . . r,
• δi+1,r+1 = δi for i = 1, . . . r,
• The Wahl-chain Γ2,r+1, . . . ,Γr+1,r+1 is an M-resolution, and
• Γ1,r+1 ·KWr+1

≤ 0.
So we have that Γ2,r+1, . . . ,Γr+1,r+1 is an M-resolution isomorphic to Γ1, . . . ,Γr.

We now apply induction on this chain, to obtain via r(r − 1)/2 antiflips its unique
N-resolution. As it was said above, the n̄i, āi coincide with the ones of W− → W ,
and the only missing part is the first singularity and the intersection with with
canonical class of the first curve. In this way, we have a new Wahl-resolution with
r + 1 curves W̃ →W , and we want to prove it is indeed the N-resolution.

At this point, we do not know about ñ0, ã0 and δ̃0. The corresponding curve Γ̃1

may be positive or negative for canonical class. But we now reverse the continued
fractions for W̃ →W and for W− →W , and after contracting we get a

[

(
ñ0

ñ0 − ã0

)
]− (c)− [

(
n̄1

n̄1 − ā1

)
]− (1)− [some c.q.s.] = 0

[

(
n̄0

n̄0 − ã0

)
]− (1)− [

(
n̄1

n̄1 − ā1

)
]− (1)− [some c.q.s.] = 0

over the same c.q.s. But then δ’s must be equal, as we are in the case of an extremal
P-resolution and/or extremal N-resolution over the same c.q.s., and so we can
apply [HTU]. Moreover, they share a Wahl singularity in the same position, then
they must be equal (singularity and sign of intersection with canonical class). □

Theorem 3.9. The operations of right antiflips Ri on Wahl resolutions W → W with
r + 1 singularities satisfy braid relations RiRj = RjRi for i > j + 1 and RiRi+1Ri =
Ri+1RiRi+1. In particular, they give the action of the braid group Br+1.

Proof. For the relationRiRj = RjRi we just note that i−j ≥ 2, and so the birational
operations Ri, Rj on W commute. Indeed, the only scenario to consider is when
i = j+2, in which case we still need to show that the (j+1)-st curves in RiRj(W )
RjRi(W ) have the same self-intersections in the minimal resolutions. But since all
other data is the same, this follows from the fact that both of them resolve W .

For the other relation, we first note that the curves at i and i + 1 positions of
RiRi+1Ri(W ) and Ri+1RiRi+1(W ) have the same subWahl chain by Lemma 3.6.
Hence for the whole Wahl chains in RiRi+1Ri(W ) and Ri+1RiRi+1(W ) we have
the same singularities. We only need to check the effect on the curves in positions
i − 1 and i + 2, since in their complement we have equal Wahl subchains. Let [A]
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be the continued fraction for the minimal resolution of the chain from 0 to i − 2,
let [B] be the one for the chain from i to i+ 1, and let [C] be continued fraction for
the chain from i+ 3 to r. Then we are in the situation

[A]− (u)− [B]− (v)− [C] = [A]− (u′)− [B]− (v′)− [C]

as continued fractions for the Wahl chains in RiRi+1Ri(W ) and Ri+1RiRi+1(W ),
since both contract to 1

∆ (1,Ω). We want u = u′ and v = v′. Using the represen-
tation of continued fractions as multiplications of 2× 2 matrices, we simplify that
equation into (u) − [B] − (v) = (u′) − [B] − (v′). But as continued fractions this
means that u− 1

[B,v] = u′− 1
[B,v′] , and if u ≥ u′, then (u− u′)− 1

[B,v] = −
1

[B,v′] . But
1

[B,v′] > 0, and so (u − u′) − 1
[B,v] < 0, but then u = u′. Hence v = v′. Therefore

Wahl chains are equal. □

Corollary 3.10. Every Wahl resolution W → W is in the braid group orbit of a unique
M -resolution W+ →W .

Proof. By definition of a Wahl resolution, it has a Q-Gorenstein smoothing Y ⇝W

that blows down to a smoothing Y ⇝ W . LetW be its total space. If KW · Γi < 0
for one of the curves Γi ⊂ W then its contraction W → Wi is a k2A extremal
neighborhood of flipping type and can be flipped toW ′ → Wi. By the discussion
from the beginning of this section, the special fiber W ′ ⊂ W ′can be obtained from
W via a sequence of antiflips at the same i-th curve.

The indices of the Wahl singularities corresponding to Γ′
i ⊂ W ′ are always less

than or equal to the indices of the Wahl singularities corresponding to Γi ⊂W , and
one of these new indices is strictly smaller. Indeed, as in Figure 5, the first right
or left antiflip behaves like that. If δi = 1, then there are no more k2A antiflips. If
δi > 1, then there are infinitely many antiflips with indices nk > nk−1 which satisfy
the recurrence nk−1 + nk+1 = δink, and so indices form an increasing sequence.

Then we can pick another K-negative curve in W ′ and iterate the process. If
we arrive to a surface with no Wahl singularities, then it must be the minimal
resolution of W , as any (−1)-curve in the Wahl chain would produce a divisorial
contraction blow-down deformation ofW , and this is not allowed by the minimal-
ity assumption on Wahl resolutions.

Therefore, as the set of indices in the Wahl chain strictly decreases at least one of
them for each flip, we have that this process eventually gives a M -resolution W+.
(Alternatively, any sequence of flips in dimension 3 terminates.) Since W+ has a
Q-Gorenstein smoothingW+ in the same irreducible component of DefP∈W asW ,
the M-resolution W+ is uniquely determined. □

4. DERIVED CATEGORY OF A C.Q.S. SURFACE FOLLOWING [KKS]

Notation 4.1. We fix a c.q.s. surface W that satisfies Assumption 1.10 (1), (2), (3).
We do not need the singularities to be Wahl or the chain Γ1, . . . ,Γr to be con-
tractible. In fact, a weaker condition than Assumption 1.10 (3), is sufficient in Sec-
tions 4 and 5 except in Corollaries 4.7 and 5.6: there exists a Weil divisor A ⊂ W ,
which is Cartier outside of P0 and generates the local class group Cl(P0 ∈ W ).
Then Ã = −KW − Γ1 − . . . − Γr − A is Cartier outside of Pr and generates
Cl(Pr ∈W ).

Consider the following Weil divisors on W :

D0 = A, D1 = A+ Γ1, . . . , Dr = A+ Γ1 + . . .+ Γr. (4.1)

If all points P0, . . . , Pr are smooth then this gives a well-known exceptional col-
lection OW (D0),OW (D1), . . . ,OW (Dr). But if some points are singular then this
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collection of divisorial sheaves is typically not exceptional. Indeed, if i > j then

RΓHom(OW (Di),OW (Dj)) = RΓOW (−Γj+1 − . . .− Γi)) = 0 (4.2)

because of the short exact sequence

0→ OW (−Γj+1 − . . .− Γi)→ OW → OΓj+1∪...∪Γi → 0.

However, if i > k > j and Pk is not Gorenstein (i.e. not an As singularity) then
Ext1(OW (Di),OW (Dj)) ̸= 0. This follows from (4.2), the local-to-global spectral
sequence for Ext and the fact that Ext1OW,Pk

(OW,Pk
(Γk + Γk+1),OW,Pk

) ̸= 0:

Lemma 4.2. Let (p ∈ Z) be a germ of a non-Gorenstein c.q.s. with toric boundary divisors
Γ,Γ′ ∈ Cl(p ∈ Z). Then Ext1(OZ,p(Γ + Γ′),OZ,p) ̸= 0.

Proof. Let R = OZ,p. Note that Γ + Γ′ ∼ −KZ in Cl(p ∈ Z). Since −KZ is not
Cartier, M = OZ,p(Γ + Γ′) is not a projective R-module. Thus we have a non-
split Auslander–Reiten exact sequence [A] 0 → τ(M) → NM → M → 0, where
τ(M) = (M ⊗ ωZ)

∨∨ = R. Thus Ext1(M,R) ̸= 0. □

Fortunately, orthogonality holds for the “reversed” collection

OW (−Dr), . . . ,OW (−D1), OW (−D0), (4.3)

which therefore is essentially a unique choice that works for singular surfaces.
Indeed, the next result appears almost verbatim in [KKS, Th. 2.12].

Definition 4.3. Let Z be a projective variety. A s.o.d. Db(Z) = ⟨A0, . . . ,Ar,B⟩ is
called a Kawamata decomposition if every subcategory Ai for i = 0, . . . , r is classi-
cally generated by a maximal Cohen-Macaulay sheaf and B ⊂ Dperf(Z).

Proposition 4.4. For i = 0, . . . , r, let AW
i ⊂ Db(W ) be a triangulated subcategory

classically generated by OW (−Di). Then we have a Kawamata decomposition

Db(W ) = ⟨AW
r , . . . ,AW

0 ,BW ⟩, (4.4)

so that BW ⊂ Dperf(W ), as well as an s.o.d.

Db(W ) = ⟨B̃W ,AW
r , . . . ,AW

0 ⟩ (4.5)

with the property that DW (B) is perfect4 for every B ∈ B̃W .

Remark 4.5. A coherent sheaf F on a noetherian scheme X is called maximal
Cohen-Macaulay (mCM) if depthOX ,x

Fx = dimOX ,x for every x ∈ X [BH]. If F
is mCM and OX ,x is regular then Fx is locally free (since it has projective dimen-
sion 0 by the Auslander–Buchsbaum formula). If F is mCM then F is reflexive,
which implies that F is torsion-free (these notions are equivalent to mCM in di-
mension 2 and 1, respectively). If F is mCM and i : D ↪→ X is an effective Cartier
divisor then i∗F is mCM onD. If X is CM with a dualizing sheaf ω then F is mCM
if and only if Extp(F , ω) = 0 for p > 0. And thenHom(F , ω) is mCM.

Proof of Prop. 4.4. First we check orthogonality. Let i > j and p > 0. For k > j,

Extp(OW,Pk
(−Dj),OW,Pk

(−Di)) ≃ Extp(OW,Pk
,OW,Pk

(−Di)) = 0

by obvious reasons and for k < i,

Extp(OW,Pk
(−Dj),OW,Pk

(−Di)) ≃ Extp(OW,Pk
(−Dj), ωW,Pk

) = 0

becauseOW (−Dj) is reflexive and therefore mCM. By (4.2), this impliesO(−Di) ⊂
⟨O(−Dj)⟩⊥ and therefore Ai

W ⊂ (Aj
W )⊥. Next we borrow analysis from [KKS].

Let X be the resolution of singularities of W with exceptional divisors E1
i +

. . . + Emi
i over each Pi ∈ W . Let ΓX

i ⊂ X be the proper transform of Γi ⊂ W

4We denote by DX = RHom(·, ω•
X ) the duality functor on a noetherian scheme X .
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for i = 1, . . . , r and let DX
0 be the proper transform of A. Define divisors DX

i for
i = 1, . . . , r inductively as follows: DX

i = DX
i−1 +E1

i + . . .+Emi
i +ΓX

i . This gives
a s.o.d. Db(X) = ⟨BX ,AX

r , . . . ,AX
0 ⟩, where

AX
i = ⟨O(−DX

i − E1
i − . . .− E

mi
i ), . . . ,O(−DX

i − E1
i ),O(−DX

i )⟩.
The pushforward of this s.o.d. to W was studied in [KKS]:

(1) AX
i is classically generated by O(−DX

i ) and sheaves OEl
i
(−1), 1 ≤ l ≤ mi.

Indeed,DX
i ·E1

i = 1 andDX
i ·E

j
i = 0, so for k = 1, . . . ,mi we have exact sequences

0→ O(−DX
i − E1

i − . . .− Ek
i )→ O(−DX

i − E1
i − . . .− E

k−1
i )→ OEk

i
(−1)→ 0.

(2) By [KKS, Th. 2.12], we have a s.o.d.

Db(W ) = ⟨Rπ∗BX , Rπ∗AX
r , . . . , Rπ∗AX

0 ⟩, (4.6)

whereRπ∗BX is equivalent to BX andRπ∗AX
i is equivalent to the Verdier quotient

AX
i /⟨OEl

i
(−1)⟩1≤l≤mi . In particular, it is classically generated by Rπ∗O(−DX

i ).
(3) Set D̄X

i = DX
i + E1

i + . . .+ Emi
i . Then Rπ∗O(−DX

i ) = Rπ∗O(−D̄X
i ) and

−D̄X
i · Ek

j =


0, j > i

−1− (Emi
i )2, j = i, k = mi

−2− (Ek
j )

2, otherwise.

By [KKS, Cor. 6.2], Rπ∗O(−D̄X
i ) = π∗O(−D̄X

i ) is a reflexive sheaf OW (−Di). This
gives an s.o.d. (4.5) with B̃W = Rπ∗BX .

(4) Let B ∈ B̃W and write B = Rπ∗B
X , BX ∈ BX . Let i : E ↪→ X be a

component of the exceptional divisor of π. By coherent duality, DX(Ri∗OE(−1)) =
Ri∗DP1(OE(−1)) = Ri∗OE(−1)[−1]. Since RHom(Ri∗OE(−1), BX) = 0 by (1)
above, it follows that RHom(DX(BX), Ri∗OE(−1)) = 0. By [KKS, Lemma 2.5],
this implies that DW (B) = Rπ∗DX(BX) is perfect.

(5) To finish the proof, consider divisors KW +Di = −Ã − Γr − . . . − Γi+1 for
i = 0, . . . , r, where Ã is as in Assumption 1.10. Arguing as above, we get an s.o.d.

Db(W ) = ⟨B, ⟨ωW (D0)⟩, . . . , ⟨ωW (Dr)⟩⟩, (4.7)

where DW (B) is perfect for every B ∈ B. Applying the duality anti-equivalence
DW to the s.o.d. (4.7) gives the Kawamata decomposition (4.4). □

Remark 4.6. The proof shows that duality functor DW takes the s.o.d. (4.4) to the
s.o.d. (4.7), where ωW (Di) ≃ OW (−Ã− Γr − . . .− Γi+1) for every r = 0, . . . , r.

Corollary 4.7. Let π : W → W be a c.q.s. resolution of a surface with a single c.q.s. P
satisfying Assumption 1.10 (1), (2), (3). Then s.o.d.’s (4.4) and (4.5) for W and W are
compatible via Rπ∗, that is Rπ∗⟨AW

r , . . . ,AW
0 ⟩ = AW and BW (resp. B̃W ) is equivalent

to BW (resp. B̃W ) via Rπ∗. Also, BW = Lπ∗BW .

Assumption 1.10 (3) implies that proper transforms Γ0 (resp. Γr+1) of Ā ⊂ W

(resp. ˜̄A ⊂ W ) in W of W intersect the chain Γ1 ∪ . . . ∪ Γr only at P0 (resp. Pr),
where they are equivalent to toric boundaries opposite to Γ1 (resp. Γr). So the
corollary follows from the proof of Prop. 4.4 since the minimal resolution of W
is also a resolution of W and the s.o.d.’s (4.4) and (4.5) defined using (4.6) are
compatible. It generalizes [KKS, Th. 2.12] (which is the special case of Corollary 4.7
whenW = X is a smooth resolution ofW ). It shows that we can view the category
⟨AW

r , . . . ,AW
0 ⟩ as a partial resolution of singularities of the category AW .

Definition 4.8. Let Z → B = SpecB be a morphism to an affine scheme, let F
be a coherent sheaf on Z , and let R ⊂ End(F) be a finite B-algebra. There is a
functor of abelian categories ⊗RF : R-Mod → Qcoh(Z), which takes a R-module
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M = Coker(RI ϕ→RJ) to M ⊗R F := Coker(FI ϕ→FJ). We denote its left derived
functor by ⊗L

RF : D(R-Mod) → D(Qcoh(Z)) and the corresponding homological
functors by TorjR(·,F) : R-Mod → Qcoh(Z). We call ⊗RF bounded if, for every
f.g. R-module M , TorjR(M,F) = 0 for j ≫ 0. In this case ⊗L

RF induces a functor
⊗L

RF : Db(R-mod)→ Db(Z). We denote its essential image by {F} ⊂ Db(Z)5.

Definition 4.9. Let D be a coherent sheaf on a projective variety Z. An iterated
extension of D is defined recursively as either D or a non-trivial extension of an
iterated extension by D. A universal iterated extension Dp for p ≥ 0 is a coherent
sheaf defined inductively as D0 = D and Dp for p > 0 is the universal extension

0→ D ⊗C Ext1(Dp−1,D)∨ → Dp → Dp−1 → 0. (4.8)

An iterated extension D̂ is called maximal if Ext1(D̂,D) = 0, see [K2]. If the max-
imal iterated extension exists then it is unique and equal to Dp for some p ≥ 0.

Definition 4.10. For every i = 0, . . . , n, let Fi be the maximal iterated extension of
OW (−Di), where the Weil divisor Di on W was defined in (4.1).

Lemma 4.11. The sheaf Fi exists and is locally free at every p ∈W except at Pj for j < i,
where DW (Fi) is locally free. The functor ⊗Ri

Fi is bounded, where Ri = End(Fi) is
isomorphic to the Kalck-Karmazyn algebra of the germ (Pi ∈W ). In notation of Prop. 4.4,

Db(Ri −mod) ≃ AW
i = ⟨OW (−Di)⟩ = {Fi} ⊂ Db(W ).

Proof. This is a summary of results from [KKS, K1]. □

Lemma 4.12. For k > 0, i ≤ j,
(1) Extk(Fi, Fj) = Extk(Fi,OW (−Dj)) = 0;
(2) Extk(Fi, Fj) = Extk(Fi,OW (−Dj)) = 0.

Proof. Fi andOW (−Dj) are locally isomorphic to ωW tensored with a free sheaf at
Pk for k < i. Since Fi is locally free elsewhere, Extk(Fi,OW (−Dj)) = 0 for k > 0.
This implies the same vanishing for iterated extensions ofOW (−Dj) including Fj .

Equation (2) for i < j follows from Prop. 4.4 (the s.o.d.). Let D = OW (−Di),
Dp = Fi. From (1), Extk(Dp,D) = Hk(W,Hom(Dp,D)), which is equal to 0 if
k > 2. Also, Ext1(Dp,D) = 0 by the definition of the maximal iterated extension.

The vanishing of Ext2(Dp,D) = H2(W,Hom(Dp,D)) is equivalent, by Serre
duality and reflexivity of Hom(Dp,D), to vanishing of Hom(Hom(Dp,D), ωW ).
We argue by induction on p using (4.8). The base of induction is vanishing of
Hom(Hom(D,D), ωW ) = H0(W,ωW ), which holds by Assumption 1.10 (2). Ap-
plyingHom(·,D) to (4.8) gives an exact sequence

0→ Hom(Dj−1,D)→ Hom(Dj ,D)→ OW ⊗ Ext1(Dj−1,D)→ A→ 0, (4.9)

where A is a sheaf supported at Pi. Since W is a CM surface, Ext1(A,ωW ) = 0.
Splitting (4.9) into two short exact sequences and using again that H0(W,ωW ) = 0
shows that Hom(Hom(Dj−1,D), ωW ) = 0 implies Hom(Hom(Dj ,D), ωW ) = 0.

Finally, vanishing of Extk(Dp,D) for k > 0 implies vanishing of Extk(Dp,Dj)

by induction on j, including vanishing of Extk(Fi, Fi) for k > 0. □

Finally, we address “locality” of subcategories AW
i = ⟨OW (−Di)⟩ ⊂ Db(W ),

i.e. there dependence on the divisor Di.

5Note that {F} ̸= ⟨F⟩ in general because {F} is not necessarily classically generated by F .
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Lemma 4.13. There is a short exact sequence

0→ Pic(W )→ Cl(W )
γ−→

r
⊕
i=0

Cl(Pi ∈W )→ 0,

where Cl(Pi ∈W ) is the local class group and γ is the restriction.

Proof. It suffices to prove surjectivity of γ. Each Cl(Pi ∈W ) is a finite cyclic group
generated by any one of the toric boundaries. The divisor Di restricts to a gen-
erator in Cl(Pi ∈ W ) and to 0 in Cl(Pj ∈ W ) for j > i. Arguing by induction
on i, some linear combination Di +

∑
j<i njDj with integer coefficients restricts to

a generator in Cl(Pi ∈W ) and to 0 in Cl(Pj ∈W ) for j ̸= i. □

FIGURE 8. Divisors ∆0, . . . ,∆r on W

Definition 4.14. Fix q = 0, . . . , r. By Lemma 4.13, there exists a Weil divisor ∆q

which is equivalent to Dq in Cl(Pq ∈W ) and is Cartier at Pi for i ̸= q, see Figure 8.
Let ωq

W = OW (−Dq+∆q). For i = q, . . . , r, letDi,q = ∆q+Γq+1+. . .+Γi. LetAW
i,q ⊂

Db(W ) be a full triangulated subcategory classically generated by OW (−Di,q).

Corollary 4.15. There is a s.o.d. Db(W ) = ⟨B̄Wq , ĀW
r,q, . . . ĀW

q,q⟩ such that DW (B) is
perfect at Pi for i ≥ q for every B ∈ B̄Wq and AW

i,q = {Fi,q} ≃ Db(Ri,q −mod), where
Fi,q is the maximal iterated extension ofOW (−Di,q) and Ri,q = End(Fi,q) is isomorphic
to the Kalck-Karmazyn algebra of (Pi ∈W ). Furthermore, categories ⟨AW

r,q, . . .AW
q,q⟩ and

⟨AW
r , . . . ,AW

q ⟩ are equivalent via an adjoint pair of functors •⊗Lωq
W andRHom(ωq

W , •).
Proof. Existence of the s.o.d. is proved as in Prop. 4.4. We can ignore singularities
at P0, . . . , Pq−1, where the sheaves OW (−∆q − Γq+1 − . . .− Γi) are Cartier.

Note that ωq
W,Pi

≃ ωW,Pi
for i < q and is an invertible sheaf elsewhere. In partic-

ular, RHom(ωq
W , ωq

W ) ≃ OW . Since OW (−Di,q) and ωq
W are non-Cartier at disjoint

subsets of points, we have O(−Di,q) ⊗L ωq
W = O(−Di,q) ⊗ ωq

W = O(−Di). Like-
wise, we have RHom(ωq

W ,O(−Di)) = Hom(ωq
W ,O(−Di)) = O(−Di,q). Indeed,

for p > 0, Extp(ωq
W ,O(−Di)) = 0 at Pk for k ≥ q because ωq

W is invertible there but
also for k < q because OW,Pk

(−Di) ≃ ωW,Pk
there and ωq

W is reflexive.
Let Fi,q be the maximal iterated extension ofO(−Di,q). Adjointness of •⊗L ωq

W

and RHom(ωq
W , •) implies Ext1(O(−Di),O(−Di)) = Ext1(O(−Di,q),O(−Di,q)).

Arguing by induction on iterated extensions, this gives Fi,q ⊗L ωq
W = Fi and

RHom(ωq
W , Fi) = Hom(ωq

W , Fi) = Fi,q . In particular, AW
i,q is equivalent to AW

i

and the algebras Ri,q = End(Fi,q) and Ri = End(Fi) and are isomorphic. □

5. DERIVED CATEGORY OF A DEFORMATION OF A C.Q.S. SURFACE

We use notation of Section 4: W is a c.q.s. surface satisfying Assumption 1.10
(1), (2), (3). Weaker conditions of Notation 6.3 will be sufficient except in Corol-
lary 5.6. For every i = 0, . . . , r, let Fi be the Kawamata sheaf on W , see Defini-
tion 4.10.
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Lemma-Definition 5.1. Let W be a projective deformation of W over a smooth affine
variety B = SpecB. For i = 0, . . . , r, possibly after shrinking B, there exists a unique
coherent sheaf Fi onW flat over B such that Fi|W ≃ Fi. We call Fi a Kawamata sheaf.

Proof. Existence and uniqueness of Fi follow from Lemma 4.12 and deformation
theory of coherent sheaves. □

Lemma 5.2. Kawamata sheaves have the following properties (after shrinking B):
(1) Fi is locally free at every p ∈W except at Pj for j < i, where DW(Fi) is locally free.

In particular, the restriction of Fi to every smooth fiber Y ofW → B is locally free.
(2) Extp(Fi, Fj) = 0 for p > 0, i ≤ j;
(3) Extp(Fi,Fi) = 0 for p > 0 and Extp(Fi,Fj) = 0 for all p and i < j.
(4) Ri = End(Fi) is a finite projective B-module and Ri = Ri ⊗B k(0).
(5) ⊗Ri

Fi is bounded.

Proof. Locally free sheaves deform to locally free sheaves. SinceRHom(ωW , ωW ) =
OW , the sheaf ωW deforms locally uniquely. Since ωW is flat over B, the deforma-
tion of ωW must be locally isomorphic to ωW by adjunction. It follows that Fi is
locally isomorphic to ωW tensored with a locally free sheaf at Pj for j < i. Equiv-
alently, we have (1), which immediately implies (2).

By (2), Extp(Fi,Fj) = Hp(W,Hom(Fi,Fj)) for i < j and all p. Thus (3) follows
from Lemma 4.12, cohomology and base change [TS, Tag 0AA7] and Nakayama’s
lemma. This also proves (4).

It remains to prove (5). We drop the index i. By [ELS], the category Db(R-mod)

has a classical generator, without loss of generality a R-module M̂ . It suffices to
prove that M̂ ⊗L

R F has bounded cohomology. A free R-resolution P • → M̂ can
also be viewed as a projective B-resolution. Since OB,0 is a regular local ring,
TorjB(M̂, k(0)) = 0 for j > dimB. Thus P • ⊗B k(0) = P • ⊗R R has bounded
cohomology, i.e. gives an object in Db(R−mod). Since⊗RF is bounded, it follows
that (P •⊗Bk(0))⊗L

RF has bounded cohomology, and so TorjR(M̂, F ) = 0 for j ≥ j0.
Since F is flat over B, this implies that TorjR(M̂,F)⊗B k(0) = 0 for j ≥ j0 and thus
TorjR(M̂,F) = 0 for j ≥ j0 by Nakayama’s lemma (after shrinking B). □

We also need an analogue of Kawamata sheaves for chains of curves in W that
start not at P0 but at some point Pq , q > 0. As in Definition 4.14, we take a Weil
divisor ∆q which is equivalent to Dq in Cl(Pq ∈ W ) and is Cartier at Pi for i ̸= q
(see Figure 8). Let Fi,q be the maximal iterated extension of OW (−∆q − Γq+1 −
. . .− Γi) for i = q, . . . , r (see Corollary 4.15 for its properties).

Lemma 5.3. Fix q = 0, . . . , r.
(1) There exist unique mCM sheaves ωq

W and Fi,q (for i ≥ q) on W flat over B that
restrict to sheaves ωq

W and Fi,q on W .
(2) The sheavesFi,q satisfy (1)–(5) of Lemma 5.2 (ignoring singularities atP0, . . . , Pq−1).
(3) We have M• ⊗L

Ri
Fi ≃ (M• ⊗L

Ri
Fi,q)⊗L ωq

W for every M• ∈ Db(Ri −mod).
(4) RHom(Fi,M

• ⊗L
Ri
Fi) ≃M• for every M• ∈ Db(Ri −mod).

Proof. (1) and (2) are proved in the same way as Lemmas 5.1 and 5.2, respectively.
It is clear that Fi ≃ Fi,q ⊗L ωq

W ≃ Fi,q ⊗ ωq
W and Ri = End(Fi) ≃ End(Fi,q).

Thus (3) follows from associativity of the derived tensor product.
By Lemma 5.2, RHom(Fi,Fi) = Ri and RHom(Fi,Fi) = Hom(Fi,Fi). Let P •

be a bounded above complex of free R0-modules quasi-isomorphic to M•. Sup-
pose first that i = 0. Then F0 is locally free and

RHom(F0,M
• ⊗L

R0
F0) ≃ F∨

0 ⊗ (P • ⊗R0 F0) ≃ P • ⊗R0 Hom(F0,F0).
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Applying RΓ to both sides gives a desired isomorphism. The general case i = q
follows by the same calculation applied to a locally free sheaf Fq,q using (3). □

Definition 5.4. Let AW
i = {Fi} ⊂ Db(W) for i = 0, . . . , r.

Theorem 5.5. Let W be a projective deformation of W over a smooth affine variety B.
After shrinking B, AW

i ≃ Db(Ri −mod) and we have B-linear s.o.d.’s

Db(W) = ⟨AW
r , . . . ,AW

0 ,BW⟩ = ⟨B̃W ,AW
r , . . . ,AW

0 ⟩ (5.1)

that restrict to (4.4) and (4.5) on W . Furthermore, BW and DW(B̃W) ⊂ Dperf(W).

Proof. We will prove by induction on k the following statements: (1) Db(W) has
a B-linear s.o.d. ⟨B̃Wk ,AW

k , . . . ,AW
0 ⟩; (2) AW

k ≃ Db(Rk −mod); (3) AW
k restricts to

AW
k on W ; (4) DW(B) is perfect at P0, . . . , Pk for every B ∈ B̃Wk . Suppose this is

known for k < i, we will prove it for k = i (for k = −1 there is nothing to prove).
First we claim that AW

i ⊂ B̃Wi−1. Fix q < i. Since objects in AW
q are repre-

sented by bounded above complexes with components isomorphic to F⊕n
q for

some n, by the spectral sequence for Ext [TS, Tag 07A9] it suffices to prove that
Hom(Fq, T ) = 0 for every T ∈ AW

i . For q = 0, we argue as follows. T can be
represented by a bounded above complex with bounded cohomology and with
components isomorphic to direct sums of Fi. By Lemma 5.2, RHom(Fq,Fi) = 0.
So we can use naive truncations to reduce to the case of T ≃ G[k], where G is
a sheaf and k ≫ 0. Since F0 is locally free, Extl(Fq, G) = 0 for l > 0. Thus
Hom(Fq, T ) = Extk(Fq, G) = Hk(W,Hom(Fq, G)) = 0 since k ≫ 0. For general q,
we use Lemma 5.3 and writeFq ≃ Fq,q⊗Lωq

W and T ≃ Tq⊗Lωq
W with Tq ∈ {Fi,q}.

Thus RHom(Fq, T ) = RHom(Fq,q, Tq) = 0 as above because Fq,q is locally free.
The functor Φ̃ = ⊗L

Ri
Fi : D(Ri −Mod) → D(Qcoh(W)) commutes with arbi-

trary direct sums, and therefore has a right adjoint functor Ψ̃ : D(Qcoh(W)) →
D(Ri −Mod) by [N]. By adjunction, we have

Ψ̃(T ) ≃ RHom(Ri, Ψ̃(T )) ≃ RHom(Φ̃(Ri), T ) ≃ RHom(Fi, T ).

We claim that Ψ̃ induces a functor BWi−1 → Db(Ri − mod). Indeed, let T ∈ BWi−1.
It suffices to prove boundedness of RHom(Fi, T ). After shrinking B, it suffices
to prove boundedness at every point p ∈ W . At p ̸= P0, . . . , Pi−1, Fi is locally
free and boundedness is clear. At one the remaining points Pj , Fi is locally a
deformation of ω⊕s

W for some s, and therefore is locally isomorphic to ω⊕s
W . On the

other hand, DW(T ) is perfect at Pj , and so T is locally isomorphic to ωW ⊗L S,
where S is a perfect complex. Thus RHom(Fi, T ) is bounded at Pj as well.

By Lemma 5.3 (4), we have

Ψ(Φ(M•)) ≃ RHom(Ri,Ψ(Φ(M•))) ≃ RHom(Fi,M
• ⊗L

Ri
Fi) ≃M•.

Thus the adjunction morphism M• → Ψ(Φ(M•)) is an isomorphism. Therefore,
Φ is fully faithful, AW

i is a right admissible subcategory of BWi−1 equivalent to the
category Db(Ri −mod), and we have a s.o.d. ⟨B̃Wi ,AW

i , . . . ,AW
0 ⟩.

We need to prove that the s.o.d. ⟨B̃Wi ,AW
i , . . . ,AW

0 ⟩ is B-linear and restricts
to the s.o.d. ⟨B̃Wi ,AW

i , . . . ,AW
0 ⟩ on W . It is enough to show that AW

i is B-linear
and restricts to AW

i . Equivalently, it suffices to show that Db(Ri − mod) is B-
linear, which is clear, and also that it restricts to Db(Ri − mod) at 0 ∈ B. Indeed,
since B is smooth, a B-module k(0) is resolved by a finite Koszul complex (after
shrinking B). Thus the functor ⊗Bk(0) sends Db(Ri − mod) to Db(Ri − mod).
Moreover, the same Koszul complex shows that every M• ∈ Db(Ri − mod) is a
direct summand of M̃• ⊗L k(0), where M̃• is the restriction of scalars to Ri.
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Next we claim that DW(B) is perfect at Pi for everyB ∈ B̃Wi . It suffices to prove
that DW(B)⊗L k(Pi)) has bounded cohomology. Since iW : W ↪→ W is a regular
embedding, Li∗WDW(B) ∈ Db(W ), so it suffices to prove that Li∗WDW(B) is per-
fect. Since iW : W ↪→W is a regular embedding, Li∗WDW(B) = DW (Li∗W (B)) (up
to a shift), so it suffices to prove that the latter is perfect. Since Li∗W (B) ∈ B̃Wi , this
follows from Prop. 4.4. Finally, the fact that BW ⊂ Dperf (W) is proved in the same
way using Prop. 4.4 and Remark 4.6. □

The next corollary provides categorification for “blowing down deformations”.

Corollary 5.6. LetW be a c.q.s. resolution of a surfaceW with a single c.q.s. P satisfying
Assumption 1.10 (1), (2), (3). LetW be a projective deformation ofW over a smooth affine
varietyB. After shrinkingB, there is a morphism π : W →W to a projective deformation
of W . The s.o.d.’s (5.1) forW andW are compatible, namely Rπ∗⟨AW

r , . . . ,AW
0 ⟩ = AW

and BW (resp. B̃W ) is equivalent to BW (resp. B̃W ) via (Rπ∗, Lπ
∗).

Proof. For blowing-down deformations, see [W]. Let j : W ↪→ W be the (regular)
embedding. Choose classical generators Ai ∈ AW

i , Ā ∈ AW , B ∈ BW , B̄ ∈ BW .
By Assumption 1.10 (3), proper transforms Γ0 (resp. Γr+1) of Ā ⊂W (resp. ˜̄A ⊂

W ) in W of W intersect the chain Γ1 ∪ . . . ∪ Γr only at P0 (resp. Pr), where they
are equivalent to toric boundaries opposite to Γ1 (resp. Γr). So we can apply
Corollary 4.7. For every i = 0, . . . , r, RHom(Lj∗Lπ∗B̄, Lj∗Ai) = 0 by Corol-
lary 4.7 and RHom(Lπ∗B̄, Ai) has bounded cohomology since Lπ∗B̄ is perfect.
Thus RHom(Lπ∗B̄, Ai) = 0 by cohomology and base change and Nakayama’s
lemma (after shrinking B). It follows that Lπ∗(BW) ⊂ BW and, by adjunction,
Rπ∗AW

i ⊂ AW . Next, RHom(Lj∗Rπ∗B,Lj
∗Ā) = RHom(Rπ∗Lj

∗B,Lj∗Ā) = 0 by
Corollary 4.7. Furthermore, RHom(Rπ∗B, Ā) = RHom(B, π!Ā) is bounded above
since B is perfect. Thus, RHom(Rπ∗B, Ā) = 0 by cohomology and base change
and Nakayama’s lemma (after shrinking B). It follows that Rπ∗(BW) ⊂ BW .
Since π has fibers of dimension at most 1, Rπ∗(Db(W)) = Db(W) by [K, Cor. 2.5].
Therefore, Rπ∗⟨AW

r , . . . ,AW
0 ⟩ = AW and Rπ∗(BW) = BW . Since Rπ∗OW = OW ,

Rπ∗Lπ
∗ gives the identity functor on BW by projection formula. It remains to

show that Lπ∗ : BW → BW is essentially surjective. Indeed, the unit of adjunction
Lπ∗Rπ∗B → B is an isomorphism for any B ∈ BW by Nakayama’s lemma since
its restriction to W is an isomorphism by Corollary 4.7. □

Remark 5.7. We focus on situations when π induces an isomorphism on generic
fibers Y ≃ Y of deformations, e.g. when Y is a smoothing of W . Corollary 5.6
shows that then AW deforms to a category AY , which has an s.o.d. ⟨AY

r , . . . ,AY
0 ⟩

related to the fact that AY = AY is also a deformation of ⟨AW
r , . . . ,AW

0 ⟩.

The following theorem completes the proof of Theorem 1.16.

Theorem 5.8. In the notation of Theorem 5.5, suppose W has Wahl singularities. Let
B0 ⊂ B be the locus of smooth fibers Y of the deformation and suppose B0 ̸= ∅. Let the
s.o.d.Db(Y ) = ⟨AY

r , . . . ,AY
0 ,BY ⟩ be the base change ofDb(W) = ⟨AW

r , . . . ,AW
0 ,BW⟩.

After shrinking B, for i = 0, . . . , r, the restriction of the Kawamata bundle Fi|Y is iso-
morphic to E⊕ni

i and AY
i = ⟨Ei⟩, where Ei is a Hacking exceptional vector bundle with

rkEi = ni, c1(Ei) = −ni(A+ Γ1 + . . .+ Γi) ∈ H2(Y ).

Remark 5.9. By Riemann–Roch, we also have c2(Ei) =
ni−1
2ni

(c1(Ei)
2 + ni + 1).

A direct corollary is the Hacking exceptional collection (H.e.c.) announced in
the introduction, which for dual bundles was stated in [H3] (without proof).
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Corollary 5.10. Hacking vector bundles Er, . . . , E0 on Y form an exceptional collection.

Proof of Theorem 5.8. This is essentially [K1, Th. 4.3] applied to each Kawamata
bundle Fi. More precisely, choose y ∈ B0 and let (0 ∈ ∆) → (0 ∈ B) be a
curve passing through y. For inductive reasons, we allow ∆ to be singular at
0. By [K1, Th. 4.3], after possibly shrinking ∆, there exists a finite morphism
u : (0 ∈ ∆′)→ (0 ∈ ∆) such that u−1(0) = 0, ∆′ is smooth, andW|∆′\{0} carries a
relatively exceptional Hacking vector bundle Ei such that Fi ≃ E⊕ni

i onW|∆′\{0}.
We claim that the bundle Ei and this isomorphism descend to W|∆\{0}. Indeed,
otherwise Y carries non-isomorphic exceptional Hacking bundles Ei and E′

i such
that Fi ≃ E⊕ni

i ≃ E′
i
⊕ni . So E′

i ∈ ⟨Ei⟩, which is impossible, because ⟨Ei⟩ con-
tains only one exceptional object (up to a shift). Since Ei is exceptional, it deforms
uniquely to relatively exceptional vector bundle Ei onW|U for some open subset
U ⊂ B0. It follows that Fi|Y deforms to E⊕ni

i over U . But Extp(Fi|Y , Fi|Y ) = 0 for
p > 0, so this deformation must be equal to Fi over U . If U = B0 (after shrinking
B) then we are done. If not, choose the next curve ∆ intersectingB0 and contained
in B \ U and argue by Noetherian induction. □

In the next lemma we consider a “hybrid” sitiation when the Q-Gorenstein de-
formation smoothens some points (just one to simplify notation), is locally isotriv-
ial around others, and the chain of rational curves connecting them also deforms.

Lemma 5.11. Suppose W has a Wahl singularity at Pi. LetW → B be a Q-Gorenstein
deformation over a smooth curve which is locally isotrivial at Pj for j ̸= i, smoothens Pi,
and such that the chain A+ Γ1 + . . .+ Γr on W deforms to the chain AY + ΓY

1 + . . .+
ΓY
i−1 +ΓY

i+1 + . . .+ΓY
r on a general fiber Y . More precisely, Γi−1 +Γi ⊂W deforms to

ΓY
i+1 ⊂ Y connecting Pi−1 and Pi+1. Take the s.o.d. Db(W) = ⟨AW

r , . . . ,AW
0 ,BW⟩ as

in Theorem 5.5 and its restriction to Y , Db(Y ) = ⟨AY
r , . . . ,AY

0 ,BY ⟩. ThenAY
j = {FY

j }
for j ̸= i and AY

i = ⟨Ei⟩, where Ei is the Hacking vector bundle associated with a
singularity Pi ∈W as in Th. 5.8 and FY

j for j ̸= i are Kawamata sheaves on Y associated
with singularities Pj ∈ Y as in Prop. 4.4.

Proof. AY
i = ⟨Ei⟩ by the argument of Th. 5.8. We just have to analyzeAY

j for j ̸= i,
i.e. prove that the Kawamata sheaf Fj of W deforms to the Kawamata sheaf FY

j ,
i.e. Fj |Y = FY

j . There is a divisorial sheaf Dj on W flat over B and such that
Dj |W = OW (−A− Γ1 − . . .− Γj) and Dj |Y := OY (−AY − ΓY

1 − . . .− ΓY
j ).

The sheaf Fj (resp., FY
j ) is a maximal iterated extension of Dj |W (resp., Dj |Y ).

Furthermore, Extp(Fj |Y ,Dj |Y ) = 0 for p > 0 and RHom(Fj |Y ,Dj |Y ) = C by
Lemma 4.12, cohomology and base change, and Nakayama’s lemma. It follows
that RHom(Fj |Y , FY

j ) = C∆j . Both Fj |Y , and FY
j are vector bundles on Y of rank

∆j except at points Pk for k < j, where they are locally isomorphic to ω⊕∆j

Y . Since
FY
j has a filtration with quotients isomorphic to Dj |Y , and Hom(Fj |Y ,Dj |Y ) = C,

it follows that there exists a generically surjective morphism ψ : Fj |Y → FY
j . As

both are torsion-free sheaves of the same rank, we have ker(ψ) = 0. Thus we have
a short exact sequence 0 → Fj |Y → FY

j → G → 0. But Fj |Y and FY
j have the

same Chern character ∆j ch(Dj |Y ). Thus ch(G) = 0, and therefore G = 0. □

6. COMPARING BRAID GROUP ACTIONS: MUTATIONS AND ANTIFLIPS

According to Theorem 3.9, the braid group Br+1 on r+1 strands acts on the set
of Wahl resolutions W → W of a fixed c.q.s. surface W with r + 1 singularities by
antiflips of curves Γi contained in the exceptional divisor. These Wahl resolutions
admit Q-Gorenstein smoothings to the surfaces within the same irreducible com-
ponent of the versal deformation space of W . According to Corollary 5.10, each
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Wahl resolution W gives rise to an exceptional collection of Hacking vector bun-
dles on its Q-Gorenstein smoothing. Since Hacking bundles deform uniquely, in
fact W gives a H.e.c. on all sufficienly general smoothings of W within a given ir-
reducible component of its versal deformation space. In this section we show that
antiflips of Wahl resolutions correspond to mutations of these H.e.c. While the
braid group action on exceptional collections is well-known, the special feature of
our situation is that mutations of exceptional vector bundles are also exceptional
vector bundles (up to a shift) and not more complicated exceptional objects. This
has strong consequences for their Hom spaces and clarifies the structure of the
deformation of the Kalck–Karmazyn algebra that corresponds to the germ P ∈W .

We recall that from an exceptional collection ⟨F,E⟩ ⊂ Db(Y ) we can obtain
two other exceptional collections ⟨E,RE(F )⟩ (right mutation of F over E) and
⟨LE(F ), E⟩ (left mutation of F overE), so that ⟨F,E⟩ = ⟨E,RE(F )⟩ = ⟨LE(F ), E⟩.
The objects are defined by distinguished evaluation triangles

E⊗RHom(E,F )→ F → LE(F )→ and RE(F )→ F → E⊗RHom(F,E)∨ → .

For a longer exceptional collection ⟨Er, . . . E0⟩, the action of left and right muta-
tions induces an action of the braid group Br+1 of r + 1 strands on ⟨Er, . . . E0⟩.
We will also use mutations of more general s.o.d.’s. Matching braid group actions
on Wahl resolutions and exceptional collections on their smootings relies on a geo-
metric construction (Proposition 6.1), which uses deformations from the universal
family of antiflips that correspond to 1-dimensional cones of the fan F in Figure 4.

Proposition 6.1. Let W be a Wahl resolution of a c.q.s. surface W satisfying Assump-
tion 1.10. LetW ′ = Ri(W ) be the right antiflip ofW at the curve Γi for some i = 1, . . . , r.
The Wahl singularities of W ′ are P ′

j = Pj for j ̸= i− 1, i, and P ′
i = Pi−1.

We consider two geometrically different situations: either (a) KW · Γi ≥ 0 or
(b) KW · Γi < 0. Suppose also that KW ′ · Γ′

i < 0 in case (b)6

Then there exist Q-Gorenstein familiesW,W ′ over a smooth curve B with the follow-
ing properties. In case (a) W (resp. W ′) has special fiber W (resp. W ′) over 0 ∈ B, the
families are isomorphic overB\{0}. In case (b) we haveB = P1,W =W ′, and the family
has fiber W (resp. W ′) over 0 ∈ P1 (resp.∞ ∈ P1). Let Z ≃ Z ′ be isomorphic (in both
cases) general fibers of these families. These deformations have the following properties:
(1) Z ⇝W is equisingular at Pj for j ̸= i, Pi is smoothened.
(2) Z ′ ⇝W ′ is equisingular at P ′

j for j ̸= i− 1, P ′
i−1 is smoothened.

(3) Boundary divisors Γ0 + . . .+Γr+1 ⊂W and Γ′
0 + . . .+Γ′

r+1 ⊂W ′ lift to Z ≃ Z ′.
(4) The surface Z ≃ Z ′ admits a Q-Gorenstein smoothing to a surface Y in the fixed

irreducible component of the versal deformation space of W .

Remark 6.2. By analogy with case (b), in case (a) one can glue familiesW andW ′

to one family over a non-separated curve with a double origin {0, 0′}.

Proof. We start with case (a). By Lemma 3.2, there exists a deformation Z ′ ⇝ W ′

over a smooth curve with properties (2) and (3) and total space W ′ → B. (This
deformation corresponds to one of the two boundary rays of the first quadrant on
the left side of Figure 4.) By [HTU, Prop. 3.16], there exists a contractionW ′ →W ′

i

of the curve Γ′
i only. This contraction is either K-negative or K-trivial, letW+ →

W ′
i be its flip (or flop) with special fiber W+. We claim that W+ = W and the

flip (or flop) gives a required deformation Z ⇝ W . Indeed, W+ has the same
singularities as W and the same flipped curve Γi by [HTU, Prop. 3.16]. The chains
up to P ′

i−2 and from P ′
i+1 are not affected by the flip. The curve from P ′

i−2 to P ′
i

in Z ′ degenerates in W+ to an irreducible curve Γi−1 from Pi−2 to Pi−1 while the

6If KW ′ · Γ′
i > 0 then the left antiflip W = Li(W

′) will be in case (a) and the same results hold.
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curve from P ′
i to P ′

i+1 breaks in W+ into a union of a curve Γi+1 from Pi to Pi+1

and a flipped curve Γi from Pi−1 to Pi. Since W ′
i can be further contracted to a

deformationW of W , W+ is a Wahl resolution of W . By Prop. 3.5, the curves Γi−1

and Γi+1 have the same self-intersections in W and W+ and so the same δ’s.
Geometry in case (b) is different. Take a contraction (Γi ⊂ W ) → (Qi ∈ Wi).

By Lemma 3.2, there exists a deformation Z ⇝W with properties (1) and (3). (This
deformation corresponds to one of the non-boundary rays of the fan F on the left
side of Figure 4.) By [HTU, Prop. 2.4], Z is the special fiber of a k1A neighborhood.
This means the following: there is a contraction Z → Wi, which is a (non-c.q.s.!)
resolution of Qi ∈ Wi. Its exceptional divisor E ≃ P1 passes through the Wahl
singularity Pi−1 ∈ W . The proper transform of E intersects exactly one of the ir-
reducible curves Ds in the chain D1, . . . , Dp of the minimal resolution Pi−1 ∈ W ,
the intersection of E and Ds is transversal in one point. Contracting E gives a
chain D1, . . . , D̃s, . . . , Dp with D̃2

s = D2
s + 1. This chain is a (non-minimal) res-

olution of the singularity Qi ∈ Wi. Blowing up a varying point of D̃s and con-
tracting the chain D1, . . . , D̃s, . . . , Dp back to Pi−1 ∈ W gives an obvious equi-
singular family with fibers Z over Gm. Furthermore, by [HTU, Prop. 2.4], the
same family arises from deformations Z ′ ⇝ W ′ with properties (2) and (3). This
gives the family W over P1. By the proof of Lemma 3.2 and semicontinuity, we
have H2(Z, TZ(− log∆)) = 0, which again by Lemma 3.2 shows that there are no
local-to-global obstructions to its deformations. So we can obtain a Q-Gorenstein
smoothing Y ⇝ Z. Since Z admits a contraction toWi, it can be further contracted
to W . By blowing down deformations, the smoothing Y ⇝ Z blows down to a
smoothing Y ⇝W proving (4). □

Lemma 6.3. In notation of Prop. 6.1, consider s.o.d.’s Db(W) = ⟨AW
r , . . . ,AW

0 ,BW⟩
and Db(W ′) = ⟨AW′

r , . . . ,AW′

0 ,BW′⟩ of Theorem 5.5 and their restrictions to Z ≃ Z ′:

Db(Z) = ⟨Ar, . . . ,A0,B⟩ = ⟨A′
r, . . . ,A′

0,B′⟩. (6.1)

Then B = B′, Aj = {Fj} for j ̸= i, and A′
j = {Fj} for j ̸= i− 1. Furthermore,

⟨Ai,Ai−1⟩ = ⟨Ei, {Fi−1}⟩ = ⟨{Fi−1}, E′
i−1⟩ = ⟨A′

i,A′
i−1⟩.

Here Ei and E′
i−1 are Hacking vector bundles associated with singularities Pi ∈ W and

P ′
i−1 ∈ W ′ of central fibers of deformations as in Th. 5.8 and Fj for j ̸= i are Kawamata

sheaves associated with singularities Pj on the general fiber Z as in Prop. 4.4.

Proof. In case (a) of Prop. 6.1, the deformationsW andW ′ blow-down to the same
deformation W of W , so we have B = B′ by Corollary 5.6. In case (b) the defor-
mationW → P1 blows down to the constant deformation W × P1 of W . For fibers
over b ̸= 0,∞, the contraction π : Wb → W is not a c.q.s. resolution. However,
W0 = W → W and W∞ = W ′ → W are c.q.s. resolutions, so Corollary 5.6 still
applies and gives B = B′ since it is a pullback of the category BW via Lπ∗.

So the only thing to check is that subcategories Aj and A′
j that correspond to

singular points of W and W ′ where the deformations are equisingular are subcat-
egories of Db(Z) associated with Kawamata sheaves of these singularities. This
follows from Lemma 5.11. □

Theorem 6.4. In assumptions of Prop. 6.1, let Y be a general smooth surface within an
irreducible component of the versal deformation space of Y that contains Q-Gorenstein
smoothings of W and W ′ = Ri(W ). Consider the corresponding H.e.c.

Db(Y ) = ⟨Er, . . . , E0,BY ⟩ = ⟨E′
r, . . . , E

′
0,B′Y ⟩. (6.2)
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Then B′Y = BY , E′
j = Ej for j ̸= i, i− 1, E′

i = Ei−1, and E′
i−1 = REi−1

(Ei)[k], where
k = 0 in case (a) of Prop. 6.1 and k = 1 in case (b). Moreover, in case (a)

Hom(Ei, Ei−1) = Ext2(Ei, Ei−1) = Ext1(E′
i, E

′
i−1) = Ext2(E′

i, E
′
i−1) = 0,

Ext1(Ei, Ei−1) ≃ Hom(E′
i, E

′
i−1)

∨ ≃ Cδi .

In case (b), Extk(Ei, Ei−1) = Extk(E′
i, E

′
i−1) = 0 for k > 0, and

Hom(Ei, Ei−1) ≃ Hom(E′
i, E

′
i−1)

∨ ≃ Cδi .

Proof. By Theorem 5.8, the subcategories ⟨Ei⟩ and ⟨E′
i⟩ are also generated by the

Kawamata bundles Fi and F ′
i . By Lemma 6.3, we can consider a Q-Gorenstein

smoothing Y ⇝ Z with the total space Y inside the Q-Gorenstein deformation
spaces of W and W ′ and Kawamata sheaves on Z are deformations of Kawamata
sheaves on W and W ′. Therefore, s.o.d.’s (6.2) are specializations of the s.o.d.’s

Db(Y) = ⟨AY
r , . . . ,AY

0 ,BY⟩ = ⟨A′Y
r , . . . ,A′Y

0 ,B′Y⟩

obtained by Theorem 5.5 as deformation of the s.o.d.’s (6.1). Thus B′Y = BY by
Corollary 5.6, E′

j = Ej for j ̸= i, i− 1, E′
i = Ei−1, and REi−1

(Ei) ∈ ⟨E′
i−1⟩, and so

E′
i−1 = REi−1

(Ei)[k] for some k.
Next we consider case (a), where we will show now that k = 0. Let C• =

REi−1(Ei). By definition of mutation we have an exact sequence

0→ Ei−1 ⊗ Ext2(Ei, Ei−1)
∨ → C−1 → 0→ Ei−1 ⊗ Ext1(Ei, Ei−1)

∨ →

C0 → Ei → Ei−1 ⊗Hom(Ei, Ei−1)
∨ → C1 → 0.

So either k = 0 or k = ±1. Since rk(E′
i−1) = n′i−1 = δini−1 + ni = δi rk(Ei−1) +

rk(Ei) by Prop. 3.5 and rk(REi−1
(Ei)) = δi rk(Ei−1) + rk(Ei) by definition of mu-

tation, we have k = 0, and so E′
i−1 = REi−1

(Ei).
Since C−1 = C1 = 0, we have Ext2(Ei, Ei−1) = 0. Recall that Ei−1 ≃ E′

i.
Applying RHom(Ei−1, •) to the distinguished triangle E′

i−1 → Ei → Ei−1 ⊗
RHom(Ei, Ei−1)

∨ gives RHom(Ei, Ei−1)
∨ ≃ RHom(E′

i, E
′
i−1)[1]. Therefore

Hom(E′
i, E

′
i−1) = Ext1(Ei, Ei−1)

∨ and Ext1(E′
i, E

′
i−1) = Hom(Ei, Ei−1)

∨.

This also shows that Ext2(E′
i, E

′
i−1) = 0. We claim that Ext1(E′

i, E
′
i−1) = 0 as well,

which will show that Hom(Ei, Ei−1) = 0 and therefore that Ext1(Ei, Ei−1) ≃ Cδi

by Lemma 6.5. In order to do this we will analyze the next antiflip W ′′ = Ri(W
′),

which is an instance of case (b). This calculation will also settle the case (b).
As before, we have E′′

i = E′
i−1 and E′′

i−1 = RE′
i−1

(Ei)[k] for some k. Let C• =

RE′
i−1

(E′
i). By definition of mutation we have an exact sequence

0→ C−1 → 0→ E′
i−1 ⊗ Ext1(E′

i, E
′
i−1)

∨ →

C0 → E′
i → E′

i−1 ⊗Hom(E′
i, E

′
i−1)

∨ → C1 → 0.

So C−1 = 0 and therefore k = 0 or k = 1. We claim that k = 1. Indeed, rk(E′′
i−1) =

n′′i−1 = δn′i−1 − n′i = δ rk(E′
i−1) − rk(E′

i). On the other hand, rk(RE′
i−1

(E′
i)) =

−χ(E′
i, E

′
i−1) rk(E

′
i−1) + rk(E′

i) = δ rk(E′
i−1) + rk(E′

i). So k = 1. This shows that
Ext1(E′

i, E
′
i−1) = 0, which proves all claims in case (a).

Finally, to finish case (b), we apply RHom(E′
i−1, •) to the distinguished trian-

gle E′′
i−1[−1] → E′

i → E′
i−1 ⊗ RHom(E′

i, E
′
i−1)

∨, which gives RHom(E′
i, E

′
i−1)

∨ ≃
RHom(E′′

i , E
′′
i−1). So Extk(E′′

i , E
′′
i−1) = 0 for k > 0, and we also have an isomor-

phism Hom(E′′
i , E

′′
i−1) ≃ Hom(E′

i, E
′
i−1)

∨ ≃ Cδi . □
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Lemma 6.5. Let Y be a Q-Gorenstein smoothing of a Wahl resolutionW . Let Er, . . . , E0

be the corresponding H.e.c. on Y . Then χ(Ei, Ei−1) = −nini−1 Γi ·KW
7. In particular,

if KW · Γi > 0 then χ(Ei, Ei−1) = −δi and if KW · Γi < 0 then χ(Ei, Ei−1) = δi.

Proof. χ(Ei, Ei−1) =
∑

(−1)j extj(Ei, Ei−1), and so by Riemann-Roch

χ(Ei, Ei−1) = ni ch2(Ei−1)− c1(Ei) · c1(Ei−1) + ni−1 ch2(Ei)

+
1

2
(ni−1c1(Ei)− nic1(Ei−1)) ·KY + nini−1,

where ch2 = 1
2 (c

2
1 − 2c2). By Theorem 5.8, we know that

c1(Ei) = −ni(A+ Γ1 + . . .+ Γi) ∈ H2(Y ),

and c2(Ei) =
ni−1
2ni

(c1(Ei)
2+ni+1). Hence we do the computation in W . We have

ch2(Ei) =
1
2

(
ni(A+ Γ1 + . . .+ Γi)

2 − n2
i−1
ni

)
, and so

ni ch2(Ei−1)−c1(Ei)·c1(Ei−1)+ni−1 ch2(Ei) =
1

2
nini−1Γ

2
i−nini−1+

ni−1

2ni
+

ni
2ni−1

.

But on W we have Γ2
i = −Γi ·KW − 1

ni
− 1

ni−1
. On the other hand ni−1c1(Ei) −

nic1(Ei−1) = −ni−1niΓi, and so we plug in the formula for χ(Ei, Ei−1) to obtain
the formula. □

Finally, we can finish the proof of Theorem 1.12 with Lemmas 6.6-6.8.

Lemma 6.6. Let W be a Wahl resolution of W satisfying Assumption 1.10 and let Y
be a sufficiently general surface from the corresponding versal deformation space of W .
Let Er, . . . , E0 be the corresponding Hacking exceptional collection on Y . Then, for every
i > j, either Extk(Ei, Ej) = 0 for k ̸= 1 or Extk(Ei, Ej) = 0 for k ̸= 0.

In particular, suppose Er, . . . , E0 (resp. Ēr, . . . , Ē0) is the H.e.c. that corresponds to
the M-resolution W+ (resp. the N-resolution W−). Then
(1) Ēr, . . . , Ē0 is a strong exceptional collection, i.e. Extk(Ēi, Ēj) = 0 for k > 0, i > j.
(2) Extk(Ei, Ej) = 0 for k ̸= 1, i > j.
(3) For i = 1, . . . , r − 1, we have Hom(Ēr−i+1, Ēr−i) ≃ Ext1(Ei, Ei−1)

∨ ≃ Cδi .
(4) Ēr, . . . , Ē0 is a mutation of Er, . . . , E0 (no homological shifts).

Proof. Let W be an arbitrary Wahl resolution. We claim that we can bring any two
singularities Pi, Pj , i > j, in W together (without changing them) via a sequence
of right antiflips. If i = j+1, then Pi, Pj are already together via Γi. Otherwise we
have a chain Γj+1, . . . ,Γi connecting them, which we can antiflip from k = j+1 to
k = i− 1, after that the new singularities in positions i− 1 and i are Pj and Pi. By
Th. 6.4, the corresponding mutations do not change Hacking bundles Ei and Ej

and we have Extk(Ei, Ej) = 0 for k ̸= 1 if K · Γi ≥ 0 and or Extk(Ei, Ej) = 0 for
k ̸= 0 if K · Γi ≤ 0, where Γi is the curve connecting the points after the antiflips.

Now suppose Er, . . . , E0 (resp. Ēr, . . . , Ē0) is the H.e.c. that corresponds to the
M-resolution W+ (resp. the N-resolution W−) Part (3) follows from Th. 6.4 and
definition of the N-resolution. For part (2), we argue as follows. By Prop. 3.5,
for every antiflip of Γk, k = j + 1, . . . , k = i − 1 described above, the curves in
positions > k retain non-negative intersection with the canonical class, including
the last curve Γi that will connect Pi to Pj . Thus (2) follows from Th. 6.4.

By Th. 6.4, the sequence of antiflips that connectsW+ toW− corresponds to the
sequence of mutations that takes an exceptional collection Er, . . . , E0 literally to
the exceptional collection Ēr, . . . , Ē0, i.e. without homological shifts. This shows
(4). Finally, we prove (1). We follow Ei and Ej through a sequence of mutations.

7The Euler pairing for α, β ∈ Db(Z) is the integer χ(α, β) =
∑

j(−1)j dimC Hom(α, β[j]).
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To simplify notation, we will denote their images after mutations by the same let-
ters. We can decompose this element of the braid group as follows: arrange bun-
dles into three blocks: A = ⟨Er, . . . , Ei+1⟩, B = ⟨Ei, . . . , Ej⟩, C = ⟨Ej−1, . . . , E0⟩.
Rearrange the bundles in A and C in the opposite order (moving Ei+1, resp. E0

all the way to the left without changing it as in the definition of the N-resolution.)
This does not change Ei or Ej , so the RHom between them stays the same. Next,
rearrange bundles in B in the opposite order by moving Ej all the way to the left.
By the analysis in the beginning of the proof of the lemma, this will change non-
zero components of RHom from Ext1(Ei, Ej) to Hom(Ej , Ei). Finally, we mutate
s.o.d.’s: ⟨A,B,C⟩ → ⟨A,C,B′⟩ → ⟨C,A′, B′⟩ → ⟨C,B′, A′′⟩. This gives an equiv-
alence B → B′ which does not change RHom’s between its objects, for example
between Ei and Ej . □

Lemma 6.7. Let π : W → W be a Wahl resolution satisfying Assumption 1.10 and let
Y be a sufficiently general surface from the corresponding versal deformation space of W .
Let Er, . . . , E0 be the corresponding Hacking exceptional collection on Y .
(1) The Kawamata vector bundle F̄ on W deforms uniquely to a vector bundle F on Y .
(2) For every i = 0, . . . , r, Hom(F,Ei) = CrkEi and Extk(F,Ei) = 0 for k > 0.
(3) {F} = ⟨F ⟩ = ⟨Er, . . . , E0⟩ ⊂ Db(Y ).

Proof. Let F = F̄ |Y be the unique deformation of F̄ given by Lemma 5.1, which
is locally free by Lemma 5.2, which proves (1). By Corollary 5.6, Remark 5.7 the
admissible subcategory {F} ⊂ Db(Y ) is equal to the subcategory ⟨Er, . . . , E0⟩. By
Theorem 5.8, the Kawamata bundle Fi|Y on Y associated with the singularity Pi ∈
W is isomorphic to ErkEi

i . So (2) will follow if we can show that Hom(F,Fi|Y ) =
CrkFi|Y and Extk(F,Fi|Y ) = 0 for k > 0. Since Fi|Y is a deformation of the Kawa-
mata sheafFi onW , by semi-continuity it suffices to show that RHomW (π∗F̄ , Fi) =
CrkFi . Since Fi is the maximal iterated extension of OW (−Di), it suffices to show
that RHomW (π∗F̄ ,OW (−Di)) = C. This will follow at once from Lemma 4.12
and adjunction if we can show that Rπ∗OW (−Di) = OW (−Ā). In the exact se-
quence 0 → OW (−Di) → OW → ODi

→ 0, the derived pushforward by π of
ODi = OΓ0∪...∪Γi is equal to Oπ(Γ0) = OĀ and the derived pushforward of OW is
OW . So Rπ∗OW (−Di) = OW (−Ā). In (3), we just need to prove that {F} = ⟨F ⟩,

which will follow once we show that F ≃
r⊕

i=0

Ē
nr−i

i in the next Lemma 6.8 because

then ⟨F ⟩ contains ⟨Ēr, . . . , Ē0⟩, which is equal to {F}. □

Lemma 6.8. Let W be a c.q.s. surface satisfying Assumption 1.10 and let Y be its suf-
ficiently general smoothing from a fixed component of the versal deformation space. Let
Er, . . . , E0 (resp. Ēr, . . . , Ē0) be the H.e.c. on Y that corresponds to the M-resolution
W+ (resp. the N-resolution W−). Then
(1) These collections are dual: RHom(Ēj , Er−i) = C if i = j and 0 otherwise.

(2) The Kawamata bundle F is isomorphic to
r⊕

i=0

Ē
nr−i

i , where nj = rkEj . The Kalck–

Karmazyn algebra R = End(F̄ ) deforms to the algebra End(F ) Morita-equivalent to
the endomorphism algebra R̂ = End(Ēr⊕. . .⊕Ē0) of a strong exceptional collection.

(3) R̂ is a path algebra of a quiver with (r + 1) vertices labeled by Ēr, . . . , Ē0 and with
arrows connecting Ēi to Ēj for i > j so that the total number of paths connecting Ēi

to Ēj is equal to hom(Ēi, Ēj). In particular, the category ⟨F ⟩ does not depend on Y .

Proof. We will prove by a down-ward induction on j that if X ∈ ⟨Ēr, . . . , Ēj⟩ and
RHom(X, Ēi) = Cn̄i , RHom(X,Er−i) = Cnr−i for i ≥ j thenX ≃ Ēnr−j

j ⊕. . .⊕Ēn0
r .

If j = r then this is clear because Ēr ≃ E0 and n̄r = n0. When j = 0, this will
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give part (2) by Lemma 6.7 (2). To prove the step of induction, let the claim be true
for j + 1. Take X ∈ ⟨Ēr, . . . , Ēj⟩. By definition of s.o.d., we have a distinguished
triangle

Ēj ⊗ C• → X → X ′ →, (6.3)
where C• is a complex of vector spaces and X ′ ∈ A , where A is an admissible
subcategory ⟨Ēr, . . . , Ēj+1⟩, which is equal to ⟨Er−j−1, . . . , E0⟩ by Th. 6.4. Also,
Ēj is the right mutation of Er−j over A. So we have a mutation triangle

Ēj → Er−j → T → 0 (6.4)

with T ∈ A. This triangle proves part (1). Since RHom(Ēj , Ēi) = 0 for i > j, we
have RHom(X ′, Ēi) = RHom(X, Ēi) = Cn̄i by (6.3). Since RHom(Ēj , Er−i) = 0
for i > j by (6.4), we have RHom(X ′, Er−i) = RHom(X,Er−i) = Cnr−i by (6.3).
This implies that X ′ ≃ Ēnr−j−1

j+1 ⊕ . . .⊕ Ēn0
r by inductive assumption. The triangle

(6.3) and part (1) imply C• = RHom(X,Er−j) = Cnr−j . Since Ext1(Ēi, Ēj) = 0 for
i > j, this implies that X ≃ Ēnr−j

j ⊕ . . .⊕ Ēn0
r . This proves (2).

Under the equivalence ⟨F ⟩ → Db(R̂ − mod), X 7→ RHom(R̂,X), the vector
bundles Er, . . . , E0 go to simple modules of R̂ by part (1). Since Ext2(Ei, Ej) = 0

for all i, j by Lemma 6.6 (2), this implies that R̂ is hereditary, and therefore R̂ is
isomorphic to a path algebra of a quiver by a well-known theorem of Gabriel. □

Lemma 6.9. The formula (1.1) holds.

Proof. One can compute this dimension by Q-Gorenstein smoothing all singulari-
ties between P̄i and P̄j to obtain a curve Γ through singularities P̄i and P̄j which
are now consecutive. Now use Theorem 6.4. □

Remark 6.10. In Definition 1.5 we required Wahl resolutionsW →W to have a Q-
Gorenstein smoothing Y ⇝ W that blows down to a smoothing Y ⇝ W , because
otherwise there seems to be no natural way to define the braid group action. For
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FIGURE 9. Divisorial contraction

example, consider the Wahl resolutionW ofW = 1
3 (1, 1) singularity on the left side

of Figure 9. Its Q-Gorenstein smoothing Y ⇝W blows down to a smoothing Y ⇝
W but Y ̸= Y , in fact Y is a blow-up of Y at a smooth point. To see this, we can flip
W at the top curve producing a resolution W ′ on the right side of Figure 9, which
contains a (−1)-curve E which deforms to a nearby fiber producing a divisorial
contraction of the threefold. Accordingly, an antiflip of W ′ at E is not defined. On
the level of derived categories, W gives a H.e.c. E2, E1, E0 on Y where E0 and E2

are line bundles and E1 has rank 3. This is mutated to a H.e.c. E′
2, E

′
1, E

′
0 on W ′,

where E′
0 has rank 2 and E′

2 = E′
1(−E) are line bundles. One can of course mutate

this exceptional collection further but this gives E′
1, E

′
1|E , E′

0, where the sheaf in
the middle is a torsion sheaf supported on E. By contrast, mutating collections of
vector bundles associated with Wahl resolutions always gives collections of vector
bundles associated with other Wahl resolutions (up to a homological shift which
is easy to compute, see Theorem 6.4).
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We end this section by analyzing which quivers show up in Theorem 1.12 when
the M-resolution W+ → W has two exceptional curves Γ1,Γ2 with associated
δ1 =: a and δ2 =: b. We have Wahl singularities Pi of type 1

n2
i
(1, niai − 1) for

i = 0, 1, 2. For the N-resolution we use the bar notation: Wahl singularities P̄i of
type 1

n̄2
i
(1, n̄iāi− 1) for i = 0, 1, 2, etc. The associated H.e.c. is ⟨Ē2, Ē1, Ē0⟩, and we

have hom(Ē2, Ē0) = ab+ c, where c := an2+bn0

n1
. The algebra R̂ is the path algebra

of the quiverQa,b,c with vertices Ē2, Ē1, Ē0 and a arrows between Ē2, Ē1, b arrows
between Ē1, Ē0, and c arrows between Ē2, Ē0, as in Figure 10.

⇐ . ü:?÷
FIGURE 10. The quiver Qa,b,c for an N-resolution with two

curves

Proposition 6.11. The representation algebra of the quiver Qa,b,c can be realized by the
categorified Milnor fiber, i.e. the algebra R̂ of Theorem 1.12, if and only if there exists an
extremal P-resolution with Wahl singularities of indices a and b and δ = c (see Defini-
tion 2.9). See Lemma 6.12 for the list of possible c for fixed values of a, b.

A direct corollary is that if we realizeQa,b,c by our construction, then all permu-
tations of a, b, c are realizable by our construction. This is because we can reverse
the orientation of the c.q.s. to obtain Qb,a,c, and we can use the “circular” zero
continued fraction of the extremal P-resolution of Qa,b,c to realize zero continued
fractions for Qc,a,b and Qb,c,a (see [HTU, Section 4]).

By Example 7.3, Db(R̂) is an admissible subcategory of the derived category of
a smooth projective rational surface. This partially answers question (Q5) in [BR].

Proof. If a = 0 and b > 0, then b = c; similarly for b = 0 and a > 0 we have c = a.
If a = b = 0, then there are no arrows.

Let us assume that a, b > 0. Let ∆
∆−Ω = [b1, . . . , bs]. As in Section 2, we have

that di1 = di2 = di3 = 1, and the zero continued fraction corresponding to the
N-resolution is [bs, . . . , bi3 − 1, . . . , bi2 − 1, . . . , bi1 − 1, . . . , b1] = 0. We have that

n̄2−k

n̄2−k − ā2−k
= [b1 . . . , bik+1−1],

for k = 0, 1, 2. (If i1 = 1, then we set n̄2 = ā2 = 1, and so P̄2 is a smooth point in
that case.) We also have

a

εa
= [bi2+1, . . . , bi3−1] and

b

εb
= [bi2−1, . . . , bi1+1]

for some εa, εb coprime to a, b respectively. (If i3 = i2 + 1 (i2 = i1 + 1), then a = 1
(b = 1).)

Let us consider the Hirzebruch-Jung continued fraction that results from con-
tracting (possibly) 1 and all new 1’s from [bi3−1, . . . , bi1 − 1, . . . , b1]. This corre-
sponds to a rational number α

β > 1. Then, if α
α−β = [x1, . . . , xt], we have

[xt, . . . , x1, 1, bi3−1, . . . , bi1 − 1, . . . , b1] = 0,
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and so the Q-Gorenstein smoothing of P̄1 which keeps the singularities at P̄0 and
P̄2 and a curve between them corresponds to that extremal N-resolution. In par-
ticular, we have

ab+ c

εab+c
= [bi3−1, . . . , bi1+1]

for some εab+c.

Lemma 6.12. Let λ := bi2 ≥ 2.
(0) If a = b = 1, then c = λ− 1,
(1) If a = 1 and b > 1, then c = λb− b− εb; If b = 1 and a > 1, then c = λa− a− εa,
(2) If a, b > 1, then c = (λ− 1)ab− εab− εba. In particular gcd(a, b) always divides c.

Proof. Part (0) is trivial because a = b = 1 implies i3 = i2 + 1 = i1 + 2, and so
ab+c
εc

= [bi2 ]. For (1) and (2) we use the identity (for (1) we eliminate the “a or b
matrix”)(

a −εa
ε′a

1−εaε
′
a

a

)
·
(
λ −1
1 0

)
·
(
b −ε′b
εb

1−εbε
′
b

b

)
=

(
ab+ c −ε′ab+c

εab+c
1−εab+cε

′
ab+c

ab+c

)
,

where 0 < ε′x < x is the inverse modulo x of εx. □

Proposition 6.13. Each of the cases (t) in Lemma 6.12 corresponds to an extremal P-
resolution with t singularities and δ = c, represented by the continued fraction (here ∗ is
a smooth point):
(0) ∗ − (λ+ 1)− ∗,
(1) [

(
a

a−εa

)
]− (λ)− ∗ or ∗ − (λ)− [

(
b
εb

)
],

(2) [
(

a
a−εa

)
]− (λ− 1)− [

(
b
εb

)
].

On the other hand, each extremal P-resolution in those three cases (with δ = c) produces
infinitely many M-resolutions with two exceptional curves, so that δ1 = a, δ2 = b and
n1c = an2 + bn0.

Proof. First, it is easy to check that each (t) case in Lemma 6.12 corresponds to the
described extremal P-resolution, since 1

a (1, ε
′
a) − (λ − 1) − 1

b (1, εb) is contractible.
The opposite is trickier for the case λ = 2, so we first show it for λ ≥ 3. In this
case we have that 1

a (1, ε
′
a) − (λ − 1) − 1

b (1, εb) contracts to a c.q.s. Let us choose
arbitrarily a Hirzebruch-Jung continued fractions [x1, . . . , xu] where xi ≥ 2 for all
i. Then

α

β
=

1

a
(1, ε′a)− (λ− 1)− 1

b
(1, εb)− [x1, . . . , xu]

is the continued fraction of some c.q.s., and so if α
α−β = [y1, . . . , yv] we have

[yv, . . . , y1]− (1)− 1

a
(1, ε′a)− (λ− 1)− 1

b
(1, εb)− [x1, . . . , xu] = 0.

Therefore we can consider

[yv, . . . , y1]− (bi3 = 2)− 1

a
(1, ε′a)− (bi2 = λ)− 1

b
(1, εb)− [bi1 = x1 + 1, . . . , xu]

as the continued fraction that defines an M-resolution with di3 = di2 = di1 = 1.
The key for a similar construction in the case λ = 2 is to prove that 1

a (1, ε
′
a) −

(1) − 1
b (1, εb) contracts (to a c.q.s. or a smooth point), which is proved in the next

lemma. □

Lemma 6.14. Given an extremal P-resolution [
(

a
a−εa

)
] − (1) − [

(
b
εb

)
], then 1

a (1, ε
′
a) −

(1)− 1
b (1, εb) contracts.



CATEGORICAL ASPECTS OF THE KOLLÁR–SHEPHERD-BARRON CORRESPONDENCE 37

Proof. Let us write a
εa

= [x1, . . . , xp], a
a−εa

= [y1, . . . , yq], b
εb

= [z1, . . . , zu], and
b

b−εb
= [w1, . . . , wv]. Then by Lemma 2.5 we have

[

(
a

a− εa

)
]−(1)− [

(
b

εb

)
] = [y1, . . . , yq+xp, . . . , x1]−(1)− [z1, . . . , zu+wv, . . . , w1].

Hence, if [xp, . . . , x1] − (1) − [z1, . . . , zu] does not contract, then [z1, . . . , zu] =
[y1, . . . , yq, t1, . . . , tl], where [t1, . . . , tl] is the Hirzebruch-Jung continued fraction
of some c.q.s. This is because of the algorithm that constructs Wahl chains, and we
are assuming that xp is the first curve that becomes 0 (so that it does not contract).
But now we can compute that the intersection of the canonical class with the im-
age of the (−1)-curve in the original extremal P-resolution is−1+ a−εa

a + b−εb
b > 0.

On the other hand, the existence of [t1, . . . , tl] gives a
a−εa

> b
εb

, which is a contra-
diction. Therefore we do have contraction. □

This finishes the proof of Proposition 6.11 □

Example 6.15. Let us quickly classify triangles, i.e. a = b = c = 1. In this case
λ = 2, and we have that the zero continued fraction is

[bs, . . . , bi3 − 1, 1, bi1 − 1, . . . , b1] = 0,

and so α
β = [bi2 − 1, . . . , bs] and α

α−β = [bi1 − 1, . . . , b1]. The smallest case is 12
12−7 =

[3, 2, 3] with M-resolution is (2)− [4]− (2).

Example 6.16. Not any a, b, c with gcd(a, b) dividing c is possible. For example, if
b = 1 and a = 2, then c = 2λ− 3 and so c must be odd.

7. N-RESOLUTION OF THE MINIMAL RESOLUTION

Let 0 < Ω < ∆ be coprime integers, and let P ∈ W be a c.q.s. of type 1
∆ (1,Ω).

In this section we specialize our results to the case when the M-resolution W+ is
the minimal resolution ofW , i.e. all points Pi’s are smooth points. The correspond-
ing smoothing Y ⇝W is by definition a smoothing from the Artin component.

Example 7.1. Suppose W+ is an extremal minimal resolution, i.e. W+ → W is
a contraction of a single smooth rational curve Γ of self-intersection −∆ ≤ −2.
A concrete example of a surface W satisfying Assumption 1.10 is the projective
cone P(1, 1,∆) over a rational normal curve of degree ∆. We take a ruling of the
cone as a divisor Ā. The surface W+ is the Hirzebruch surface with a negative
curve Γ and a rulingA. Its general smoothing Y is either P1×P1 or Blp P2 depend-
ing on parity of ∆. The derived category Db(W ) contains an admissible subcate-
gory ⟨AW+

1 ,AW+

0 ⟩, which in this case is just generated by an exceptional collection
⟨OW+(−A− Γ),OW+(−A)⟩, i.e. Kawamata sheaves on W+ are line bundles. This
subcategory deforms to a subcategory ⟨E1, E0⟩ ⊂ Db(Y ), i.e. in this case Hacking
bundles are line bundles equal to the corresponding Kawamata bundles. While
ExtkW+(O(−A − Γ),O(−A)) ̸= 0 for k = 0, 1, we have HomY (E1, E0) = 0 because
a general smoothing Y does not contain a lift of a negative curve Γ ⊂ W . Thus
Extk(E1, E0) = 0 for k ̸= 1 and Ext1(E1, E0) = Cδ as predicted by Theorem 1.12.
Here δ = ∆− 2. The N-resolution W− is equal to W+ if δ = 0, otherwise it is

[

(
δ + 1

1

)
]− (1)− [∗] = [δ + 3, 2, . . . , 2]− (1)− [∗],

where [∗] is a smooth point. The corresponding exceptional collection ⟨Ē1, Ē0⟩ on
Y is strong and contains a line bundle Ē1 = E0 and a vector bundle Ē0 of rank
δ + 1 = ∆ − 1, which is the universal extension of E0 by E1. The Kawamata
bundle F̄ on W is the maximal iterated extension of OW (−Ā) by itself. It has
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rank ∆. The Kalck–Karmazyn algebra End(F̄ ) is commutative and isomorphic
to C[z1, . . . , zδ+1]/(z1, . . . , zδ+1)

2 [?KK]. By Theorem 1.12, F̄ deforms to the Kawa-
mata bundle F = Ē0 ⊕ Ē1 on Y . End(F̄ ) deforms to the algebra End(Ē0 ⊕ Ē1)
of representations of the Kronecker quiver with δ arrows. The case ∆ = 4 is es-
pecially interesting because this is the only case when W = P(1, 1, 4) has another
component in the versal deformation space: a Q-Gorenstein smoothing to Y = P2.
In this case W+ = W− = W and the Hacking bundle E has rank 2 and is iso-
morphic to Ω1

P2(1). The Kawamata bundle F̄ of rank 4 deforms to E⊕2 and the
Kalck–Karmazyn algebra C[z1, z2, z3]/(z1, z2, z3)2 to End(E⊕2) = Mat2(C).

Example 7.2. In general, we write the Hirzebruch-Jung continued fraction as

∆

Ω
= [2, . . . , 2︸ ︷︷ ︸

y1

, x1, 2, . . . , 2︸ ︷︷ ︸
y2

, x2, . . . , 2, . . . , 2︸ ︷︷ ︸
ye−1

, xe−1, 2, . . . , 2︸ ︷︷ ︸
ye

],

where yi ≥ 0 and xi ≥ 3 for all i. This describes the minimal resolution W+. We
now compute the N-resolution W− of W+ explicitly. The dual fraction is

∆

∆− Ω
= [y1 + 2, 2, . . . , 2︸ ︷︷ ︸

x1−3

, y2 + 3, 2, . . . , 2︸ ︷︷ ︸
x2−3

, y3 + 3, . . . , ye−1 + 3, 2, . . . , 2︸ ︷︷ ︸
xe−1−3

, ye + 2].

Using the notation of Section 2, we have that the di ̸= 0 are exactly in the positions
of the yi. In particular, if di1 , . . . , die are the di ̸= 0 with i1 < . . . < ie, then i1 = 1,
ie is the index of the last position, and dik = yk +1 for all k. Note that the non zero
δ̄ are computed via [2, . . . , 2︸ ︷︷ ︸

xi−3

], and so they are equal to xi−2. We have that the data

n̄ik , āik for the distinct Wahl singularities in the N-resolution is

n̄ik
n̄ik − āik

= [y1 + 2, 2, . . . , 2︸ ︷︷ ︸
x1−3

, y2 + 3, . . . , yk−2 + 3, 2, . . . , 2︸ ︷︷ ︸
xk−2−3

, yk−1 + 3, 2, . . . , 2︸ ︷︷ ︸
xk−1−3

]

for k > 1, and smooth point for k = 1. It follows that a general smoothing Y of W
carries a strong exceptional collection of Hacking bundles

⟨Ē1
1 , . . . , Ē

y1+1
1 , Ē1

2 , . . . , Ē
y2+1
2 , . . . Ē1

e , . . . , Ē
ye+1
e ⟩.

Here Ej
1’s are line bundles and rkEj

k = n̄ik for k > 1. Furthermore, bundles Ej
k

with the same k are orthogonal. Note that we have

∆ = n̄e(ye + 1) + n̄e−1(ye−1 + 1) + . . .+ n̄2(y2 + 1) + (y1 + 1)

as predicted by Theorem 1.12. Indeed, let us consider the matrix

M =



ye + 2 −1
−1 2 −1

. . .
−1 2 −1

−1 ye−1 + 3 −1
. . .
−1 2 −1

−1 y1 + 2


,

whose diagonal has the sequence

{ye + 2, 2, . . . , 2︸ ︷︷ ︸
xe−1−3

, ye−1 + 3, . . . , y3 + 3, 2, . . . , 2︸ ︷︷ ︸
x2−3

, y2 + 3, 2, . . . , 2︸ ︷︷ ︸
x1−3

, y1 + 2}.
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Its determinant is equal to ∆. On the other hand, we can use the linearity of the de-
terminant on its first row (ye+2,−1, 0, . . . , 0) = (1,−1, 0, . . . , 0)+(ye+1, 0, 0, . . . , 0),
via the sum M =M1 +M2 where M1 corresponds to the continued fraction

[1, 2, . . . , 2︸ ︷︷ ︸
xe−1−3

, ye−1 + 3, . . . , y3 + 3, 2, . . . , 2︸ ︷︷ ︸
x2−3

, y2 + 3, 2, . . . , 2︸ ︷︷ ︸
x1−3

, y1 + 2],

and det(M2) = (ye + 1)n̄e. But then det(M1) is the numerator of the continued
fraction

[ye−1 + 2, . . . , y3 + 3, 2, . . . , 2︸ ︷︷ ︸
x2−3

, y2 + 3, 2, . . . , 2︸ ︷︷ ︸
x1−3

, y1 + 2],

by contracting the 1 and the consecutive 2’s in the diagonal of M1. Now we use
induction on e to write the claimed formula.

Example 7.3. Let us realize Example 7.2 in a projective surface, where we can ap-
ply Theorem 1.12. In fact the following construction from [PPSU, Section 3] works
for any M-resolution W+ of P ∈W and gives a normal rational projective surface
W+ that satisfies Assumption 1.10. Its Q-Gorenstein smoothing is the compacti-
fied Milnor fiber of the corresponding smoothing of P ∈W . Let F1 be the blow-up
of P2, with (−1)-curve S0. We have the fibration F1 → P1 where S0 is a section.
Let F be a fiber. Choose another section S∞ disjoint from S0. The configuration
S0, F, S∞ gives us a chain of rational curves with self-intersections {−1, 0,+1}.

Let us come back to the notation ∆
Ω = [e1, . . . , eℓ] and ∆

∆−Ω = [b1, . . . , bs]. Then,
by doing blow-ups over S0 ∩F , the chain S0, F, S∞ can be transformed into a new
chain of rational curves with self-intersections

{+1, 1− bs,−bs−1, . . . ,−b1,−1,−e1,−e2, . . . ,−eℓ}

where the first curve on the left corresponds to the proper transform of S∞, and
the last curve on the right to the proper transform of S0. Let π : X → F1 be the cor-
responding composition of blow-ups. Let G be the reduced total pull-back by π of
S0 + F + S∞. Then H2(X,TX(− logG)) = 0 by [PPSU, Lemma 3.3]. The contrac-
tion of [e1, . . . , es] defines our surfaceW where P is the singularity. By blowing-up
adequately X over the chain [e1, . . . , es], we obtain a surface X̃ and a contraction
X̃ → W+, giving the M-resolution W+ → W over P . Then W+ satisfies Assump-
tion 1.10 (we can use as A the “middle” (−1)-curve in the original configuration in
X). A Q-Gorenstein smoothing Y of W+ is the compactified Milnor fiber. We now
can apply Theorem 1.12 to Y .

Example 7.4. In the notation of Example 7.2, if y1 = . . . = ye = 0 then the algebra
R̂ of Theorem 1.12 is the representation algebra of a quiver that contains a Dynkin
subquiver of type Ae−1. It follows by Example 7.3 that the derived category of a
smooth projective rational surface can contain as an admissible subcategory the
derived category of representations of a quiver with a path of an arbitrary length.
This answers the question (Q4) from [BR].

8. S.O.D.’S FOR MAXIMALLY DEGENERATED DOLGACHEV SURFACES

In examples of Section 7, the surfaceW and its Q-Gorenstein smoothing Y were
rational. In this section, W will be rational but Y will be a Dolgachev surface.

We start with a topological fact which will allow us to guarantee that Assump-
tion 1.10 part (3) is satisfied in our examples.

Lemma 8.1. Let Z be a surface with only c.q.s. {Q0, . . . , Qs} of type 1
mi

(1, qi), and with
H1(Z,OZ) = H2(Z,OZ) = 0. Let Zo := Z \ {Q0, . . . , Qs}. If H1(Z

o,Z) = 0, then
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there is a short exact sequence

0→ Pic(Z)→ Cl(Z)→
s
⊕
i=0

Cl(Qi ∈ Z)→ 0,

where Cl(Qi ∈ Z) ≃ Z/miZ is the local class group of Qi ∈ Z.

Proof. We have the long exact sequence of the pair (Zo,∪Li) for integral homology
groups, where Li is the link of Qi ∈ Z:
s
⊕
i=0

H2(Li,Z)−→H2(Z
o,Z)−→H2(Z,Z)−→

s
⊕
i=0

H1(Li,Z)−→H1(Z
o,Z)−→H1(Z,Z)

Since Hi(Z,OZ) = 0 for i = 1, 2, we have H2(Z
0,Z) = Pic(Z), H2(Z,Z) =

Cl(Z), and H1(Li,Z) is the local class group of Qi ∈ Z, see [K4, Prop.4.2 and 4.11].
The claim follows sinceH1(Li,Z) = Z/miZ,H2(Li,Z) = 0, andH1(Z

o,Z) = 0. □

Corollary 8.2. If W
o

is simply-connected, then W satisfies Assumption 1.10 (3).

Let p, q ≥ 2 be coprime integers, where q is not divisible by 3. We first construct
a resolution X of W by blowing up a rational elliptic fibration S with a section σ0
and a I9 fiber (Kodaira notation). There is a unique such elliptic fibration [P1]. We
further blow-upX to get a resolution X̃ of anM -resolutionW+ ofW . Finally,Dp,q

is a Q-Gorenstein smoothing ofW+. The diagram summarizes the construction:

P2 S

��

oo Xoo X̃oo // W+

��

Dp,q
oo

P1 W

Here S → P2 is the resolution of the base points of the cubic pencil which de-
fines the elliptic fibration S → P1. Let us choose one of the I1 fibers of S, and let
π : X → S be the blow-up of S as indicated in Figure 11, where A2

1 = B2
1 = −1,

A2
i = B2

i = −2 for i > 1. The curves G0, . . . , G9 are proper transforms of irre-
ducible components of I9 and I1 fibers. The curves σ0, σ1, σ2 in Figure 11 are the 3

sections of S → P1. Note that ρ(X) = 10+p−1+q−1 = p+q+8. The surfaceW is

GnFÉ ¥32
G
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Gq•

•

•
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•¡Bq-2°"

G
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8 Bq-1
67

52

51

gqq
"↳

°
"

q

FIGURE 11. X as a blow-up of S (I9 + 3I1)

obtained by contracting the chainB2, . . . , Bq−1, Gq, σ0, G0, G1, . . . , G8, Ap−1, . . . , A2 ⊂
X , which corresponds to the continued fraction

[2, . . . , 2︸ ︷︷ ︸
q−2

, q + 2, 1, p+ 1, 2, . . . , 2︸ ︷︷ ︸
7

, 3, 2, . . . , 2︸ ︷︷ ︸
p−2

].

In particular, W has Picard number 1.
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Proposition 8.3. The surface W
o

is simply-connected.

Proof. We are going to use Mumford’s computation [M, p.99] on the resolution
X →W , which is not minimal. To show that π1(W

o
) = {1}, we use Van-Kampen’s

Theorem for a neighborhood of P and its complement. As π1(W ) = {1}, it suffices
to show that a generator loop around the exceptional divisor is homotopically
trivial in the complement of the exceptional divisor. We note that loops α and β
around the ending (−2)-curvesA2 andB2 respectively are (each) generators of the
fundamental group of the link of P ∈W . Let γ be a loop around σ0. By Mumford’s
computation, we have that α9p2

if conjugate to γ, as well as βq2 . We claim that γ
is homotopically trivial in the complement of the exceptional divisor. Given the
claim, α9p2

and βq2 are trivial. But because gcd(9p2, q2) = 1, we have that both
loops α and β are actually trivial as had to be demonstrated.

To prove the claim we use that σ0 intersects another I1 fiber transversally at one
point. It follows that γ is a loop around a puncture in the nodal cubic punctured

FIGURE 12. Homotopy from γ to identity

in one point. As Figure 12 shows, this loop is homotopically trivial. □

We now consider a composition of blow-ups X̃ → X to obtain 9 Wahl chains of
type [p + 2, 2, . . . , 2] over the I9 fiber together with the Wahl chain [q + 2, 2, . . . , 2]
from the chosen I1 fiber. The Wahl chains [p+2, 2, . . . , 2] have the proper transform
ofGi as−(p+2)-curve for i = 0, . . . , 8. The contraction of these Wahl chains defines
the surfaceW+ with nine 1

p2 (1, p−1) and one 1
q2 (1, q−1) singularities. The surface

W+ is an M -resolution of W with curves Γi, i = 1, . . . 9 defined as follows: Γ1 is
the image of σ0, the rest are the images of the (−1)-curves connecting the Wahl
chains [p + 2, 2, . . . , 2]. The construction of Dp,q via Q-Gorenstein smoothings of
surfaces W+ was considered in [U, Cor. 4.3]. In particular, H2(W,TW ) = 0.

Now we can apply Theorem 1.12 to prove the following.

Theorem 8.4. A Dolgachev surface Dp,q has a H.e.c. E9, . . . , E0 associated with W+

and a strong H.e.c. Ē9, . . . , Ē0 associated with the N-resolution W−, where
(1) δ1 = pq − p − q and δi = 0 for i = 2, . . . , 9, in particular End(Ē9 ⊕ . . . ⊕ Ē0) is

the endomorphism algebra of the quiver with vertices P̄0, . . . , P̄9 and with pq− p− q
arrows connecting each P̄i to P̄9 for i = 0, . . . , 8.

(2) n̄i = rank Ēi and Wahl singularities in the N-resolution can be computed using con-
tinued fractions n̄2

k

n̄kāk−1 = [2, . . . , 2︸ ︷︷ ︸
q−2

, q + 1, p + 1, 2, . . . , 2︸ ︷︷ ︸
p−4

, 3, 2, . . . , 2︸ ︷︷ ︸
q−2

, q]

for k = 0, . . . 8 and n̄2
9

n̄9ā9−1 = [2, . . . , 2︸ ︷︷ ︸
q−2

, q + 2].
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(3) The orthogonal complement of ⟨Ē9, . . . , Ē0⟩ ⊂ Db(Y ) has Mukai lattice Z2 with
Euler pairing given by the Gram matrix(

−1 3(pq − p− q)
0 −1

)
. (8.1)

This lattice has a full numerical exceptional collection if and only if p = 3, q = 2.

Example 8.5. For p = 3, q = 2, we obtain a M-resolution

[4]− (1)− [5, 2]− (1)− [5, 2]− (1)− . . .− (1)− [5, 2],

and a N-resolution

[3, 5, 2]− (1)− [3, 5, 2]− (1)− . . .− (1)− [3, 5, 2]− (1)− [4].

Proof. We first compute the numerical data. Let us assume p, q ≥ 3. Then the
c.q.s. P ∈ W is ∆

Ω = [2, . . . , 2︸ ︷︷ ︸
q−2

, q + 1, p, 2, . . . , 2︸ ︷︷ ︸
7

, 3, 2, . . . , 2︸ ︷︷ ︸
p−2

], and so the dual fraction

is ∆
∆−Ω = [q, 2, 2, . . . , 2︸ ︷︷ ︸

q−2

, 3, 2, . . . , 2︸ ︷︷ ︸
p−3

, 10, p], where 2 is the position of di1 = 1, and

10 is the position of di2 = 9. In this way n̄k

n̄k−āk
= [q, 2, . . . , 2︸ ︷︷ ︸

q−2

, 3, 2, . . . , 2︸ ︷︷ ︸
p−3

] for all

k = 0, . . . 8, and n̄9

n̄9−ā9
= [q]. Therefore, the Wahl singularities in the N-resolution

have continued fractions as in part (2). The only δ ̸= 0 is δ1 = qp− p− q, since it is
the numerator of [2, . . . , 2︸ ︷︷ ︸

q−3

, 3, 2, . . . , 2︸ ︷︷ ︸
p−3

]. It remains to compute the Mukai lattice.

Recall that if Z is a rational projective normal surface then we have an isomor-
phism of abelian groups (r, c1, χ) : G0(Z) → Z ⊕ ClZ ⊕ Z, where G0(Z) is the
Grothendieck group of Db(Z), see [KKS, Lemma 4.2, Remark 4.3].

Lemma 8.6. Let X be a resolution of singularities (not necessarily minimal) with the
exceptional divisor C1, C2, . . . , Cs of a c.q.s. surface W satisfying Assumption 1.10. The
Mukai lattice of BW is isomorphic to a sublattice in K0(X) formed by elements β that
satisfy the equations χ(β) = 0, r(β) = −C1 · c1(β), and Ci · c1(β) = 0 for i > 1.

Proof. We recall that the Euler pairing χ(α, β) =
∑

(−1)i exti(α, β) has a form

χ(α, β) = r(α) ch2(β)− c1(α) · c1(β) + r(β) ch2(α)

+
1

2
(r(β)c1(α)− r(α)c1(β)) ·KX + r(α)r(β)χ(OX).

In our case χ(OX) = 1. The subcategory BW is the orthogonal complement to
the exceptional collection of line bundles OX(−Cs − . . .− C1 − C0),OX(−Cs−1 −
. . . − C1 − C0), . . . ,OX(−C1 − C0),OX(−C0), where C0 is the strict transform of
Ā in W (Assumption 1.10 (3)). As tensoring by OX(C0) is an autoequivalence
of Db(X), for this computation we consider the orthogonal complement of Ls :=
OX(−Cs−. . .−C1), Ls−1 := OX(−Cs−1−. . .−C1), . . . , L1 := OX(−C1), L0 := OX ,
which have classes r(αi) = 1, c1(αi) = Li, ch2(αi) =

L2
i

2 . It follows that

ch2(β)− Li · c1(β) + r(β)
L2
i

2
+

1

2
(r(β)Li − c1(β)) ·KX + r(β) = 0

We start with L0 = 0, which gives ch2(β)− 1
2c1(β) ·KX + r(β) = 0. The remaining

equations then become −2Li · c1(β) + r(β)(K + Li) · Li = 0. Since pa(Li) = 0 for
every i > 0, the equation in fact is simply Li · c1(β) + r(β) = 0. Finally, notice that
Li − Li−1 = Ci, which gives equations in the statement. □
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For any rational elliptic fibration S with a section σ0, Pic(S) = −E8⊕⟨1⟩⊕⟨−1⟩,,
where ⟨−1⟩ is generated by σ0 and ⟨1⟩ is generated by σ0+F , where F ∼ −KS is a
general fiber. Furthermore, −E8 contains a sublattice T generated by components
of reducible fibers that do not intersect σ0.

In our case we consider the basisG1, G2, G3, G4, G5, G6, G7, v := σ1−σ2 of−E8.
Let β ∈ B. By Lemma 8.6, we have that (r(β), c1(β), χ(β)) = (−B2 ·B,B, 0),where
B satisfies Ci ·B = 0 for i > 1 and C1 := B2. Let us write

B = z1G1 + z2G2 + z3G3 + z4G4 + z5G5 + z6G6 + z7G7+

xv + y(σ0 + F ) + zσ0 +

q−1∑
i=1

xiβi +

p−1∑
i=1

yiαi,

where αi = A1 + . . . + Ai and βj = B1 + . . . + Bj for i = 1, . . . , p − 1 and j =
1, . . . , q − 1. By intersecting B with

C2 := B3, C3 := B4, . . . , Bq−1, G9, σ0, G0, G1, G2, . . . , G8, Ap−1, . . . , Cp+q+7 := A2,

we obtain the linear system

0 = x2 − x3, 0 = x3 − x4, . . . , 0 = xq−2 − xq−1,

0 = y + z + x1 + x2 + . . .+ xq−2 + 2xq−1, 0 = −z
0 = z1 + y + z + y1 + y2 + . . .+ yp−1, 0 = −2z1 + z2, 0 = z1 − 2z2 + z3,

0 = z2 − 2z3 + z4 + x, 0 = z3 − 2z4 + z5, 0 = z4 − 2z5 + z6,

0 = z5−2z6+z7−x, 0 = z6−2z7, 0 = z7+yp−1, 0 = −yp−1+yp−2, . . . , 0 = −y2+y1,
which has solutions y1 = . . . = yp−1 = −3z5, x2 = . . . = xq−1, x = −8z5, y = 3pz5,
z = 0, x1 = −3pz5 − (q − 1)x2, z1 = −3z5, z2 = −6z5, z3 = −9z5, z4 = −4z5,
z6 = 6z5, and z7 = 3z5. This solution can be expressed via the Z-basis

v1 := −3G1−6G2−9G3−4G4+G5+6G6+3G7−8v+3p(σ0+F )−3pB1−3
p−1∑
i=1

αi,

and v2 := −(q−1)B1+
∑q−1

i=2 βi. Using Lemma 8.6, these vectors can be considered
as generators ṽ1, ṽ2 of B by setting χ(ṽi) = 0, rank(ṽ1) = 3p, and rank(ṽ2) = q. We
have the intersection numbers v1 ·KX = 3(p − 1), v1 · v1 = −9p + 1, v2 ·KX = 1,
v2 ·v2 = −q2+ q+1, and v1 ·v2 = −3p(q−1). Therefore χ(ṽ1, ṽ1) = −1, χ(ṽ2, ṽ2) =
−1, χ(ṽ1, ṽ2) = 3(pq−p−q), and χ(ṽ2, ṽ1) = 0, and so the Gram matrix is (8.1). □
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[H2] , Exceptional bundles associated to degenerations of surfaces, Duke Math. J. 162 (2013), no. 6,
1171–1202.

[H3] , Compact moduli spaces of surfaces and exceptional vector bundles, Compactifying moduli
spaces, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer, Basel, 2016, pp. 41–67.
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