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We show that the log canonical bundle, κ, of M0,n is very ample, show the homogeneous
coordinate ring is Koszul, and give a nice set of rank 4 quadratic generators for the
homogeneous ideal: The embedding is equivariant for the symmetric group, and the
image lies on many Segre embedded copies of P

1×· · ·×P
n−3, permuted by the symmetric

group. The homogeneous ideal of M0,n is the sum of the homogeneous ideals of these
Segre embeddings.
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1. Introduction and Statement of Results

Let MS = M0,n be the moduli space of stable rational n-pointed curves, with
marked points labeled by the elements of the finite set S, with cardinality |S| = n,
over an algebraically closed field k of characteristic zero. Our goal is to study the
equations of MS in its most natural embedding. For a finite set T , let WT be the
standard irreducible representation of the symmetric group Aut(T ), i.e. T -tuples of
integers that sum to zero. LetB ⊂MS be the boundary, i.e.B := ∂MS := MS\MS .

Theorem 1.1. The log canonical line bundle

κ := O(KMS
+B)

is very ample on MS. A flag of subsets

S3 ⊂ S4 ⊂ · · · ⊂ Sn = S

of S with |Sk| = k canonically induces an identification

H0(MS , κ) = WS3 ⊗WS5 ⊗ · · · ⊗WSn−1 ,
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and MS ⊂ P(H0(MS , κ)∗) factors through the Segre embedding

P(W ∗
S3

) × P(W ∗
S4

) × · · · × P(W ∗
Sn−1

) ⊂ P(H0(MS , κ)∗).

The homogeneous ideal of MS is the sum of the homogeneous ideals for all Segre
embeddings over all flags of subsets, i.e. we have the ideal theoretic equality

MS =
⋂

S3⊂S4···⊂S
P(W ∗

S3
) × P(W ∗

S4
) × · · · × P(W ∗

Sn−1
) ⊂ P(H0(MS , κ)∗).

The coordinate ring R :=
⊕

n≥0H
0(MS , κ

⊗n) has very nice properties:

Theorem 1.2. The algebra R is Koszul, i.e. the trivial R-module k has a resolution
of form

· · · → R[−k]ak → R[−(k − 1)]ak−1 → · · · → R[−1]a1 → R→ k → 0.

The variety MS is projectively normal, i.e. the natural map

Sym•(R1) → R

is surjective. Its kernel is generated by quadrics of rank at most 4.

The embedding

MS ⊂ P := P1 × · · · × Pn−3

has nice properties as well. Let

L := OP1(1) � · · · � OPn−3(1)

and let B be the coordinate ring

B :=
⊕
n≥0

H0(P,L⊗n).

Theorem 1.3. The ring R is the homogeneous coordinate ring of MS ⊂ P. The
embedding satisfies the analog of Green–Lazarsfeld’s property Np for all p, i.e. the
minimal resolution of R over B is of form

· · · → B[−k]ak → · · · → B[−2]a2 → B → R → 0.

Remark 1.4. The analogous statement for

MS ⊂ P(H0(κ)∗)

fails. For example M0,5 ⊂ P5 fails to satisfy N3. In fact the only non-degenerate
irreducible subvarieties X of projective space that satisfy Np for all p are varieties
of minimal degree degX = 1+codimX , i.e. quadric hypersurfaces, rational normal
scrolls, or a cone over the Veronese surface in P5, see [6, 7].

We note that the compactification MS ⊂MS is canonical, indeed the so called
log canonical compactification of (the log minimal variety) MS (see [20]), and the
coordinate ring R is the log canonical ring of MS .
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The above results allow us to construct MS from MS in a purely topological
and combinatorial way: Dropping the last point gives a tautological fibration

π : M0,n →M0,n−1

with fiber P1\{p1, . . . , pn−1} for the distinct points p1, . . . , pn−1.
Arnold [1] observed that the Leray spectral sequence degenerates at the E2 term

inducing a canonical isomorphism

Hn−3(M0,n,Z) = Hn−4(M0,n−1,Z) ⊗H1(P1\{p1, . . . , pn−1},Z).

See Theorem 2.5. By induction we have

Hn−3(M0,n,Z) =
n−1⊗
i=3

H1(P1\{p1, . . . , pi},Z).

Note that H1(P1\{p1, . . . , pi},Z) is naturally identified with Wi, the standard irre-
ducible representation of the symmetric group Aut{p1, . . . , pi}. We have in partic-
ular a tautological identification

Hn−3(M0,n,Z) = W ∗
3 ⊗ · · · ⊗W ∗

n−1.

The symmetric group Sn acts naturally on M0,n, and so it acts on the left-hand side
of the above equality. This representation was introduced by Kontsevich [14] in the
context of (cyclic) Lie operads. The action does not preserve the tensor product,
but by Theorem 1.1 (see Theorem 2.5) we have

Corollary 1.5. Let X be the set of elements in

Hn−3(M0,n,Z) = W ∗
3 ⊗ · · · ⊗W ∗

n−1

all of whose translates by the symmetric group are totally decomposable (i.e. of form
x3⊗x2⊗· · ·⊗xn−1). X is closed under scalar multiplication and so defines a subset

P(X) ⊂ P(Hn−3(M0,n,C)).

This subset is canonically identified with M0,n, embedded by the full log canonical
series |KM0,n

+ ∂M0,n| of M0,n.

Thus in particular we see that the compactification M0,n ⊂M0,n can be canoni-
cally recovered from the homology of the spacesM0,k together with their symmetric
group action, i.e. from the cyclic Lie operad [9].

The paper is organized as follows: Sec. 8 contains the proof of Theorem 1.1.
Section 7 contains the proof of Theorems 1.2 and 1.3. The main tools are the
syzygy bundles on MS , introduced in Sec. 4, and strong vanishing theorems they
satisfy, proved in Sec. 6.
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2. Preliminary Results

Throughout the paper we will make use of the following nonstandard notation:

Notation 2.1. We will say that a module (or sheaf) M is extended from modules
(or sheaves) with a given property if there is a finite filtration

0 = M r ⊂M r−1 · · · ⊂M1 ⊂M0 = M

such that each of the quotients M i/M i+1 has the given property. Similarly, we say
that M is extended from the collection of submodules (or sheaves) M i/M i+1.

For a subset T ⊂ S, let

πT : MS →MT

be the tautological fibration given by dropping the points of S\T (and stabilizing).
Let s ∈ S and let S′ = S\{s}. πS′ has n − 1 tautological sections, which we

indicate by the elements of S′. Let

ψs := ωπS′ (S′)

(where S′ ⊂MS here means the union of the graphs of the tautological sections).
For any subset T ⊂ S with |T |, |S\T | ≥ 2, let δT be the corresponding boundary

divisor of MS .
We refer to [17], [16], and [8] for background material on MS . We will make

in particular frequent use of the formulae in [8] for pullbacks of tautological line
bundles under the canonical fibrations πT . In this section, k may have arbitrary
characteristic. Throughout the paper, we will often abuse notation and use the
same symbol for a sheaf and its pullback under some morphism.

Notation 2.2. For a subset T ⊂ S, let

ST := S\T.
In particular Ss := S\{s} for s ∈ S.

Lemma 2.3. Formation of πT t∗(ψt) commutes with all pullbacks, and for any
vector bundle F on MT t there are canonical identifications

πT t∗(π∗
T t(F ) ⊗ ψt) = F ⊗k WT t

H0(MT , π
∗
T t(F ) ⊗ ψt) = H0(MT t , F ) ⊗kWT t

induced by taking residues along the tautological sections T t.
Let [C] ∈MT be a stable T -pointed rational curve. Taking residues at the points

t ∈ T gives a canonical identification

H0(C, ωC(T )) = WT .

Proof. Let π := πT t . We have the natural exact sequence

0 → ωπ → ωπ(Σ) → ωπ(Σ)|Σ → 0
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where Σ means the disjoint union of the sections T t. Taking residues gives a canon-
ical identification of the right-hand term with OΣ. Note that ψt = ωπ(Σ) by def-
inition. H1(C, ωC(T t)) = 0 for a T t-pointed stable curve of genus 0, so R1π∗(ψs)
vanishes, and Riπ∗(ψs) are vector bundles and their formation commutes with all
base extensions, for all i, by the semi-continuity theorem.

Applying π∗ and using the duality identification R1π∗(ωπ) = O we obtain a
natural exact sequence

0 → π∗(ψt) →
⊕
x∈T t

Oδx,t → OMT t
→ 0

where the map Ox,t →MT t is the identity (note that δx,t is the section correspond-
ing to x ∈ T t). The identification π∗(ψt) = WT t ⊗O. The sheaf R1π∗(ψt) is zero.
The rest follows from this and the projection formula.

Definition 2.4. For a subset F ⊂ S, let κF := π∗
F (κ) and LF := κ⊗ κ∗F .

Lemma 2.5. Let F ⊂ T ⊂ S be subsets, with |F | ≥ 3. Let

T = T|T | ⊂ T|T |+1 · · · ⊂ T|S| = S

be a flag of subsets, and define ti := Ti\Ti+1 for i > |T |. Then

LF = π∗
T (LF ) ⊗

⊗
|S|≥i>|T |

π∗
Ti

(ψti).

Proof. Note by definitions

LF ⊗ π∗
T (LF ) = κ⊗ κ∗T .

This we compute by induction on |S\T |. Its enough to consider the case T = Ss,
and so prove the formula

π∗
Ss(κ) ⊗ ψs = κ (2.1)

which is given by wedge product of forms.

Corollary 2.6. For s ∈ S there is a canonical identification

H0(MS , κ) = H0(MSs , κSs) ⊗H0(MS , ψs).

A flag of subsets as in Theorem 1.1 canonically induces identifications

H0(MS , κ) =
⊗
n≥i≥4

H0(MSi , ψsi) =
⊗
n≥i≥4

WSi−1 .

Proof. Immediate from Lemma 2.5 and Lemma 2.3.

Corollary 2.7. The line bundle LF is globally generated and big. κ is very ample.

Proof. Consider first LF . By (2.5) and induction it is enough to consider ψi. Global
generation of ψi is due to Kapranov, the associated map is his birational contraction

MS → P|S|−3.
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See [16]. Now it follows from (2.6) and induction, that κ is globally generated, and
the map given by global sections

MS → P(H0(MS , κ)∗)

factors through the Segre embedding

MSs × P(H0(MS , ψs)∗) ⊂ P(H0(MSs , κ)∗) × P(H0(MS , ψs)∗).

To prove the map

MS →MSs × P(H0(MS , ψs)∗)

is a closed embedding, it is enough to prove this for the restriction to each fiber
C = π−1

Ss ([C]) of πSs . But by Lemma 2.3 restriction gives a canonical identification

H0(MS , ψs) = H0(C, ωC(Ss))

and one checks easily that on the stable Ss-pointed curve C, ωC(Ss) is very ample.

Next, we prove a topological analog of Corollary 2.6.

Corollary 2.8. Given a, b ∈ T there is a unique section

ω(ab) ∈ H0(C, ωC(T ))

which has residue 1 at a, −1 at b, and is regular everywhere else. Let a, b ∈ F ⊂ T

with |F | ≥ 3 and let

πF : C → C′

be the stabilization of (C,F ). Pullback induces canonical identifications

H0(C′, ωC′(F )) = H0(C, ωC(F )) ⊂ H0(C, ωC(T ))

under which ω(ab) is sent to ω(ab).

Proof. This is immediate from Lemma 2.3 and the definition of stabilization.

Lemma 2.9. Given distinct a, b ∈ Ss there is a a global 1-form

ω ∈ H0(MS ,Ω1(log ∂MS))

whose restriction to C ⊂MS is ω(ab), for all [C] ∈MSs .

Proof. We have a commutative diagram

MS
πF∪s−−−→ MF∪s = C′ = P1

πSs

� πF

�
MSs

πF−−−→ MF = pt

where C′ is as in Lemma 2.8. Now we take for ω the pullback of ω(ab) from C′.
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Theorem 2.10. Let p1, . . . , pn−1 be distinct points in P1. Over the complex
numbers there are vector space identifications

H•(Mn,C) = H•(Mn−1,C) ⊗H•(P1\{p1, . . . , pn−1},C)

H•(Mn,C) =
n−1⊗
i=3

H•(P1\{p1, . . . , pi},C)

and canonical identifications

Hn−3(Mn,C) =
n−1⊗
i=3

H1(P1\{p1, . . . , pi},C)

Hk(Mn,C) = H0(Ωk(log ∂Mn))

Hn−3(Mn,C) = H0(Mn, κ).

Proof. For [C] ∈ MSs and fixed a ∈ Ss the differential forms ω(ab), b ∈ Ss,a give
a basis of

H0(C, ωC(Ss)) = H1(C\Ss,C).

By Lemma 2.9 these are restrictions of global log forms, and in particular global
cohomology classes. Thus by induction and the Leray–Hirsch theorem, [3], there is
an additive isomorphism

H•(MS ,C) = H•(MSs ,C) ⊗H•(P1\Ss,C)

and H•(MS ,C) is generated by meromorphic 1-forms with log poles on the
boundary. By [5], such forms are never exact. Note the last formula is just the
k = n−3 case of the preceding formula. The isomorphism given by the Leray–Hirsch
theorem depends on choosing global lifts for the ω(ab). However in the top degree
it is independent of choices.

3. Filtrations

For any globally generated line bundle L on a projective variety X , we define a
vector bundle VL by the exact sequence

0 → VL → H0(X,L) ⊗OX → L→ 0.

Lemma 3.1. There is a natural exact sequence

0 → π∗
St(Vψs) → Vψs → O(−δs,t) → 0.

Corollary 3.2. Choose a flag of subsets

S3 ⊂ S4 ⊂ · · · ⊂ Sn = S
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as in (1.1). The bundle Vψs is extended from the line bundles

π∗
Si

(O(−δs,si))

for |S| ≥ i ≥ 4.
The bundle ∧qVψs is extended from line bundles of form O(−E), with E a sum

of distinct boundary divisors with a ≡ b �≡ s, where S3 = {a, b, s} and we think of
boundary divisors as a partition (or equivalence relation) on S.

Proof. Immediate from the lemma, and the formula for pulling back boundary
divisors under maps πT .

Proof of Lemma 3.1. We have that

ψs = π∗
St(ψs) ⊗O(δs,t)

and that ψs|δs,t is canonically trivial (by taking residues). This induces a commu-
tative diagram with exact rows and columns:

0 0 0� � �
0 −−→ π∗

St(Vψs) −−→ Vψs −−→ O(−δs,t)� � �
0 −−→ π∗

St(H0(ψs)) ⊗k OMS
−−→ H0(ψs) ⊗k OMS

−−→ H0(Oδs,t) ⊗k OMS
−−→ 0� � �

0 −−→ π∗
St(ψs) −−→ ψs −−→ Oδs,t −−→ 0� � �

0 0 0

Here, the second row is obtained from the third by taking global sections — which
gives a short exact sequence of vector spaces as the H1 term vanishes — and then
tensoring with the structure sheaf OMS

. Now, the first row is given by taking kernels
of the vertical maps.

Now, the result follows from the snake lemma.

Lemma 3.3. Let a, b, s ∈ S be distinct. Let E be the (reduced) union of all boundary
divisors of MS with a ≡ b �≡ s. Then there is member of |κ| which is an effective
combination of irreducible components of B − E.

Proof. We induct on |S|. For |S| = 4 we can take δa,s. By induction it is enough
to find a member of |ψt|, t ∈ Sa,b,s, supported on components of B − E. This is
clear from Lemma 3.4.
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Lemma 3.4. The Weil divisor ∑
a,s∈F,t∈F c

δF

is linearly equivalent to ψt.

Proof. The sum above is Ψ∗
t (Ψt(δa,s)), where

Ψt : MS → P|S|−3

is the Kapranov model. Ψt(δa,s) is a hyperplane, and so the above pullback
represents ψt.

Lemma 3.5. The bundle ∧qVψs⊗κ is extended from globally generated line bundles.
It is also extended from line bundles of form O(E) where E is a divisor linearly
equivalent to a Q-divisor of form KMS

+ ∆ +A, for ∆ an effective combination of
boundary divisors with coefficients strictly less than one, and A an ample divisor.

Proof. By Corollary 3.2, ∧qVψs ⊗ κ is extended from line bundles associated to
divisors

κ+
r∑
t=1

π∗
Sit

(δs,sit
)

for some sequence of integers

n ≥ r > r − 1 · · · > r1 ≥ 4.

Global generation of such a divisor follows by induction, the formulae

κS = κSt + ψt

ψt = π∗
Ss(ψt) + δs,t,

and the global generation of κ and ψi.
The second statement is immediate from Lemmas 3.2 and 3.3.

Corollary 3.6. Hi(∧qVψs ⊗ κ⊗M) = 0 for any i > 0 and any nef line bundle M .

Proof. This is immediate from the preceding lemma and the Kawamata–Viehweg
vanishing theorem.

Corollary 3.7. Let (C, Ss) be an Ss-pointed stable curve and ψ := ωC(Ss). Then
Hi(C,∧q(Vψ) ⊗ ψ) = 0 for i > 0, and H0(∧q(Vψ)) = 0 for all q > 0. The log
canonical embedding C ⊂ P(H0(C, ωC(Ss))∗) satisfies Green–Lazarsfeld’s condition
Np for all p ≥ 0.

Proof. We have C = π−1
Ss [C] ⊂ MS , ψ = ψs|C = κ|C , and Vψ = Vψs |C . The bun-

dle ∧qVψs is extended from line bundles satisfying the Kawamata–Viehweg van-
ishing theorem by Lemma 3.5, and restriction. This gives the vanishing result,
which implies Np, for all p (see [10]). By Lemma 3.2 and restriction, ∧q(Vψ) is
extended from line bundles with no global sections, and thus has itself no global
sections.
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4. The Syzygy Bundles

We begin by giving a canonical resolution of the structure sheaf of MS by natural
vector bundles over MSs × Pn−3, using a special case of the Beilinson spectral
sequences as in [11].

The diagonal embedding

Pr ⊂ Pr × Pr

is the zero locus of a regular tautological section of VO(1) �O(1). For any morphism
f : X → Pr the section pulls back to a regular section of VL �O(1), L := f∗(O(1)),
on X × Pr with zero locus the graph X = Γf ⊂ X × Pr. The Koszul complex then
gives an exact sequence

0 → ∧rVL � O(−r) → · · · → VL � O(−1) → OX×Pr → OX → 0. (4.1)

We have a closed embedding Φ : MS ⊂MS′ × Pn−3 given by π := πSs and the
linear series |ψs|, see the proof of Corollary 2.7.

Lemma 4.1. The sheaf Mq := R1π∗(∧q+1Vψs) is a vector bundle on MSs for
q ≥ 0. M0 = 0. One has an exact sequence of sheaves on MS′ × PN−3:

0 → MN−4 � O(3 −N) → · · · → M1 � O(−2) → OMS′×PN−3 → Φ∗OMS
→ 0.

(4.2)

The fiber of Mq at the point [C] ∈MSs is canonically identified with the q-th syzygy
for the Ss-pointed stable curve (C, Ss) ⊂ Pn−3, i.e.

Mq|[C] = TorAq (k,B)

where A = R(Pn−3,O(1)) is the homogeneous coordinate ring of Pn−3, and B =
R(C, ωC(Ss)) is the homogeneous coordinate ring of C ⊂ Pn−3 for q > 0.

Proof. We apply the above construction in the case of X = MS → Pn−3, and
push forward the sequence (4.1) along

p = π × id : MS × Pn−3

where the fibers of p (or equivalently π) are Ss-pointed stable curves. So the for-
mation of Riπ∗(∧q+1Vψs) commutes with all base extensions, vanishes for i = 0 or
i = q = 1, and are vector bundles for i = 1, by Lemma 3.7.

Exactness of (4.2) follows by analyzing the spectral sequence for the hyper-
derived pushforward:

E1
i,j = Rjp∗(F i), i ≤ 1, j ≥ 0

with F−i = ∧i(Vψs) � O(−i), i ≤ 0, F1 = OMS
. Since (4.1) is exact, the spectral

sequence abuts to zero. By Corollary 3.7, the sequence has only two nonzero rows:

E1
∗,1 : · · · → R1p∗(∧3Vψs) � O(−3) → R1p∗(∧2Vψs) � O(−2) → 0 → 0 · · ·
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and

E1
∗,0 : · · · 0 → 0 → OMSs×Pn−3 → Φ∗(OMS

) → 0 → 0 · · · .
The exactness of (4.2) follows easily.

If we restrict (4.2) to [C]× Pn−3 it remains exact, (for example, by the flatness
of π) and we obtain the exact sequence of sheaves on Pn−3:

0 → H1(C,∧n−3Vψ) ⊗OPn−3(−(n− 3))

→ · · · → H1(C,∧2Vψ) ⊗O(−2) → OPn−3 → OC → 0

where ψ := ψs|C as in Lemma 3.7. Tensoring with
⊕

n≥0 O(n) and taking
global sections, a simple spectral sequence analysis shows the resulting sequence
of R(Pn−3,O(1)) modules is exact. This yields a resolution of the homogeneous
coordinate ring of R(C,ψ). Note that each of the maps is given by linear forms,
and thus when we tensor with k, the maps in the resulting complex are all zero,
and thus the terms of the sequence are identified with the relevant Tors.

Let T = Ss. Observe that the vector bundle, Mi, on MT is intrinsic to MT

(it does not depend on S). When there is the possibility of confusion we refer to it
as Mi

T .

Lemma 4.2. Let s, t ∈ S. Let E be a vector bundle on MSt . There are canonical
identifications

RpπSs∗(π∗
St(E)) = π∗

Ss,t(RpπSs,t∗(E)).

for all p ≥ 0.

Proof. Consider first the commutative pullback diagram:

MSs ×MSs,t
MSt

π2−−−→ MSt

π1

� πSs,t

�
MSs

πSt,s−−−→ MSs,t .

We have the equality

Rpπ1∗(π∗
2(E)) = π∗

St,s(RpπSs,t∗(E)),

since πSs,t is flat (see [12]). Now by the Leray spectral sequence and the projection
formula it is enough to show that

Rqf∗(O) = 0

for q > 0 where

f : MS →MSs ×MSs,t
MSt

In
t. 

J.
 M

at
h.

 2
00

9.
20

:1
15

9-
11

84
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

 O
F 

M
A

SS
A

C
H

U
SE

T
T

S 
A

M
H

E
R

ST
 o

n 
07

/1
6/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



October 1, 2009 10:43 WSPC/133-IJM 00571

1170 S. Keel & J. Tevelev

is the natural map. This holds as the map is birational and the image has rational
singularities (see e.g. [17]).

Theorem 4.3. For t ∈ A there is a vector bundle Q on MA and exact sequences

0 → Mp
At → Mp

A → Q→ 0 (4.3)

0 → ∧p(Vψt) → Q→ Mp−1
At → 0 (4.4)

Proof. Let A = Ss. The exact sequence in Lemma 3.1 yields

0 → π∗
St(∧p+1(Vψs)) → ∧p+1(Vψs) → π∗

St(∧p(Vψs) ⊗O(−δs,t) → 0.

We have

πSs∗(O(−δs,t)) = 0,

since δs,t is a section of πSs . So by Lemma 4.2 we obtain the exact sequence

0 → π∗
Ss,t(Mp) → Mp

Ss → Q→ 0,

where

Q := R1πSs∗(π
∗
St(∧p(Vψs)) ⊗O(−δs,t)).

We study Q beginning with the exact sequence:

0 → π∗
St(∧p(Vψs)) ⊗O(−δs,t) → π∗

St(∧p(Vψs)) → π∗
St(∧p(Vψs))|δs,t → 0.

Since δs,t is a section of πSs , R1πSs∗ vanishes on the right term. πSs∗ applied to
the middle term gives

πSs∗(π
∗
St(∧p(Vψs))) = π∗

St,s(πSt∗(∧q(Vψs))) = 0

by Lemmas 4.2 and 3.7. So we obtain the exact sequence:

0 → ∧p(Vψt) → Q→ π∗
Ss,t(Mp−1

Ss,t) → 0.

We have the immediate:

Corollary 4.4. A flag of subsets

S3 ⊂ S4 ⊂ · · · ⊂ Sn = S

as in Theorem 1.1 extends Mp
S from vector bundles of form π∗

Si
(∧qVψsi

) for p ≥ q.

Corollary 4.5. We have

c1(Mp
S) =

(|S| − 4
p− 1

)
κ.
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Proof. An easy induction argument using Theorem 4.3 and Lemma 2.6.

Remark 4.6. As Mk
T is the bundle with fiber at [C] the k-th syzygy module, it

is naturally a subbundle of the trivial bundle Sym2(V) ⊗ V⊗(k−1) where V is the
trivial bundle V := π∗(Vψs), e.g. M1 ⊂ Sym2(V) ⊗O has fiber at [C] the space of
conics vanishing on C ⊂ P|T |−2, or M2 ⊂ M1 ⊗ V has fiber the linear relations
among these quadrics, etc. As a subbundle of a trivial bundle, Mk induces a map
of MT to a Grassmannian. By Corollary 4.5, the first Chern class of Mk is ample,
thus the map is finite, and one can check (with a bit of work) that it is in each
case a closed embedding. (At least) two of these embeddings have been previously
studied: As noted M1 ⊂ Sym2(V) gives fiberwise the space of conics vanishing on
C ⊂ P|T |−2. By Lemma 3.7, C is cut out by such quadrics. The induced closed
embedding is Kapranov’s realization of MSs as the closure in the Hilbert scheme
of the locus of rational normal curves in P|T |−2 through |T | fixed points. See [16].
Let T := Ss, π := πT . We have the equality

M|T |−3 = R1π∗(∧|T |−2Vψs) = R1π∗(ωπ(Σ))

where Σ is the union of the |T | tautological sections. It follows then by the defor-
mation theory of pairs that M|T |−3 is the log tangent bundle TMT

(− logB), and
one can check that the map to the Grassmannian is given by the space of global
log 1-forms. The induced map to projective space (composing with the Plücker
embedding of the Grassmannian) is the log canonical embedding of MT , and is an
instance of a general construction that holds for any complement to a hyperplane
arrangement (see [13]).

5. Koszulness and p-Linearity

In this section, A =
⊕

n≥0An is a commutative graded algebra over a field A0 = k,
and M is a graded A-module. All our modules are concentrated in nonnegative
degrees.

Definition 5.1. The module M is called p-linear if TorAi (M,k) is concentrated
in degrees i, i + 1, . . . , i + p for all i. The algebra A is called Koszul if the trivial
A-module, A0 = k is 0-linear.

Example 5.2. A polynomial algebra S over k (graded by total degree) is Koszul:
the minimal resolution of k over S is given by the standard Koszul complex.

Among the many nice properties of Koszul algebras we note the result of [2]:

Theorem 5.3. Let A be a Koszul algebra. Then the natural map

SymA0
(A1) → A

is surjective, and its kernel is generated by the degree two elements.
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Lemma 5.4. Consider a short exact sequence of graded A-modules:

0 → M ′ → M →M ′′ → 0. (5.1)

If M ′ and M ′′ are k-linear then M is k-linear. If M is k-linear and M ′′ is (k− 1)-
linear, then M ′ is k-linear. If M is k-linear and M ′ is (k + 1)-linear, then M ′′ is
k-linear.

Proof. All statements immediately follow from the long exact sequence for Tor.

Corollary 5.5. If M is extended from k-linear modules then M is k-linear.

Proof. Induction on the depth of the filtration using Lemma 5.4.

Lemma 5.6. If A is Koszul and M is concentrated in degrees at most p then M

is p-linear.

Proof. M has the natural filtration

M = M≥0 ⊃M≥1 ⊃ · · · ⊃M≥p+1 = 0

where M≥i :=
⊕

n≥iMn. Thus M is extended from the modules M≥i/M≥i+1.
M≥i/M≥i+1 is a k-module (i.e. annihilated by An, n > 0) concentrated in degree
i, and thus i-linear by the definition of a Koszul algebra. Thus M is p-linear by
Corollary 5.5.

Lemma 5.7. If A is Koszul then M is k-linear if and only if M ′ :=
⊕

n≥kMn is
k-linear.

Proof. Consider the short exact sequence (5.1), where M ′′ = ⊕n<kMn has a natu-
ral structure of a nilpotent A-module. M ′′ is (k−1)-linear by Lemma 5.6. Therefore
M is k-linear by Lemma 5.4.

Lemma 5.8. Consider the complex of graded A-modules

0 →M r → · · · →M3 →M2 →M1 →M0 → 0. (5.2)

Assume that Mk is p+ k-linear, for k ≥ 1, and that the cohomology module Hk is
p+ k + 1-linear for k ≥ 0. Then M0 is p+ 1-linear.

Remark 5.9. We will use this Lemma in the situation when A is Koszul and Hk is
concentrated in degrees at most p+k+1, and thus (p+k+1)-linear by Lemma 5.6.

Proof. Let dk : Mk → Mk−1 be the differential with kernel Kerk and image Imk.
We argue by induction, the case r = 0 being obvious. Consider the complex

0 →M r → · · · →M3 →M2 → Ker1 → 0
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that obviously has the same cohomology as the original complex. It follows by
induction that Ker1 is (p+ 2)-linear.

By Lemma 5.4 and the sequence

0 → Ker1 →M1 → Im1 → 0,

Im1 is (p+ 1)-linear.
By Lemma 5.4 and the sequence

0 → Im1 →M0 → H1 → 0,

M0 is (p+ 1)-linear.

Definition 5.10 (Segre Product). For graded k-modules N and M let

N ⊗̂M :=
⊕
n≥0

Nn ⊗kMn.

Proposition 5.11. Let A and B be Koszul algebras. Then A ⊗̂ B is a Koszul
algebra. Moreover, if M is p-linear over A, and N is p-linear over B, then M ⊗̂ N

is p-linear over A ⊗̂ B.

Proof. For p = 0, this is the content of [4]. In particular (taking M = N = k),
A ⊗̂ B is Koszul.

For a graded vector space V let

V 〈p〉 :=
⊕
n≥0

Vn+p.

Observe (M ⊗̂ N)〈p〉 = M〈p〉 ⊗̂ N〈p〉, and that by Lemma 5.7, M is p-linear if and
only if M〈p〉 is 0-linear. Thus the p-linear case is reduced to the zero linear case.

The following is a slight generalization of [22].

Lemma 5.12. Let A→ B be a homomorphism of graded rings, with A0 = B0 = k.
Assume B is 1-linear over A. Let M be a graded B-module. If M is p-linear over A,
then M is p-linear over B.

Proof. The case of M = k is [22]. The same proof works for any M .

Definition 5.13. For any sheaves L, M on an algebraic variety X , we define

GX(M,L) =
⊕
n≥0

GXn (M,L), where GXn (M,L) = H0(X,M⊗L⊗n).

We drop X from the notation if it is clear from the context. We let G(L) :=
G(OX ,L). Notice that G(L) is a graded k-algebra and G(M,L) is a graded G(L)-
module. We call L a Koszul sheaf if G(L) is a Koszul algebra. We call M, p-linear
over L, if G(M,L) is p-linear over G(L).
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Lemma 5.14. Let L on X be a very ample line bundle and assume the coor-
dinate ring B := GX(L) is Koszul. Assume the embedding f : Y ↪→ X is
nondegenerate, i.e.

H0(X,L) → H0(Y,L|Y )

is an isomorphism. Then f∗(OY ) is 1-linear over L if and only if the minimal
resolution of R := GY (L|Y ) over B is of form

· · · → B[−k]ak → · · · → B[−2]a2 → B → R → 0

Proof. Clearly, if we have such a resolution, then R is 1-linear. So assume R is 1-
linear over B. By Lemma 5.12, R is Koszul, thus is generated by degree 1 elements,
by Theorem 5.3. Thus B → R is surjective and the kernel, K, is generated by
elements of degree at least 2. Consider now a minimal free resolution of K:

· · · → Fk → · · · → F2 → K → 0.

Clearly, minimal generators of Fk have degree at least k. But K is 2-linear by
Lemma 5.4, thus minimal generators of Fk are of degree exactly k, see e.g. the
second paragraph of [21].

Lemma 5.15. Let Li, Mi be sheaves on Xi, i = 1, 2. Assume that Li is Koszul
and Mi is p-linear over Li, i = 1, 2. Then L1 � L2 is a Koszul sheaf on X1 ×X2

and M1 � M2 is p-linear over L1 � L2.

Proof. Immediate from Lemma 5.11.

Lemma 5.16. Let f : Y ↪→ X be a closed embedding. Let L be the Koszul sheaf
on X. Assume that f∗(OY ) is 1-linear over L. Then L|Y is Koszul. Moreover, if
M is the sheaf on Y and f∗(M) is p-linear over L then M is p-linear over L|Y .

Proof. Immediately follows from Lemma 5.12.

6. Fundamental Vector Bundles

Definition 6.1. By a fundamental vector bundle on Pm we mean a bundle of form
ΛqV for q ≥ 0 where V is the universal rank m subbundle.

By a fundamenal vector bundle on MS we mean the pullback of a fundamental
vector bundle on projective space under a composition Ψt ◦πT for t ∈ T ⊂ S, where
Ψt : MT → P|T |−3 is Kapranov’s map.

For any Young diagram λ with at most N −3 rows, let Sλ be the corresponding
Schur functor, and let Sλ(V ) be the corresponding vector bundle on PN−3. For
example, vector bundles ΛkV correspond to k-box diagrams with k rows (of one
box each).
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Lemma 6.2. Let D be the tensor product of at most p fundamental vector bundles
on Pm. Then D is the direct sum of vector bundles of the form Sλ(V ), where all
rows of λ have at most p boxes.

Proof. Follows from the Littlewood–Richardson rule.

Proposition 6.3. If λ has at most p boxes in each row then

Hj(Sλ(i)) = 0

for j > 0, i ≥ p− j.

Proof. By the Borel–Bott–Weyl theorem (see [23]) the following holds: Suppose

λ = (λ1, λ2, . . . , λm)

with λ1 ≥ · · · ≥ λm ≥ 0. If for some i, r = λi − i, then all the cohomologies vanish
(the so called singular case of the theorem). Otherwise there is a unique j such that

Hj(Sλ(r)) �= 0

and it is described as follows: If r > λ1 − 1 then j = 0. If λm −m > r then j = m.
Otherwise j is the unique index i so that

λi − i > r > λi+1 − (i+ 1).

In particular, if r ≥ λi − i then Hi(Sλ(r)) = 0. Since p ≥ λi, the result follows.

Lemma 6.4. Let D be the tensor product of at most p fundamental vector bundles
on Pm. Then D(n) has no higher cohomology for n ≥ p.

Proof. Follows from Lemma 6.2 and Proposition 6.3.

Lemma 6.5. If D̃ is a product of at most p + 1 fundamental vector bundles on
MS′ then Hi(D̃ ⊗ (κ′)⊗n) = 0 for any i > 0 and n ≥ p+ 1.

Proof. Immediate from the Kawamata–Viehweg vanishing theorem and
Lemma 3.5.

Corollary 6.6. If D is a product of at most p fundamental vector bundles on MS,
then Hi(Mk ⊗D ⊗ κ⊗n) = 0 for any i > 0, k > 0, and n ≥ p+ 1.

Proof. Follows from Lemma 6.5 and Proposition 4.4.

Proposition 6.7. Let D be the tensor product of at most p fundamental vector
bundles on Pm, p ≥ 0 (when p = 0, D = O). Then D is p-linear over OPm(1).
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Proof. By Lemma 5.7, it suffices to prove that

M ′ :=
⊕
n≥p

H0(PN−3, D(n))

is p-linear over O(1). The bundle D is the tensor product of at most p fundamental
vector bundles of the form ΛniV . We argue by induction on

∑
ni.

If all ni = 0 then p = 0 and D = O, which is obviously 0-linear. Otherwise
suppose we have a tensor factor ΛqV with q > 0. Wedging the defining sequence
for V gives an exact sequence

0 → ΛqV → E → (Λq−1V ) ⊗O(1) → 0

with E a trivial bundle. Thus by Lemma 6.4 the moduleM ′ sits in an exact sequence

0 →M ′ →M →M ′′(1) → 0,

where M and M ′′ are products of trivial vector bundles with products of at most
p fundamental bundles with smaller

∑
ni. Now the result follows from Lemma 5.4

and induction.

7. Koszulness of κ

We fix a filtration

S4 ⊂ S5 ⊂ · · · ⊂ SN = S

as in Theorem 1.1. Let S′ = SN−1.
Let π : MS →MS′ be the projection map, let Ψ : MS → PN−3 be Kapranov’s

map. Let κ′ be the log canonical line bundle on MS′ . We have a closed embedding

Φ : MS ⊂ P := P1 × P2 · · · × Pn−3.

Define

L := OP1(1) � OP2(2) · · · � OPn−3(1).

Theorem 7.1. The sheaf κ is Koszul. The sheaf OMS
is 1-linear over L.

Remark 7.2. Thus MS ⊂ P satisfies the analog of the Green–Lazarsfeld condition
Np for all p (see Lemma 5.14).

Proof. We argue by induction on N , the case of M0,4 = P1 being obvious. L is a
Koszul sheaf by Example 5.2 and Lemma 5.11. So by Lemma 5.12 it is enough to
show OMS

is 1-linear over L. For this, we prove simultaneously by induction:

Theorem 7.3. Let D be the tensor product of at most p fundamental vector bundles
(if p = 0 then let D = O) on MS. Then Φ∗(D) is (p+ 1)-linear over L.

It is clear that D can be written uniquely as

D = π∗(D′) ⊗ Ψ∗(D′′),
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where D′ is a tensor product of at most p fundamental vector bundles on MS′ and
D′′ is a tensor product of at most p fundamental vector bundles on PN−3 of the
form ΛkV , where V is the tautological quotient bundle.

For any sheaf M on P, let

D(M) =
⊕
n≥p+1

Gn(M,L).

The exact sequence of sheaves (4.2) induces the complex of G(L)-modules

· · · → D([D′ ⊗M1] �D′′(−2)) → D(D′ �D′′) → D(Φ∗(D)) → 0 (7.1)

Let P′ := P1 × P2 · · · × Pn−4 and let L′ be the analog of L on P′.

Lemma 7.4. The sheaf D′ ⊗Mq is (p+ 2)-linear over L′ for all q ≥ 1. The sheaf
D′ is (p+ 1)-linear over L′.

Proof. We treat the case of D′⊗Mq, the argument for D′ is entirely analogous. By
Lemma 5.7, it suffices to prove that M :=

⊕
n≥p+2 Gn(D′⊗Mq, κ′) is (p+2)-linear

over G(L′). By Proposition 4.4 and Corollary 6.6,M is extended from modules of the
form

⊕
n≥p+2 Gn(D̃, κ′), where D̃ is a product of at most p+1 fundamental vector

bundles. So the statement follows from Corollary 5.5 and the inductive assumption
about MS′ .

Proposition 7.5. The i-th cohomology module of (7.1) lives in degrees ≤ p+ i.

Proof. Tensoring the exact sequence (4.2) with [D′ �D′′]⊗⊕
n≥p+1 L⊗n induces

an exact sequence of graded sheaves

· · · → F2 → F1 → F0 → 0, (7.2)

where (for k ≥ 2) Fk = [D′ ⊗ Mk−1 � D′′(−k)] ⊗ ⊕
n≥p+1 L⊗n. Notice that the

complex (7.1) is the complex of global sections of (7.2). Since (7.2) is exact, the
corresponding hypercohomology spectral sequence with

E1
ij = Hj(F−i), i ≤ 0, j ≥ 0

abuts to zero. Therefore, it suffices to prove that Hj(F i) lives in degrees less than
i− j + p for 0 < j < i.

By the Künneth formula and Lemma 6.6, it suffices to prove (using Lemma 6.2)
that Hj(Sλ(n− i)) = 0 for n ≥ i− j + p, 0 < j < i. Here λ is any Young diagram
with at most p boxes in each row. This follows from Proposition 6.3.

Corollary 7.6. The sheaf Φ∗(D) is (p+ 1)-linear over L.

Proof. We check that the complex (7.1) satisfies conditions of Lemma 5.8. This
follows from Proposition 6.7 and Lemma 7.4 (using Lemma 5.15), and from Propo-
sition 7.5.

This concludes the proof of Theorem 7.3.
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8. Quadrics

We make use of Kapranov’s Hilbert scheme realization of MSs as the subscheme
of Hilb(P|S|−3) of Veronese curves (i.e. stable Ss-pointed rational curves embedded
by global sections of ωC(Ss)) through |Ss| fixed general points in P|S|−3, with

MS ⊂MSs × P|S|−3

the universal family. See [16].
We let π = πSs .
We consider the bundle I2 on MSs whose fiber at [C] is the vector space of

quadrics in Pn−3 vanishing on C, i.e.

0 → I2 → Sym2(V) → π∗(OMS
⊗ ψ⊗2

s ) → 0,

where V is the trivial bundle H0(MS , ψs). Note I2 = M1 of Lemma 4.1.

Definition 8.1 (Segre Quadrics). Let V,W be vector spaces, X,Y ∈ V ,
σ, γ ∈W

Q(X,Y ∈ V, σ, γ ∈W ) := (X ⊗ σ) ⊗ (Y ⊗ γ) − (X ⊗ γ) ⊗ (Y ⊗ σ) ∈ (V ⊗W )⊗2.

We will abuse notation and use the same symbol for the image ofQ in Sym2(V ⊗W ).

Remark 8.2. It is well known that the homogeneous ideal of the Segre embedding

P(V ) × P(W ) ⊂ P(V ⊗W )

is generated by Segre quadrics.

The following is obvious from the definitions:

Lemma 8.3. For vector spaces V,W,Z, and elements X,Y ∈ V, σ, γ ∈ W, a, b ∈ Z,

Q(X,Y ∈ V, σ ⊗ a, γ ⊗ b ∈ W ⊗ Z) +Q(X,Y ∈ V, σ ⊗ b, γ ⊗ a ∈ W ⊗ Z)

= Q(X,Y ∈ V, σ, γ ∈W ) ⊗ (a⊗ b+ b⊗ a)

in

(X ⊗ (Y ⊗ Z))⊗2 = (X ⊗ Y )⊗2 ⊗ Z⊗2.

Corollary 8.4. Let

G′ ⊂ Sym2(V ⊗W ), G ⊂ Sym2(V ⊗ (W ⊗ Z))

be the subspaces generated by Segre quadrics. Then G′ ⊗ Sym2(Z) is contained in
the image of G under the natural map

Sym2(V ⊗ (W ⊗ Z)) → Sym2(V ⊗W ) ⊗ Sym2(Z).

Lemma 8.5. For any F ⊂ Ss,

H0(MSs , LF ) ⊗H0(MS , ψs) = H0(MS , LF ).
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Proof. Follows from Lemmas 2.3 and 2.5.

Theorem 8.6. The Segre quadrics

Q(X,Y ∈ H0(κF ), σ, γ ∈ H0(LF ))

for subsets F ⊂ S generate the homogeneous ideal of

MS ⊂ P(H0(κ)∗).

Proof. We write Sk for Symk.
By Theorem 1.2 and Theorem 5.3 the homogeneous ideal is generated by

quadrics so it is enough to show Segre quadrics generate the kernel of

S2(H0(κ)) → H0(κ⊗2). (8.1)

The map (8.1) factors through

S2(H0(κ)) = S2(H0(κSs) ⊗H0(ψs)) → S2(H0(κSs)) ⊗ S2(H0(ψs)) (8.2)

Simple linear algebra shows the kernel of (8.2) is generated by Segre quadrics,
so it is enough to show that images of Segre quadrics generate the kernel of

S2(H0(κSs)) ⊗ S2(H0(ψs)) → H0(κ⊗2
Ss ⊗ ψ⊗2

s ). (8.3)

The map (8.3) factors through

S2(H0(κSs)) ⊗ S2(H0(ψs)) → H0(κ⊗2
Ss ) ⊗ S2(H0(ψs)). (8.4)

By induction, Corollary 8.4, and Lemma 8.5, the images of Segre quadrics gen-
erate the kernel of (8.4), thus it is enough to show that images of Segre quadrics
generate the kernel of

H0(κ⊗2
Ss ) ⊗ S2(H0(ψs)) → H0(κ⊗2). (8.5)

The map (8.5) is induced by pushforward and taking global sections from

0 → IMS
⊗ κ⊗2

Ss ⊗ ψ⊗2
s → OMSs×P(H0(ψs)∗) ⊗ κ⊗2

Ss ⊗ ψ⊗2
s → κ⊗2

MS
→ 0. (8.6)

Pushing forward by πSs we obtain

0 → I2 ⊗ κ⊗2
Ss → κ⊗2

Ss ⊗ S2(V) → πSs∗(κ
⊗2

MS
) → 0 (8.7)

where the right hand zero (which we will not use) is implied by Corollary 3.7.
Now to prove this theorem it is enough to show that

H0(I2 ⊗ κ⊗2
Ss ) ⊂ H0(κ⊗2

Ss ) ⊗ S2(H0(ψs))

is generated by images of Segre quadrics. We prove this by induction on |S|. Suppose
first |S| ≥ 6.

For t ∈ Ss consider the commutative diagram.

MS −−→ MSt� �
MSs −−→ MSs,t

.
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There is a natural inclusion π∗
Ss,t(I2) ⊂ I2 (indeed a subbundle) which induces a

natural inclusion

H0(MSs,t , I2 ⊗ κ⊗2
Ss,t) ⊂ H0(MSs , I2 ⊗ κ⊗2

Ss,t).

This then gives a natural map

H0(MSs,t , I2 ⊗ κ⊗2
Ss,t) ⊗ S2(H0(MSs , ψt)) → H0(MSs , I2 ⊗ κ⊗2

Ss ). (8.8)

Consider the following diagram:

(H0(κSt) ⊗H0(π∗
Ss(ψt)))⊗2 e−−→ H0(κS)⊗2∥∥ ∥∥

H0(MSt , κSs,t)⊗2 ⊗H0(MSs , ψt)⊗2

⊗H0(MSt , ψs)⊗2
H0(κSs)⊗2 ⊗H0(ψs)⊗2

� �
H0(MSs , κ⊗2

Ss,t) ⊗ S2(H0(MSs , ψt))

⊗S2(H0(MSt , ψs))
f−−→ H0(κ⊗2

Ss ) ⊗ S2(H0(MS , ψs))

where the maps are as follows:
We have natural identifications and inclusions

π∗
Aa(ψb) = ψb(−δa,b), a �= b ∈ A

H0(MAa , ψb) = H0(MA, π
∗
Sa(ψb)) ⊂ H0(MA, ψb)

H0(MA, κAa) ⊗H0(MA, ψa) = H0(MA, κA)

Sk(H0(MA, ψa)) = Sk(P|A|−3,O(1)) = H0(MA, ψ
⊗k
a )

H0(MS , κ
⊗k
Ss,t) = H0(MSs , κ⊗kSs,t) = H0(MSt , κ⊗kSs,t).

The map e is the composition

(H0(κSt) ⊗H0(π∗
Ss(ψt)))⊗2 ⊂ (H0(κSt) ⊗H0(MS , ψt))⊗2 = (H0(MS , κ))⊗2

and the other maps are given in the obvious way by multiplication of sections. One
checks immediately that the diagram is commutative.

By Lemmas 8.9 and 8.10, the images of maps (8.8) over all t ∈ Ss generate
H0(MSs , I2 ⊗ κ⊗2

Ss ). By induction the image of

H0(MSs,t , I2 ⊗ κ⊗2
Ss,t) ⊂ H0(κ⊗2

Ss,t) ⊗ S2(H0(MSt , ψs))

is generated by images of Segre quadrics under the natural map

H0(MSt , κSt)⊗2 = (H0(MSs,t , κSs,t) ⊗H0(MSt , ψs))⊗2

→ H0(κ⊗2
Ss,t) ⊗ S2(H0(MSt , ψs)).

Thus

H0(MSs , I2 ⊗ κ⊗2
Ss ) ⊂ H0(κ⊗2

Ss ) ⊗ S2(H0(MS , ψs))
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is generated by elements of form

f(Q⊗ (a⊗ b+ b⊗ a))

where

Q ∈ H0(κ⊗2
Ss,t) ⊗ S2(H0(MSt , ψs))

is the image of a Segre quadric Q ∈ H0(κSt)⊗2 and

(a⊗ b+ b⊗ a) ∈ S2(H0(MSs , ψt))

is the image of the symmetric tensor a⊗b+b⊗a ∈ H0(MSs , ψt)⊗2. Now by the com-
mutativity of the above diagram, Lemma 8.3, and Lemma 8.5, f(Q⊗(a⊗ b+ b⊗ a))
is in the span of images of Segre quadrics. This completes the induction step.

So now suppose |S| = 5. In this case H0(I2 ⊗ κ⊗2
Ss ) is two dimensional. So it is

enough to show there are two Segre quadrics whose images inH0(κ⊗2
Ss )⊗S2(H0(ψs))

are linearly independent.
Let S = {x, y, z, g, s}. Let R = {x, y, s, g}. We will find a quadric

Q = Q(X,Y ∈ H0(κR), σ, γ ∈ H0(ψz)))

whose restriction to the fiber [C] = δx,y ∈MSs is nontrivial, but whose restriction
to the fiber [E] = δx,z is identically zero. The result will then follow by symmetry.

By the relations

κR = O(δx,s + δy,g) = O(δy,s + δx,g)

ψz = π∗
{s,y,z,g}(ψz) + O(δx,z) = O(δz,s + δy,g + δx,z) = O(δg,s + δy,z + δx,z)

we may choose sections X,Y ∈ H0(κR), σ, γ ∈ H0(ψz) with zero divisors

Z(X) = δx,s + δy,g, Z(Y ) = δy,s + δx,g,

Z(σ) = δz,s + δy,g + δx,z, Z(γ) = δg,s + δy,z + δx,z.

The restrictions of the sections

X ⊗ σ, Y ⊗ γ,X ⊗ γ

to H0(C, ωC(Ss)) have zero schemes x+ z, y + g, x+ g, respectively. In particular
the restrictions of the three sections are linearly independent and so they give a
basis of (the three dimensional vector space) H0(C, ωC(Ss)). Now it is clear that
the restriction of the quadric Q to S2(H0(C, ωC(Ss)) is nontrivial. Observe that
the restriction of Q to

S2(H0(E,ωE(Ss))

is identically zero. Indeed the section σ itself vanishes identically along E.

Lemma 8.7. The map⊕
a∈T s,t

H0(π∗
Ta(O(−δs,t) ⊗ κ⊗2) → H0(O(−δs,t) ⊗ κ⊗2) (8.9)

is surjective for distinct s, t ∈ T, |T | ≥ 5.
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Proof. Choose x, y ∈ T s,t. Since δx,s,t and δy,s,t are disjoint, we have an exact
sequence:

0 → O(−δs,t − δs,t,x − δs,t,y) → O(π∗
Sx (−δs,t)) ⊕O(π∗

Sy (−δs,t)) → O(−δs,t) → 0.

Let E := δs,t + δs,t,x + δs,t,y. Observe that E satisfies the conditions of Lemma 3.3
(for s ≡ t �≡ a, a ∈ T s,t,x,y). So the sequence remains exact after tensoring by κ⊗2

and taking global sections.

Lemma 8.8. The map⊕
x∈T s

H0(π∗
Tx(Vψs) ⊗ κ⊗2) → H0(Vψs ⊗ κ⊗2) (8.10)

is surjective, for s ∈ T, |T | ≥ 5.

Proof. Choose t ∈ T s. We have by Lemmas 3.1 and 6.6, a commutative diagram
with short exact rows (where we have omitted the left and right zeros for reasons
of space):⊕

x∈T s

H0(π∗
Tx,t(Vψs)

⊗ κ⊗2)
−−→

⊕
x∈T s

H0(π∗
Tx(Vψs)

⊗ κ⊗2)
−−→

⊕
x∈T s,t

H0(O(π∗
Tx(−δs,t))

⊗ κ⊗2)� � �
H0(π∗

T t(Vψs) ⊗ κ⊗2) −−→ H0(Vψs ⊗ κ⊗2) −−→ H0(O(−δs,t) ⊗ κ⊗2).

Note that the first column is surjective, since the sum on the upper left includes
the case x = t, on which the map is the identity. The right column is surjective by
the previous lemma. Thus the center column is surjective.

Lemma 8.9. Assume that |T | ≥ 5. The map⊕
x∈T

H0(π∗
Tx(I2) ⊗ κ⊗2) → H0(I2 ⊗ κ⊗2)

is surjective.

Proof. Note that I2 = M1 of Lemma 4.1. Choose s ∈ T . We have by Theorem 4.3
and Lemma 6.6, a commutative diagram with short exact rows (with left and right
zeros omitted):⊕
x∈T

H0(π∗
Tx,s(I2) ⊗ κ⊗2) −−→

⊕
x∈T

H0(π∗
Tx(I2) ⊗ κ⊗2) −−→

⊕
x∈T s

H0(Vψs ⊗ κ⊗2)

� � �
H0(π∗

T s(I2) ⊗ κ⊗2) −−→ H0(I2 ⊗ κ⊗2) −−→ H0(Vψs ⊗ κ⊗2).
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Note that the first column is surjective since the upper left term includes the case
x = s on which the map is the identity. The right column is surjective by the
previous lemma. The result follows.

Lemma 8.10. For t ∈ T, |T ≥ 5|, the map

H0(π∗
St(I2) ⊗ κ⊗2

St ) ⊗ Sym2(H
0(ψt)) → H0(π∗

St(I2) ⊗ κ⊗2)

is surjective.

Proof. Since (πSt)∗(ψt) is trivial, we have by the projection formula

H0(π∗
St(F ) ⊗ ψt) = H0(π∗

St(F )) ⊗H0(ψt)

for any vector bundle F on MT t . So it is enough to show that

H0(π∗
St(I2) ⊗ κSt ⊗ κ) ⊗H0(ψt) → H0(π∗

St(I2) ⊗ κ⊗2)

is surjective. Note that for any vector bundle W ,

H0(W ) ⊗H0(ψt) → H0(W ⊗ ψt)

is surjective so long as H1(W ⊗Vψt) = 0. I2⊗κ is extended from globally generated
line bundles by Theorem 4.3 and Lemma 3.5. So we have the necessary vanishing
by Corollary 3.6.
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