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ABSTRACT. Hypertree divisors on the moduli space of stable rational curves were
introduced by Castravet and Tevelev in [CT1]. Their equations appear as numer-
ators of scattering amplitude forms for n particles in N = 4 Yang–Mills theory
in the work of Arkani-Hamed, Bourjaily, Cachazo, Postnikov and Trnka [ABC+1].
Rather than being a coincidence, this is just the tip of the iceberg of an exciting
relation between algebraic geometry and high energy physics. We interpret lead-
ing singularities of scattering amplitudes of massless particles as probabilistic Brill–
Noether theory: the study of statistics of images of n marked points under a ran-
dom meromorphic function uniformly distributed with respect to the translation-
invariant volume form of the Jacobian. We focus on the maximum helicity violat-
ing case, which leads to a beautiful physics-inspired geometry for various classes
of complex algebraic curves: smooth, stable, hyperelliptic, real algebraic, etc.

§1. INTRODUCTION

1.1. In physics, momenta of n particles satisfy the momentum conservation law.
p1 + . . . + pn = 0. In mathematics, meromorphic forms ω with simple poles
p1, . . . , pn (log forms) on a compact Riemann surface satisfy the residue theorem:

p1 + . . .+ pn = 0
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Resp1 ω + . . .+ Respn ω = 0

Let C be a stable projective algebraic curve with marked points p1, . . . , pn. The
exact sequence 0 → H0(C,ωC) → H0(C,ωC(p1 + . . . + pn))

Res−→Cn Σ−→C → 0
(valid for n ≥ 1) shows that we can always view momenta of n one-dimensional
particles satisfying the momentum conservation law as residues of a form ω ∈
H0(C,ωC(p1 + . . . + pn)). For a smooth curve C, ambiguities in the choice of ω
can be eliminated by fixing its integrals along periods. For a nodal curve C, a local
section of ωC(p1 + . . . + pn) at each node q1, . . . , qr ∈ C can be identified with a
log form on the normalization Cν which has opposite residues at the points q−i , q+

i

mapping to the node qi. These residues can be viewed as momenta of “internal”
or ”on-shell” particles satisfying a momentum conservation law for each of the s
irreducible components of C, as follows from an exact sequence

0→ H0(Cν , ωCν )→ H0(C,ωC(p1 + . . .+ pn))
Res−→Cn+r Σ1,...,Σs−→ Cs → 0.

When all components of C are rational, H0(Cν , ωCν ) = 0 and the datum of a
log-form on C is equivalent to the datum of external and internal momenta sat-
isfying momentum conservation laws (one law for each irreducible component
of C). Equivalently, this is the datum of one “edge variable” for each internal (cor-
responding to a node) and external (corresponding to a marked point) edge of the
dual graph of C with a conservation law for each vertex of the dual graph.

1



2 JENIA TEVELEV

1.2. Imagine a random process that gives a vector of log forms on (C; p1, . . . , pn).
What will be the probability distribution of residues? We will study the following
simple random process. The first step is a random tensor product factorization

ωC(p1 + . . .+ pn) = L⊗ L̃, (1.2.1)

into two line bundles, L of degree d and L̃ of degree d̃ (and d + d̃ = 2g − 2 + n).
The choice of L is a choice of a point in Picd C and, when C is smooth, every
connected component of the Picard group has a uniform probability measure, the
volume form invariant under translations by the subgroup Pic0 C of topologically
trivial line bundles. If C is not smooth then Pic0 C contains non-compact fac-
tors C∗ and probabilistic interpretation is less straightforward. In fact the case
most related to physics literature is when all irreducible components of C are ra-
tional curves and Pic0 C ' (C∗)g . Non-compactness will not be an issue for us.

1.3. The second step is a choice of sections sα ∈ H0(C,L), s̃α̃ ∈ H0(C, L̃) for some
indices α ∈ I and α̃ ∈ Ĩ . Tensoring these sections gives a matrix of log forms

ωαα̃ = sα ⊗ s̃α̃ ∈ H0(C,ωC(p1 + . . .+ pn)).

We focus on the case |I| = |Ĩ| = 2, which is related to theN = 4 Yang–Mills theory.
Let L ⊂ Mat2,2 be the subvariety of matrices of rank at most 1. The projectivization
P(L) is a quadric in P3 isomorphic to P1 × P1. Let

Y = {p1, . . . ,pn ∈ L | p1 + . . .+ pn = 0} ⊂ Ln.
The space Mat2,2 can be viewed as the complexified 4-dimensional Minkowski
space and L as the complexified light cone. Thus Y parametrizes complexified
momenta of n massless particles in 4 dimensions satisfying the momentum con-
servation law. We observe that (Resp1 ωαα̃, . . . ,Respn ωαα̃) ∈ Y , since each matrix
Respi ωαα̃ is proportional to the matrix (sα(pi)s̃α̃(pi)) after choosing trivializations.
So this matrix has rank at most one and the residues of ωαα̃ (at marked points and
nodes) can be viewed as momenta of massless (external and internal) particles.

This construction is reversible, at least in the most physically relevant case.
Namely, suppose all components of C are rational and the dual graph is 3-valent.
Given massless momenta p1, . . . ,pn (external) and q1, . . . ,qr (internal) satisfying
momentum conservation laws (one for each vertex of the dual graph), suppose
that no two momenta adjacent to the same vertex are proportional. Then there ex-
ists a factorization (1.2.1) and sections sα ∈ H0(C,L), s̃α̃ ∈ H0(C, L̃) for α, α̃ = 1, 2

such that the momenta are the residues of the 2× 2 matrix of log forms (sα ⊗ s̃α̃).1

1.4. We would like to focus on situations where there are no constraints on external
and internal momenta, i.e. when a dense subset of points of Y can be obtained as
residues up to a finite ambiguity. This requires imposing the following condition:2

n = g + 3. (1.4.1)

1Indeed, let (ωαα̃) be the 2 × 2 matrix of log forms that corresponds to the momenta. Since the
restriction of ωC(p1 + . . . + pn) to every irreducible component of C has degree 1, the sections ωαα̃
globally generate the line bundle ωC(p1 + . . .+ pn) and therefore give a morphism C → P3 such that
every irreducible component of C maps to a line. By assumption, images of marked points and nodes
belong to the quadric P(L). Since a line intersecting a quadric in 3 different points belongs to it, the
image of C lies on the quadric, i.e. the matrix of log forms has rank 1. The line bundles L and L̃ are
pull-backs ofOP1×P1 (1, 0) andOP1×P1 (0, 1), where P(L) ∼= P1 × P1.

2 By the Riemann–Roch theorem, H0(C,L) andH0(C, L̃) have expected dimensions r = d+ 1− g
and r̃ = d̃ + 1 − g. Rescaling all sα by z ∈ C∗ and s̃α̃ by z−1 gives the same forms ωαα̃ and
so the same residues. Thus the variety of choices (L, L̃, sα, sα̃) modulo C∗ has expected dimension
g+ 2r+ 2r̃− 1 = g+ 2n− 1. On the other hand, Y is a variety of dimension 3n− 4 (assuming n ≥ 4).
Thus the condition on dimensions is g + 2n− 1 = 3n− 4, which is equivalent to (1.4.1).
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1.5. We would like to study distribution of residues of the matrix ωαα̃ but we run
into a problem: there is no natural probability measure on the space of sections sα,
s̃α̃ unless we choose some extra data such as a hermitian metric on L. Instead of
making a choice of a specific probability measure, we can design an experiment
with outcomes that don’t depend on sections by introducing a rational (i.e. defined
on an open subset) map Λ : Y 99KM to some algebraic varietyM . If Λ is indepen-
dent of sections sα and s̃α̃ then it descends to a rational map Λ : Picd C 99KM and
describing probability measure on M becomes a well-posed problem. Concretely,
projecting the quadric P(L) ∼= P1×P1 to the first or the second factor gives rational
maps Ln 99K (P1)n known as spinor variables in physics. Taking a quotient by the
PGL2 action gives a rational map (P1)n 99KM0,n to the moduli space of n distinct
marked points on P1. To summarize, we have two rational maps

Λ, Λ̃ : Y ↪→ Ln 99K (P1)n 99KM0,n.

The image of a point (Resp1 ωαα̃, . . . ,Respn ωαα̃) under the map Λ (resp., Λ̃) is given
by an n-tuple ([s1(pi) : s2(pi)])i=1...,n (resp., ([s̃1(pi) : s̃2(pi)])i=1...,n) of points in P1

modulo PGL2. One can further compactify M0,n by the Grothendieck–Knudsen
moduli space M0,n of stable rational curves or choose a different copactification.

Requiring that Λ descends to Λ : Picd C 99KM0,n obviously means that the ex-
pected dimension of H0(C,L), which in the physical context is known as helicity,
should be equal to 2. By Riemann–Roch, this is equivalent to the requirement

d = g + 1. (1.5.1)

1.6. DEFINITION. Let (C; p1, . . . , pn) be a stable curve of genus g with n = g + 3

marked points. Fix a multidegree vector ~d = (di) (one degree di for each irre-
ducible component of C) such that d =

∑
di satisfies (1.5.1). This gives a con-

nected component Pic
~d C ⊂ Picd C. We say that a pair (C, ~d) is a maximum helicity

violating (MHV) curve if, for a generic line bundle L ∈ Pic
~d C, we have

(1) L is not special, i.e. has exactly two linearly independent global sections:

H0(C,L) = C2, H1(C,L) = 0.

(2) The evaluation map α : H0(C,L)⊗OC → L is surjective, equivalently

ϕL : C 99K P1

is a morphism (which is automatic if C is smooth) and L ' ϕ∗LOP1(1).
(3) The rational scattering amplitude map

Λ : Pic
~d C 99KM0,n, L 7→ (ϕL(p1), . . . , ϕL(pn))

is dominant at L, or equivalently generically finite.

1.7. DEFINITION. The scattering amplitude form of an MHV curve is a unique (up to
a constant multiple) non-zero Pic

~0 C-invariant holomorphic g-form

A ∈ H0(Pic
~d C,Ωg)

viewed as a multi-valued meromorphic form on M0,n.

1.8. SUMMARY. We start with a stable curve C of genus g with n = g + 3 marked
points. The MHV experiment is a choice of a random line bundle L of degree
d = g + 1 or, equivalently, a random meromorphic function ϕL : C → P1 of
degree d. When C is smooth, the probability distribution of L is uniform with
respect to the translation-invariant volume form on the Jacobian. We study proba-
bility measure on M0,n that gives statistics of points ϕL(p1), . . . , ϕL(pn) ∈ P1. This
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gives a family of (complexified) probability measures that depend on 4g complex
parameters describing the input curve (C, p1, ..., pn) ∈Mg,n.

1.9. REMARK. It is clearly superfluous to keep the notation g, d, n for quantities
related by the equations (1.4.1), (1.5.1) throughout this paper. Our excuse is that
they are associated with the main players, the curve C, its Picard group and M0,n.

1.10. EXAMPLE. An MHV curve of genus 0 is just P1 with three marked points.
In this case d = 1 and Pic1 C is a point, namely the line bundle L = OP1(1).
The map ϕL : P1 → P1 is an isomorphism which maps p1, p2, p3 to three distinct
points, which can be moved to the points 0, 1,∞ by applying the PGL2 action.
It follows that the scattering amplitude map Λ in genus 0 is simply

pt = Pic1 P1 Λ−→M0,3 = pt .

1.11. NOTATION. A connected component Pic
~d C of the Picard group is deter-

mined by multidegrees ds = degL|Cs , one for each irreducible componentCs ⊂ C.
We have d =

∑
ds. We draw an MHV curve as an on-shell diagram, a dual graph

of C with marked points as exterior legs. Vertices of the diagram correspond to

FIGURE 1. On-shell diagrams of MHV curves of genus 1

irreducible components of C and interior edges correspond to nodes. Genus zero
components are drawn as circles, components of positive genus gs are decorated
with gs holes. Components where the line bundle has degree ds = 0 are left blank,
components of degree ds = 1 are shaded black, and if ds > 1 then we just write ds
in or next to the component. If the curve is irreducible then we don’t indicate the
degree at all since it’s always equal to g+1. The advantage of the on-shell diagram
over the dual graph of the stable curve is that it records the multidegrees ~d of L.
In Theorem 4.4, we will show that the locus of MHV curves is open. In particular,
the set of possible on-shell diagrams is closed under edge contractions.

1.12. EXAMPLE. In genus 1 there are many possibilities illustrated in Figure 1. Here
d = 2 and n = 4. So the map ϕL : C → P1 is a double cover and the scattering
amplitude map Λ takes L ∈ Pic2 C to the cross-ratio of four points

ϕL(p1), ϕL(p2), ϕL(p3), ϕL(p4) ∈ P1.

It turns out that if C is a smooth elliptic curve then Λ : Pic2 C → P1 is a double
cover and the scattering amplitude form A is an integrand of an elliptic integral.

The calculations in genus 0 and 1 motivate the following theorem3, which is
explored from different points of view in subsequent sections:

1.13. THEOREM. The scattering amplitude map Λ has degree 2g for a general curve C.

3 In the time since the paper appeared on the arXiv for the first time, many further interpretations
and generalizations of this “Tevelev degree” have been investigated, see e.g. [BP,C1,CL,CPS,FL,L,LP].
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1.14 (Contents of §2). One of the goals of the paper is to localize 2g line bundles
in the preimage of a general point of M0,n, i.e. to describe branches of the multi-
valued inverse function Λ−1. In Theorem 2.3 we show that every smooth curve is
an MHV curve. We use the theory of special divisors [ACGH], which was classi-
cally developed to study the images of Abel–Jacobi maps, in particular the focus
was on the d = g − 1 case. The MHV regime d = g + 1 is just as rich and exciting.
We introduce various special divisors in Picg+1 C as well as the planar locusW that
parametrizes presentations of the curve C as a nodal plane curve of degree g + 1.

1.15 (Contents of §3). Given that all smooth curves are MHV curves, one expects
a simple classification of stable MHV curves but this is quite a delicate question,
which we start to investigate in this section. These results are not central to the
paper but they are used throughout. If the curve C has a node such that remov-
ing it separates C into two connected components (i.e. the on-shell diagram is not
2-connected) thenC is not an MHV curve – the only MHV curves with compact Ja-
cobians are smooth curves. This is known as a one-channel factorization in physics.
If the on-shell diagram is 2-connected but not 3-connected (more precisely, ifC has
a two-channel factorization, see Definition 3.11) then C is separated into two com-
ponents by removing two nodes, and information about the scattering amplitude
can be read from the components, see Theorems 3.16 and 3.18.

1.16 (Contents of §4). To study families of MHV curves and scattering amplitudes,
we introduce the universal scattering amplitude map

Λ : PicMHV C 99KM0,n

over the locus of MHV curves MMHV

g,n ⊂ Mg,n. We use two open substacks in
the stack of quasi-maps: moduli of stable quotients [MOP] and moduli of presen-
tations of slope-stable line bundles. We find a convenient polarization for MHV
curves and compactifyPicMHV C by a projective family of compactified Jacobians.

1.17 (Example 1.12 – continued). While a smooth elliptic curve E degenerates into
a wheel C of four projective lines, Pic2E degenerates into Pic

MHV
C, a wheel of

two projective lines, the MHV components Pic0,1,0,1 and Pic1,0,1,0 represented by
stacked on-shell diagrams on the right side of Figure 1. Each of these components
has the same amplitude form, a phenomenon called “square move” by physicists.
For any of the curves in Figure 1, the fibre of the universal scattering amplitude
map is a ramified double cover of P1 by an irreducible curve of arithmetic genus 1
except for the four-wheel, when it becomes a reducible 2 : 1 cover

Pic
MHV

C = P1 ∪ P1 2:1−→P1 = M0,4.

1.18 (Contents of §5). Scattering amplitude maps and forms of hyperelliptic curves
give a new perspective on the theory of parabolic vector bundles of rank 2 on P1.
A hyperelliptic curveC is given by the equation y2 = f(z), where f is a polynomial
of degree 2g + 2 or 2g + 1 without multiple roots. This gives a double cover map

ϕh : C → P1, (z, y) 7→ z.

Marked points p1, . . . , pn project to points z1, . . . , zn ∈ P1, which we assume are
different. In the study of pointed hyperelliptic curves it is often assumed that all
marked points are Weierstrass points (the roots of f(z)) but in our approach the
marked points are decoupled from the Weierstrass points. We show in Lemma 5.6
that the scattering amplitude map of hyperelliptic curves factors as follows:

Λ : Picg+1 C
Λ−→Bun(P1; z1, . . . , zn)

Ξ
99KM0,n,
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where Bun(P1; z1, . . . , zn) is the moduli stack of parabolic rank 2 bundles with
trivial determinant, the map Λ associates to a line bundle L ∈ Picg+1 C its push-
forward (ϕh)∗L with parabolic lines determined by marked points, and finally
Ξ is a very basic birational map which can be described as follows. A projec-
tivization of a generic parabolic vector bundle is a ruled surface P1 × P1 with
points (z1, q1), . . . , (zn, qn) giving the parabolic structure and the map Ξ assigns
(q1, . . . , qn) to this bundle, see Figure 2. It follows that in the hyperelliptic case the

q1

qn

z1 zn

FIGURE 2. Ξ : Bun(P1; z1, . . . , zn) 99KM0,n, (E;V1, . . . , Vn) 7→ (q1, . . . , qn).

scattering amplitude map combines effects of the birational morphism Ξ, which
only depends on z1, . . . , zn but not on C, and the map Λ, which is thus a finer in-
variant in the hyperelliptic case. To study the scattering amplitude form as a form
on the moduli space of parabolic bundles, we have to choose its projective model.
We study effects of a well-known wall-crossing between projective models and the
action of the Weyl group W (Dn) by elementary transformations.

1.19 (Contents of §6). In Theorem 6.2 we make another step towards proving The-
orem 1.13 - we show that the scattering amplitude map Λ has degree 2g for every
hyperelliptic curve C. We use beautiful results of Jacobi [J] (amplified by Moser
and Mumford [M2]) that give an explicit model for the Jacobian of a hyperelliptic
curve (with a removed theta-divisor) as the orbit space of conjugacy classes of 2×2
polynomial matrices. Moreover, translation-invariant vector fields on the Jacobian
can be described in the form of the Lax differential equation and this can be used
to compute branches of the scattering amplitude form.

1.20 (Contents of §7). In genus 2, where every curve is hyperelliptic, we combine
methods of §5 with a classical observation of Halphen [H1]: a sufficiently general
divisor P = p1 + . . . + pn of marked points on a smooth MHV curve embeds it
ϕP : C ↪→ P3 as a degree n = g + 3 space curve. This gives a way to study
the scattering amplitude using geometry of P3. By the results of §5, the scattering
amplitude map Λ : Pic3 C 99K M0,5 ' dP5 into the quintic del Pezzo surface
factors through the moduli space of parabolic vector bundles of rank 2, which in
this case is the quartic del Pezzo surface dP4. In Theorem 7.6 we resolve this
map by a finite morphism Λ : Bl16 Pic3 C → dP4 of degree 4 from the blow-
up of Pic3 C in 16 special points to the quartic del Pezzo surface. We show in
Theorem 7.7 that whenever all marked points are Weierstrass points, Λ becomes a
well-known map: it factors as a composition of two double covers,

Bl16 Pic3 C
2:1−→K3

2:1−→dP4,
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where the K3 surface is the minimal resolution of the Kummer surface. For gen-
eral marked points away from the Weierstrass points, the intermediate K3 surface
disappears from the picture but the degree 4 scattering amplitude morphism Λ as
well as the double sixteen configuration on the abelian surface survive.

1.21 (Contents of §8). In this section we inject a measure of reality into the study of
scattering amplitude forms of smooth curves. In order to obtain real probability
measures, we have to turn to real algebraic geometry. The answer is beautiful for
smooth real curves with the maximal number of real ovals, so called M-curves,
with marked points distributed as in Figure 3: either all marked points are real

P

Type A
(view from above)

Type B
(side view)

P

FIGURE 3. MHV M-curves of type A (left) and type B (right)

and all ovals contain one marked point except for one that contains three (type A)
or all but two marked points are real, one for each real oval, and the other two are
complex-conjugate (type B). The main result of this section is Theorem 8.6: line
bundles in every fiber of the scattering amplitude map Λ over M0,n(R) “localize”
into different connected components (there are conveniently exactly 2g of them)

Picg+1
I (R) ⊂ Picg+1(R).

We use this theorem of real algebraic geometry to prove Theorem 1.13, which is
a theorem of complex algebraic geometry. Back to M-curves, in Theorem 8.10 we

In[409]:= ListPlot3D [data , InterpolationOrder 6,

ColorFunction ColorData ["SouthwestColors "], Axes {True , True , False },

Boxed False , PlotRange {0, 0.009 }, ImageSize Large ]

ListDensityPlot [data , PlotRange {{-20, 30}, {-25, 28}}, InterpolationOrder 6,

ColorFunction ColorData ["SouthwestColors "], ImageSize Large ]

Out[409]= 

4     

Out[410]= 

In[411]:= (*ListContourPlot [data5 ,PlotRange {{-200,200 },{-200,200 }},InterpolationOrder 8] *)

In[412]:= 

    5

FIGURE 4. Scattering amplitude probability measures in genus 2

show that the scattering amplitude map Λ gives real-analytic open immersions

ΛI : Picg+1
I (R) ↪→M0,n(R)
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from an open dense subset of every connected component of Picg+1(R). This gives
real probability measures |AI | on M0,n(R) that depend on 4g real parameters. For
an especially nice connected component Picg+1

H (R), which we call the Huisman
component, the scattering amplitude map induces a real-analytic isomorphism

Rg/Zg ' Picg+1
H (R)

Λ−→(RP1)g,

which gives a positive, smooth (in fact real-analytic) scattering amplitude prob-
ability measure on (RP1)g , see Theorem 8.12. As an example, we study scatter-
ing amplitude probability measures in genus 2, which produces pretty probability
density functions as in Figure 4.

1.22 (Contents of §9). In this section we describe maximally degenerate stable MHV
curves, i.e. curves with trivalent on-shell diagrams. By combining results from
[CT1] and [ABC+1], we show that they are given by CT hypertrees: collections
Γ = {Γ1, . . . ,Γd} of triples in {1, . . . , n} that satisfy∣∣⋃

j∈S
Γj
∣∣ ≥ |S|+ 2 for every S ⊂ {1, . . . , d}. (‡)

For example, as observed in [CT1], every checkerboard triangulation of a 2-sphere
gives a CT hypertree, in fact two of them. Vertices of the triangulation give the

2

6

3

1

4 5

8

10 7

9

7

95

3

4

1

BLACK HYPERTREE

2
8

6

10

5

4

8

1

WHITE HYPERTREE

3

10

2

6

7

9

FIGURE 5. Two spherical CT hypertrees from the same triangulation [CT1]

indexing set {1, . . . , n} and black triangles give triples, see Figure 5. Another CT
hypertree is given by white triangles. The scattering amplitude perspective un-
covers geometry of spherical CT hypertrees: in Theorem 9.11 we show that they
appear as stable degenerations of real MHV M-curves. Beautiful results of Tutte
on arborescences associated with triangulations make an appearance in the proof.

1.23 (Contents of §10). Here we compare our compactified Jacobian approach to a
traditional Grassmannian approach of [ABC+2], especially in the non-MHV case.
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§2. MASSLESS BRILL–NOETHER THEORY

2.1. EXAMPLE. Let C be a smooth genus 1 curve with 4 marked points p1, . . . , p4.
Every line bundle L ∈ Pic2 C gives a double cover ϕL : C

2:1−→P1 presenting C in

In[304]:= 

In[19]:= f[x_] := -x * (x + 1) * (x - 1) * (x - 3);

ContourPlot [y^2 == f[x], {x, -2, 6}, {y, -5, 5},

ContourStyle Black , Axes {True , False }, Ticks False , Frame False ,

Epilog {Black , PointSize [0.02 ] , Point [{{-0.7, Sqrt [f[-0.7 ]]}, {1.2, Sqrt [f[1.2 ]]},

{2.1, -Sqrt [f[2.1 ]]}, {2.8, Sqrt [f[2.8 ]]}}], Text [p1, {-0.9, 0.2 + Sqrt [f[-0.7 ]]}],

Text [p2, {1, 0.2 + Sqrt [f[1.2 ]]}], Text [p3, {1.8, -.2 + -Sqrt [f[2.1 ]]}],

Text [p4, {2.6, Sqrt [f[2.8 ]] - 0.3 }]}, Prolog {Gray , PointSize [0.02 ] ,

Point [{{-0.7, 0}, {1.2, 0}, {2.1, 0}, {2.8, 0}}], Text [q1, {-0.7, 0.2 }],

Text [q2, {1.2, 0.2 }], Text [q3, {2.1, 0.2 }], Text [q4, {2.8, 0.2 }]}]

Out[20]= 
q1 q2 q3 q4

p1
p2

p3

p4

In[306]:= CR[a_, b_, c_, d_] := ((a - b) * (c - d)) / ((c - b) * (a - d));

CRDOT [a_, b_, c_, d_, da_, db_, dc_, dd_ ] := (

D[CR[AA, BB, CC, DD], AA] * da + D[CR[AA, BB, CC, DD], BB] * db +

D[CR[AA, BB, CC, DD], CC] * dc + D[CR[AA, BB, CC, DD], DD] * dd) /.

{AA a, BB b, CC c, DD d};

MaxIt = 12000 ;

Z = ConstantArray [0, 5];

Y = ConstantArray [0, 5];

A = ConstantArray [0, {4, MaxIt }];

Q = ConstantArray [0, 5];

Qdot1 = ConstantArray [0, 5];

Qdot2 = ConstantArray [0, 5];

the form y2 = f(x), where f is a polynomial of degree 3 or 4. Recall that

M0,4 ' P1 \ {0, 1,∞}

via the cross-ratio function of four points. We compactify M0,4 by M0,4 ' P1.
If we denote by q1, . . . , q4 the images of marked points ϕL(p1), . . . , ϕL(p4) then the
scattering amplitude map Λ takes L ∈ Pic2 C to their cross-ratio function

q4 − q1

q2 − q1
· q2 − q3

q4 − q3
.

Of course Pic2 C ' C but not canonically. In fact Pic2 C has 6 distinguished points

pij = O(pi + pj), i 6= j,

and carries a natural degree 2 line bundle

L = O(p12 + p34) ' O(p13 + p24) ' O(p14 + p23).

The images of points pij ∈ Pic2 C under the scattering amplitude map are

Λ(p14) = Λ(p23) = 0, Λ(p13) = Λ(p24) = 1, Λ(p12) = Λ(p34) =∞
and Λ is the double cover

ϕL : Pic2 C
2:1−→P1.
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In the complex torus model Pic2 C = C/Z + Zτ , the inverse of the scattering am-
plitude map Λ is given by the elliptic integral

z =

∫ x

x0

dx√
g(x)

,

where g is a degree 4 or 3 polynomial. To summarize:

(1) The scattering amplitude form A(x) = dx√
g(x)

has 4 branch points.

(2) The curve C is uniquely determined by the scattering amplitude form.
(3) Marked points p1, . . . , p4 are determined by Λ−1(0), Λ−1(1) and Λ−1(∞)

but not uniquely: the action of the Klein 4-group that permutes the marked
points p1, . . . , p4 in pairs is not detected by the scattering amplitude.

2.2. REMARK. A special case is when p1, . . . , p4 are 2-torsion points of an elliptic
curve with origin p1. We identify Pic2 C with C = Pic1 C by tensoring withO(p1).
Then L is identified with O(2p1). The 6 points pij specialize to 3 points p2, p3, p4,
each with multiplicity 2. A special feature of this scattering amplitude form is that
three of its branch points are at 0, 1,∞. The fourth one determines the j-invariant.
More generally, we will see in Section §5 that scattering amplitudes of hyperelliptic
curves can detect whether or not the marked points are at the Weierstrass points.

2.3. THEOREM. Every smooth pointed curve (C; p1, . . . , pn) of genus g is an MHV curve.

Proof. Recall that n = g + 3 and d = g + 1. We are going to use repeatedly that a
generic line bundle of degree less than g is not effective [ACGH]. Let L be a generic
line bundle of degree g + 1. Then ωC ⊗ L∗ is also a generic line bundle. Since its
degree is (2g − 2)− (g + 1) = g − 3 < g, we have h1(L) = h0(ωC ⊗ L∗) = 0, i.e. L
is not special. This proves part (1) of Definition 1.6.

Next, we verify part (2). If p ∈ C then h1(L(−p)) = h0(ωC ⊗ L∗(p)). Since the
degree of ωC⊗L∗(p) is g−2, it is effective only if can be written asO(x1+. . .+xg−2)
for some points on the curve. It follows that L ' ωC(p− x1 − . . .− xg−2). But the
locus of these line bundles is at most (g − 1)-dimensional, which contradicts the
fact that L is generic. Thus L is globally generated.

We claim that ϕL(pi) 6= ϕL(pj) when i 6= j, i.e. Λ(L) ∈ M0,n for a generic L.
Indeed, h1(L(−pi − pj)) = h0(ωC ⊗ L∗(pi + pj)) = 0 since its degree is g − 1 < g.
Thus ϕL sends pi and pj to different points of P1.

To show that the scattering amplitude map Λ : Picg+1 C 99KM0,n is generically
finite, we compute its differential at a generic point. Tensoring an exact sequence

0→ O(−P )→ O →
g+3⊕
i=1

Opi → 0,

where P = p1 + . . .+ pg+3, with ϕ∗L(TP1) ' O(L⊗2) gives an exact sequence

H0(C,L⊗2(−P ))→ H0(C,ϕ∗L(TP1))→
g+3⊕
i=1

H0(pi, ϕ
∗
L(TP1))→ H1(C,L⊗2(−P )).

Since L⊗2(−P ) has degree 2(g + 1) − (g + 3) = g − 1, both ends of the sequence
vanish for generic L and we have an isomorphism

H0(C,ϕ∗L(TP1)) '
g+3⊕
i=1

H0(pi, ϕ
∗
L(TP1)) ' Cg+3

In other words, every infinitesimal deformation of points ϕL(p1), . . . , ϕL(pg+3)
in P1 is induced by an infinitesimal deformation of the map C → P1 which since
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H1(C,L) = 0 is given by an infinitesimal deformation of L and infinitesimal PGL2

action. It follows that the differential of Λ is an isomorphism at L. �

Analyzing the special loci from the proof of Theorem 2.3 gives the following

2.4. AMPLIFICATION (planar locus W and special divisors E,Eij , R ⊂ Picg+1 C).
(1) L is not special away from the image W of the map

Symg−3 C → Picg+1 C, (x1, . . . , xg−3) 7→ ωC(−x1 − . . .− xg−3).

(2) L is base-point-free away from the image E of the map

C × Symg−2 C → Picg+1 C, (p, x1, . . . , xg−2) 7→ ωC(p− x1 − . . .− xg−2).

(3) Λ(L) ∈M0,n when L is away from E and the images Eij for 1 ≤ i < j ≤ n
of the maps Symg−1 C → Picg+1 C,

(x1, . . . , xg−1) 7→ ωC(−x1 − . . .− xg−1 + pi + pj).

(4) Let Θ ⊂ Pic2g+2 be the image of the map Symg−1 C → Pic2g+2 C,

(x1, . . . , xg−1) 7→ O(x1 + . . .+ xg−1 + p1 + . . .+ pg+3).

The scattering amplitude map Λ is unramified away from E, Eij and the
locus R = m−1(Θ), where m is the map

m : Picg+1 C → Pic2g+2 C, L 7→ L⊗2.

(5) W ⊂ E ∩
⋂
i 6=j

Eij has codimension 3 in Picg+1 C.

(6) Eij and Θ are theta divisors.
(7) E is a theta divisor if C is hyperelliptic, otherwise E ≡ (g − 1)Θ.
(8) The divisor R is algebraically equivalent to 4Θ.

Proof. Recall that theta divisors are defined up to translation by an element of
Pic0 C and are not preserved by any non-zero translation. The locus of effec-
tive divisors in Picg−1 C is “the” theta-divisor. Thus everything follows from
the proof of Theorem 2.3, except for the calculation of the class of the ramifi-
cation divisor R, which follows from the theorem of the cube, and the class of
the “difference divisor” E. If C is hyperelliptic then ωC(p − x1 − . . . − xg−2) ∼
KC − (g − 2)h+ p+ x1 + . . .+ xg−2, where h is the hyperelliptic divisor, and so E
is the translate of the theta-divisor. If C is not hyperelliptic then the class of E in
the Neron–Severi group was computed in [FMP, Prop. 3.7(b)].4 �

2.5. REMARK. Divisors E, Eij and R all provide natural polarizations of Picg+1 C.
Note especially that E is independent of the marked points p1, . . . , pn.

2.6 (Loci E and Eij). After choosing a compactification of M0,n, for example M0,n,
the scattering amplitude map (as any rational map) will extend generically along
divisors E and Eij . Line bundles L ∈ E have base locus but (away from W )
still determine meromorphic functions ϕL : C → P1. However, moving base
points doesn’t change ϕL but changes L and as a result Λ contracts E to a locus of
smaller dimension, most dramatically to a point o ∈M0,n in the hyperelliptic case

4As pointed out by the referee, [FMP, Prop. 3.7] studies the image of the difference map ψb,a :

Symb C × Syma C → Picb−a C, (p1, . . . , pb)× (x1, . . . , xa) 7→ OC(p1 + . . .+ pb − x1 − . . .− xa),
only under the assumption that 1 ≤ b ≤ a ≤ g−1

2
, which is stronger than ours (b = 1, a = g − 2.)

However, their argument works verbatim in our case. We only need to show that ψ1,g−2 is birational
onto its image if C is not hyperelliptic. Arguing by contradiction, take two different points in a fiber,
p1 − x1 − . . . − xg−2 ∼ p′1 − x′1 − . . . − x′g−2, for a general (g − 1)-tuple p1, x1, . . . , xg−2. Then
p1+x′1+ . . .+x′g−2 ∼ p′1+x1+ . . .+xg−2. If these divisors are different then, by Riemann singularity
theorem and dimension count, dim Sing Θ ≥ g − 3, which contradicts Martens theorem since C is not
hyperelliptic. Thus these divisors are the same, and so p1 = xi for some i, which contradicts generality.



12 JENIA TEVELEV

(see Corollary 5.13). This produces a singularity in the scattering amplitude prob-
ability measure (see 8.23). By contrast, divisorsEij are largely harmless: extension
of Λ maps Eij to the locus in the compactification of M0,n where two marked
points in P1 come together, for example to the boundary divisor ∆ij in the case
of M0,n. Here is an example of a different and very ergonomic compactification.

2.7. LEMMA. Fix three indices, for example g + 1, g + 2, g + 3. The scattering amplitude
map induces a generically finite rational map

Λ : Picg+1 C 99KM0,n
π1,...,πg−−−−−→ (M0,4)g ' (P1)g, (2.7.1)

where πi : M0,n → M0,4 for i = 1, . . . , g is the forgetful morphism given by the indices
i, g+1, g+2, g+3. A general line bundle L ∈ Picg+1 C is mapped by πi to the cross-ratio
of points ϕL(pi), ϕL(pg+1), ϕL(pg+2), ϕL(pg+3). Let L ∈ Picg+1 C \ {R∪E}. If points
ϕL(pg+1), ϕL(pg+2), ϕL(pg+3) are different then (2.7.1) is regular and unramified at L.

Proof. Identical to the last paragraph of the proof of Theorem 2.3. �

2.8 (Locus W). We call W the planar locus: generically along W , ϕL is a morphism

ϕL : C → P2. (2.8.1)

If C is a general curve, ϕL realizes it as a degree g + 1 plane curve with g(g−3)
2

nodes away from the marked points p1, . . . , pn. Generically along W , the scatter-
ing amplitude map is resolved by the blow-up

Λ : G = BlW Picg+1 C 99KM0,n. (2.8.2)

In the language of Brill–Noether theory [ACGH], G parametrizes pencils of divi-
sors on C of degree g + 1. Let

Ŵ ⊂ G
be an exceptional divisor over W . The map Ŵ → W is a P2-bundle (generically
along W ). Generically along Ŵ , the map Λ of (2.8.2) can be described as follows:
a point (L, p) ∈ Ŵ gives both a “planar realization” (2.8.1) and a point p ∈ P2.
Projecting points

ϕL(p1), . . . , ϕL(pn) ∈ P2

from p gives points q1, . . . , qn ∈ P1. The class of (q1, . . . , qn) in M0,n is the image of
(L, p) under Λ. By [CT2, Th. 3.1], Λ(DW ) ⊂M0,n is a divisor covered by surfaces

S = BlϕL(p1),...,ϕL(pn) P2 (2.8.3)

for general L ∈ W unless points ϕL(p1), . . . , ϕL(pn) lie on a conic, in which case
the conic is contracted to a point.

2.9. LEMMA. The multi-valued scattering amplitude form A on M0,n has branches that
vanish along the divisor Λ(DW ) with multiplicity 2.

Proof. Equivalently, we claim that the pull-back of the scattering amplitude form
A on Picg+1 C to G vanishes to the order 2 along Ŵ . But W has codimension 3

and for a blow-up π : G = BlW X → X with exceptional divisor Ŵ , one has
π∗KX = KG(−kŴ ), where k = codimW X − 1. �

2.10. EXAMPLE. W is empty in genus 1 and 2. For a curve of genus 3,

W = {K} ∈ Pic4 C

and ϕK : C → P2 is an embedding of C as a quartic curve if C is not hyperelliptic
and a 2 : 1 map to a conic in P2 if C is hyperelliptic. If C is a general quartic
(resp. hyperelliptic) curve then S as in (2.8.3) is a general smooth (resp. nodal)
cubic surface. This is related to the fact thatM0,6 has another projective model, the
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Segre cubic threefold in P4, and S is its hyperplane section. At the moment little is
known about divisors Λ(Ŵ ) ⊂M0,n for g > 3.

§3. ONE AND TWO CHANNEL FACTORIZATION

3.1. Recall that the on-shell diagram is the dual graph of C decorated with degrees
of L ∈ Pic

~d C on its irreducible components. If C is an MHV curve then none of
these degrees are negative since L is globally generated. However, some of the
degrees can be equal to 0. The corresponding components are contracted by the
map ϕL : C → P1. The union of irreducible components where L ∈ Pic

~d C has
degree 0 can be written as a disjoint union of maximal connected components

C
(0)
1 , . . . , C(0)

r .

The following lemma is essentially from [ABC+1]:

3.2. LEMMA. If C is an MHV curve then each connected component C(0)
i is a curve of

arithmetic genus 0 (i.e. a tree of P1’s) with at most one marked point.

Proof. The restriction of a generic line bundleL to eachC(0)
i is a globally generated,

on the other hand generic, line bundle of degree 0. Therefore this restriction is a
trivial line bundle and so the genus of each C

(0)
i is zero. Since ϕL contracts each

C
(0)
i , it can contain at most one marked point, otherwise Λ is not dominant. �

3.3. REMARK. One can substitute each tree C(0)
i of rational components with any

other fixed curve of arithmetic genus zero with the same number of marked points
(i.e. zero or one) and the same number of “outbound” points (where C(0)

i is con-
nected to the rest of the curve C). This doesn’t change the scattering amplitude.
In the language of on-shell diagrams, Lemma 3.2 says that a subgraph of degree 0
vertices is a disjoint union of r connected trees of white circles with at most one
marked point on each tree. Each of these trees can be substituted with one white
megacircle without changing the scattering amplitude.

The following fact is very useful.

3.4. LEMMA. Let C be an MHV curve. Choose two points x, y ∈ C (not necessarily
marked points). Then either x and y belong to the same rational component C(0)

i of 3.1 or

ϕL(x) 6= ϕL(y)

for a general line bundle L ∈ Pic
~d C.

Proof. Let L be a general line bundle in Pic
~d C. It gives a morphism ϕL : C → P1.

Suppose x and y are not in the same componentC(0)
i (clearly contracted by ϕL) but

ϕL(x) = ϕL(y) = 0 ∈ P1. Conditions (1) and (2) in the Definition 1.6 of an MHV
curve are open in Pic

~d C. We claim that L can be deformed to force ϕL(x) 6= ϕL(y).
Let g : C ′ → C be a morphism and let D,D′ ⊂ C ′ be divisors defined as follows:

(1) If x is a smooth point of C and its irreducible component A containing x
is not contracted by ϕL then C ′ = C, D = m[x], where ϕ∗L(0) = m[x] + . . .
and D′ = m[x′], where x′ ∈ A is a general point.

(2) If x is a node of C and irreducible components A and B passing through x
are not contracted by ϕL (it could be that A = B) then C ′ is a partial nor-
malization of C obtained by separating the node x, D is a divisor sup-
ported at g−1(x) such that (ϕL ◦ g)∗(0) = D + . . . and D′ is a general
effective divisor on C ′ with the same multidegree as D.
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(3) Finally, if x ∈ C
(0)
i then let C ′ be C \ C(0)

i , D is a divisor supported at
g−1(C

(0)
i ) such that (ϕL ◦ g)∗(0) = D + . . . and D′ is a general effective

divisor on C ′ with the same multidegree as D.

Let L0 ∈ Pic
~0 C be a line bundle such that g∗L0 ' OC′(D′ − D), which exists

since g∗ : Pic(C) → Pic(C ′) is surjective in all three cases. We can assume that
ϕL⊗L0(y) = 0. We claim that ϕL⊗L0(x) 6= 0. Indeed, let s be a global section of L
that vanishes at x and y and let s0 be a rational section of L0 such that (g∗s0) =
D′ −D. Then g∗(s0s) has no poles and doesn’t vanish along D, and therefore s0s
is a global section of L0 ⊗ L that vanishes at y but not at x. �

There are two more restrictions on MHV curves:

3.5. LEMMA. Let (C, ~d) be an MHV curve with a connected subcurve A of arithmetic
genus p, and L ∈ Pic

~d C a generic line bundle.
(1) If p > 0 then degL|A ≥ p+ 1.
(2) If degL|A = p+ 1 then A contains at most p+ 3 marked points.

Proof. Indeed, L|A is both globally generated and generic, thus degL|A ≥ p + 1.
This proves (1). Let NA ⊂ {1, . . . , n} be the subset of marked points that be-
long to A and let nA be its cardinality. If degL|A = p + 1 then ϕL|A is a map
A→ P1. The scattering amplitude map Λ is dominant, therefore the induced map
Pic

~dA A→M0,nA that sends L|A to the configuration of points ϕL|A(pi) for i ∈ NA
must be dominant as well. It follows that nA ≤ p+ 3. This proves (2). �

3.6. COROLLARY. Figure 1 lists all MHV curves with g = 1 (up to permuting markings).

Proof. A dual graph of a nodal curve of arithmetic genus 1 is a graph of genus 1,
i.e. a genus 1 vertex or a cycle (perhaps reduced to a loop) with trees attached. By
Lemma 3.5, the degree of the cycle is 2, so all trees have degree 0. By Lemma 3.2,
there are actually no trees, so the on-shell diagram is a cycle. This leaves diagrams
from Figure 1. �

3.7. EXAMPLE. Let C be an irreducible nodal curve of arithmetic genus 1 with 4
marked points p1, . . . , p4. We viewC as P1 with 0 and∞ identified. Marked points
p1, . . . , p4 ∈ C∗ ⊂ P1. For x, y ∈ C∗, the line bundle L = O([x] + [y]) ∈ Pic2 C
determines the map

ϕL : C
2:1−→P1, p 7→ p

(p− x)(p− y)

(note that ϕL(0) = ϕL(∞)). It is easy to see that O([x] + [y]) ' O([x′] + [y′]) if and
only if xy = x′y′ = z ∈ C∗. This gives an identification of Pic2 C ' C∗. The map

Λ : Pic2 C →M0,4 ' P1, Λ(L) = λ = [ϕL(p1) : ϕL(p2);ϕL(p3) : ϕL(p4)]

is the cross-ratio of points varying with L. Using invariance of the cross-ratio,

Λ(L) =

[
p1

(p1 − x)(p1 − y)
:

p2

(p2 − x)(p2 − y)
;

p3

(p3 − x)(p3 − y)
:

p4

(p4 − x)(p4 − y)

]
=

[
(p1 − x)(p1 − y)

p1
:

(p2 − x)(p2 − y)

p2
;

(p3 − x)(p3 − y)

p3
:

(p4 − x)(p4 − y)

p1

]
=

[
p1 − (x+ y) +

z

p1
: p2 − (x+ y) +

z

p2
; p3 − (x+ y) +

z

p3
: p4 − (x+ y) +

z

p4

]
=

[
p1 +

z

p1
: p2 +

z

p2
; p3 +

z

p3
: p4 +

z

p4

]
= λ
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Thus λ = Λ(z) extends to a map P1 2:1−→P1 that sends 0,∞ to [p1 : p2; p3 : p4]. The
target P1 is the M0,4 and the source P1 is a new feature of the stable curve case, the
normalization of the compactified Jacobian Pic2 C, in this case a nodal cubic. The 1-
form dz

z of Pic2 C is invariant under the group action of C∗ ∼= Pic
~0 C on Pic2 C.

As a form on Pic2 C, the amplitude has log poles at its boundary point but as a
form of λ the pole is located at [p1 : p2; p3 : p4] 6∈ {0, 1,∞}. To summarize,

(1) The scattering amplitude form is A(λ) = dλ

(λ−λ0)
√
f2(λ)

, with the log pole

λ0 = [p1 : p2; p3 : p4] 6∈ {0, 1,∞},

where f2 is a polynomial of degree 2 with roots Λ
(
±√p1p2p3p4

)
.

(2) The marked points p1, . . . , p4 are determined modulo the action of the
Klein 4-group that permutes them in pairs. Specifically,

Λ−1(0) = {p1p4, p2p3}, Λ−1(1) = {p1p3, p2p4}, Λ−1(∞) = {p1p2, p3p4}.

3.8. Next we consider various situations when the curve C can be separated into
two connected componentsA andB by nodes. We will use the following notation:

(1) gA and gB for the arithmetic genus of components A and B.
(2) dA and dB for the degree of LA = L|A and LB = L|B . We have dA+dB = d.
(3) NA and NB for the subsets of marked points on A and B and nA and nB

for their cardinalities. We have nA + nB = n.

3.9 (One-channel factorization). Let C be a nodal curve with a separating node.
In other words, the on-shell diagram of C is not 2-connected. This is related to a
one-channel factorization in physics where virtual particles are are interchanged
through the separating node. The following lemma is well-known in physics.

3.10. LEMMA. A curve with a separating node is never an MHV curve. In particular, the
only MHV curves with compact Jacobians are smooth curves.

Proof. We argue by contradiction. Let the node separate C into components A
and B. Note that gA+gB = g. If gA > 0 and gB > 0, then dA ≥ gA+1, dB ≥ gB +1
by Lemma 3.5, thus g + 1 ≥ g + 2, a contradiction. If gA = g and gB = 0 (or vice
versa) then dA = g + 1 and dB = 0 by Lemma 3.5. But B contains at least two
marked points, which contradicts Lemma 3.2. �

3.11. DEFINITION (two-channel factorization). Suppose that C can be separated
into A and B by two nodes but not by one node. In other words, the on-shell
diagram of C is 2-connected but not 3-connected. We say that C has a two-channel
factorization unless A (or B) is a P1 with a marked point and L has degree 0 on it.

3.12. EXAMPLE. Let (C; p1, p2, p3, p4) be a curve obtained by gluing two copies of
P1 at 0 and ∞, with p1, p2 on the first component and p3, p4 on the second. This
is an example of a two-channel factorization. The MHV component of the Picard
group is Pic1,1 C. Every line bundle L ∈ Pic1,1 C can be written as O([x] + [x′]),
where x is a point of the first component and x′ of the second (away from the
nodes of C). Consider the map

ϕL : C
2:1−→P1, p 7→

{
a+ b

p−x on the first component,

a′ + b′

p−x′ on the second component,

where a = a′ and bx′ = b′x so that ϕL is regular. It is easy to see thatO([x]+[x′]) '
O([y] + [y′]) if and only if x

x′ = y
y′ = z. This gives an identification Pic1,1 C ' C∗.
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We are studying the scattering amplitude map Λ : Pic1,1 C →M0,4 ' P1 given
by the cross-ratio of points ϕL(p1), . . . , ϕL(p4) varying with L. Using invariance
of the cross-ratio,

λ =

[
a+

b

p1 − x
: a+

b

p2 − x
; a+

b′

p3 − x′
: a+

b′

p4 − x′

]
=

[
b

p1 − x
:

b

p2 − x
;

b′

p3 − x′
:

b′

p4 − x′

]
=

[
x

p1 − x
:

x

p2 − x
;

x′

p3 − x′
:

x′

p4 − x′

]
=
[p1

x
:
p2

x
;
p3

x′
:
p4

x′

]
= [p1 : p2; zp3 : zp4] =

zp4 − p1

p2 − p1
· p2 − zp3

zp4 − zp3
.

As in Example 3.7, we view the map Λ as the map from the compactified Jacobian:

Pic1,1 C = P1
z/{0=∞}

2:1−→P1
λ = M0,4.

The difference from Example 3.7 is that Λ(0) = Λ(∞) = ∞. In particular, the
scattering amplitude form, which is the Pic0,0 C- invariant form dz

z written as a
multivalued form of λ, has a log pole at∞. Explicitly, from the above, we have

λz(p2 − p1)(p4 − p3) = (zp4 − p1)(p2 − zp3). (3.12.1)

Solving (3.12.1) for z using quadratic formula gives, after algebraic manipulations,

dz

z
= (p1 − p2)(p4 − p3)

dλ√
f2(λ)

,

where f2(λ) is the discriminant of this quadratic equation.

3.13. LEMMA. Suppose (C, ~d) is an MHV curve with a two-channel factorization into
components A and B by nodes x and y. Let L ∈ Pic

~d C be a generic line bundle. Then
(1) dA = gA + 1, dB = gB + 1.
(2) nA = gA + 3, nB = gB + 1 (Case I) or nA = gA + 2, nB = gB + 2 (Case II).
(3) H0(A,LA) = H0(B,LB) = 2, H1(A,LA) = H1(B,LB) = 0.
(4) LA and LB are globally generated.
(5) ϕL(x) 6= ϕL(y). In particular, neither A nor B contains a degree 0 rational

component C(0)
i with both x and y as in Lemma 3.4.

Proof. Let L ∈ Pic
~d C be a generic line bundle. Consider a partial normalization

map
ν : A

∐
B → C

and an exact sequence

0→ OC → ν∗(OA ⊕OB)
α−→Ox ⊕Oy → 0,

where α(f, g) = (f(x) − g(x), f(y) − g(y)). Since H1(C,L) = 0, tensoring with L
gives H1(A,LA) = H1(B,LB) = 0. Since restrictions LA and LB are globally
generated and neither A nor B is a P1 with a marked point and degree 0, we get

dA = gA + 1, dB = gB + 1, (3.13.1)

H0(A,LA) = H0(B,LB) = 2.

Next we consider the restriction map H0(A,LA)→ C2 at points x and y. We claim
that it is an isomorphism (and the same for B) and in particular ϕL(x) 6= ϕL(y).
If not, let sA ∈ H0(A,LA) be a non-zero section that vanishes at x and y. Extension
of this section by 0 on B gives a section s1 in H0(C,L). Let s2 ∈ H0(C,L) be a

linearly independent section. Then the morphism ϕL : C
[s1:s2]−→ P1 contracts B to a

point. Thus all components of B have degree 0, which contradicts (3.13.1).
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Finally, we study distribution of marked points among components A and B.
By Lemma 3.5 (2), nA ≤ gA + 3, nB ≤ gB + 3. Up to symmetry, there are only two
possible cases, namely (I) and (II). �

3.14. AMPLIFICATION. The proof of the lemma shows how to build the map ϕL :
C → P1. We start with the maps ϕLA : A → P1 and ϕLB : B → P1 that each map
x and y to different points. Without loss of generality, we can assume that

ϕLA(x) = ϕLB (x) = 0 and ϕLA(y) = ϕLB (y) =∞.

The maps ϕLA and ϕLB then glue and give a map ϕ : C → P1, which corresponds
to some line bundle L that restricts to LA and LB . The restriction map

Pic
~d C → Pic

~dA A× Pic
~dB B

has kernel C∗. Changing L by an element z ∈ C∗ gives a map ϕzL such that

ϕzL|A = ϕL|A and ϕzL|B = zϕL|B .

3.15. Curves A and B do not have to be stable. Suppose that A is not stable
(analysis for B is the same). Then A contains a rational component that in C is
attached to x or y (or both) which has less than 3 special points (marked points or
nodes) once x and y are separated. Since C doesn’t have a 1-channel factorization,
A can’t have a rational component with 1 special point (in A) attached to both x
and y. ThusA is at least semi-stable. We list the remaining possibilities in Figure 6:

A' B
x

y
( i )

A' B
x

y
( ii B )

A' B
x

y
( iii )

A' B
x

y
( ii W )

FIGURE 6.

(i) A contains a 4-pointed P1 without marked points attached to x and y and
to the rest of the subcurve A′ at 2 points. Then dA′ ≥ gA by Lemma 3.5 (1)
if gA > 1 or by Lemma 3.2 and nA = 2 if gA′ = 0. Then dA′ + dP1 = gA + 1
and dP1 ≥ 1 since ϕL(x) 6= ϕL(y). Thus P1 has degree 1.

(iiW) A contains a 3-pointed P1 of degree 0 without marked points attached to
the rest of the subcurve A′ at 2 points and also to x (or y).

(iiB) A contains a 3-pointed P1 of degree 1 without marked points attached to
the rest of the subcurve A′ at 2 points and also to x (or y).5

(iii) A contains a 3-pointed P1 with a marked point attached to the rest of the
subcurve A′ at one point and also to x (or y). This P1 must have degree 0
by Lemma 3.5 (1).

5Note that this P1 can’t have degree > 1 by Lemma 3.5 (1).
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3.16. THEOREM. A curve C with a two-channel factorization such that nA = gA + 3 and
nB = gB + 1 is an MHV curve if and only if

(1) The stabilization Ã of A with its nA marked points is an MHV curve that does
not contain a degree 0 rational component C(0)

i as in 3.1 with both x and y.
(2) The curve B̃ obtained by adding to B two extra marked points in addition to its

nB marked points (at the nodes separating A from B) is an MHV curve.
A (multivalued) inverse of the map Λ at a general point (p1, . . . , pn) ∈ M0,n can be
found as follows: Take LA ∈ Λ−1

A ((pi)i∈NA). Then p′ = ϕLA(x) 6= ϕLA(y) = p′′.
Take LB ∈ Λ−1

B (p′, (pi)i∈NB , p
′′). Finally, we can find L using Amplification 3.14.

Proof. If A is stable then it is an MHV curve. Indeed, by Amplification 3.14 we
have a commutative diagram

Pic
~d C

Λ−−−−→ M0,n

ResA:L 7→LA
y yπA

Pic
~dA A

ΛA−−−−→ M0,nA

(3.16.1)

where πA is the forgetful map, and so the rational map ΛA is dominant. If A is not
stable then we claim that its stabilization Ã is an MHV curve. Indeed, cases (i) and
(iiB) of 3.15 are impossible because the remaining partA′ would have genus gA−1,
degree gA, but will contain gA + 3 points, in contradiction with Lemma 3.5 (2).
In the remaining cases (iiW) and (iii) of 3.15, Ã is obtained by contracting a P1 (or
two P1, one attached to x and another to y), both of degree 0. It follows that the
map ϕL|A factors through Ã and we can argue as in the case when A is stable.

3.17. CLAIM. The curve B̃ obtained by adding x and y to B as extra marked points is
MHV.

Proof of the Claim. Indeed, B̃ is clearly stable and we have already checked condi-
tions (1) and (2) in the Definition 1.6 of an MHV curve.6 We need to check that

ΛB̃ : Pic
~dB B →M0,nB+2

is dominant. We use the fact that Λ is dominant and diagram (3.16.1). Fix a general
line bundle LA on A and fix nA points ΛA(LA) ⊂ P1. Since these points include
three different points in P1, no automorphisms of PGL2 preserve them. We adjust
homogeneous coordinates on P1 so that ϕLA(x) = 0 and ϕLA(y) = ∞. Thus Λ(L)

for L ∈ Res−1
A (LA) is determined by points ϕL(pi) for i ∈ NB . Since Λ|Res−1

A (LA)

is a dominant map from a semi-abelian variety of dimension nB = gB + 1, we see
that the following locus of points is dense:

{ϕL(pi)}i∈NB ⊂ (P1)nB .

The map ΛB̃ sends LB to an isomorphism class of the (nB + 2)-tuple of points
(0, ϕL(pi)i∈NB ,∞) in P1, equivalently to the class of {ϕL(pi)}i∈NB modulo C∗.
Therefore, ΛB̃ is dominant. �

It remains to show that if A and B are as in the theorem then C is an MHV
curve and to construct a multivalued inverse of the scattering amplitude map Λ.
Start with a point (p1, . . . , pn) ∈ M0,n. Since Ã is an MHV curve, we can find a
line bundle LA such that ΛA(LA) = (pi)i∈NA . We lift LA to a line bundle on A.

6We will not use this but note that if B is not stable then case (iii) of 3.15 is impossible because
attaching this 3-pointed P1 to A instead of B creates a subcurve of genus gA, degree gA + 1 with
gA + 4 marked points, which contradicts Lemma 3.5 (2).
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By Lemma 3.4, p′ = ϕLA(x) 6= ϕLA(y) = p′′. Since B̃ is an MHV curve, we can find
LB such that ΛB(LB) = (p′, (pi)i∈NA , p

′′). We finish using Amplification 3.14. �

When nA = gA + 2, nB = gB + 2 (as in Example 3.12), our result is less precise.

3.18. THEOREM. Suppose that C is an MHV curve with a two-channel factorization such
that nA = gA + 2 and nB = gB + 2 which does not admit an alternative two-channel
factorization as in Theorem 3.16. Then

(1) The curve Ã obtained by adding to A an extra marked point (at one of the nodes
separating A from B) and stabilizing is an MHV curve that does not contain a a
degree 0 rational component C(0)

i as in 3.1 with both x and y.
(2) The same for B.

Proof. Suppose thatA is not stable. In cases (i) and (iii) of 3.15, the curve admits an
alternative two-channel factorization of type considered in Theorem 3.16. Namely,
in case (i) (resp. (iii)) we move the 4-pointed (resp. the 3-pointed) P1 to B. This
gives a two channel factorization such that nA′ = gA′+3, nB′ = gB′+1. So we will
assume that neither (i) nor (iii) occurs for either A or B.

3.19. CLAIM. We can choose extra points p and q for A and B at one of the points x or y
such that curves Ã and B̃ obtained by stabilization are MHV curves.

Indeed, if A or B is not stable and case (iiB) occurs, we would have to add an
extra point to that P1. Note that (iiB) can only occur at one point of A, x or y, and
the same for B. Indeed, otherwise A′ has genus gA − 2, degree gA − 1 and gA + 2
marked points, which contradicts Lemma 3.10 (2).

If (iiB) does not occur, we are going to decide where to add an extra point later in
the proof of the claim. We stabilize the curves if (iiW) occurs but the extra point p is
not attached to the corresponding 3-pointed P1. The curves Ã and B̃ are of course
stable and we have already checked conditions (1) and (2) in the definition of an
MHV curve. We just need to check that ΛÃ and ΛB̃ are dominant. Since the situ-
ation is symmetric, we only consider Ã. Suppose first that (iiB) occurs. From the
commutative diagram (3.16.1), the map ΛA is dominant. Note that an extra point
p doesn’t impose any conditions and can be anywhere in P1. Thus ΛÃ is domi-
nant as well. Next we suppose that (iiB) does not occur. For a general line bundle
LA ∈ Pic

~dA A, the nA points ϕLA(pi)i∈NA are distinct and as we vary LA span a
(nA − 3)-dimensional open locus in M0,nA . It suffices to show that adding ϕLA(x)
(or ϕLA(y)) gives the locus of dimension nA − 2 = gA. Equivalently, we claim
that adding both ϕLA(x) and ϕLA(y) gives the locus of dimension gA. We argue
by contradiction. If this is not the case then ϕLA(x) and ϕLA(y) are determined
by positions of points ϕLA(pi)i∈NA up to a finite ambiguity. Positions of nB points
ϕLB (pi)i∈NB are then determined by gB + 1 parameters as in Amplification 3.14.
Thus the locus of images of marked points has dimension at most gA + gB < g,
which contradict the fact that Λ is dominant. �

§4. COMPACTIFIED JACOBIANS OF MHV CURVES

4.1. In this section we will globalize the scattering amplitude map by the diagram

PicMHV
0 C Λ−−−−→ M0,ny
MMHV

g,n
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whereMMHV

g,n ⊂ Mg,n is an open locus of MHV curves, PicMHV C is a universal
MHV Picard family over it, PicMHV

0 C ⊂ PicMHV C is an open locus and Λ is the
universal scattering amplitude map. We also compactifyPicMHV C by a projective
family PicMHV C of compactified Jacobians. Recall that n = g + 3 and d = g + 1.

4.2. Consider the stack Qg,n,d of quasi-maps [CFK] of C to P1. Its sections over a
scheme S are triples (C,L, α), where C → S is a family of semi-stable curves of
genus g with n marked points, L is a line bundle on C of relative degree d and
α : O⊕2

C → L is a homomorphism not vanishing on each fiber. The morphism

ν : Qg,n,d →Mg,n

sends C to its stabilization. The stack Qg,n,d (and its higher rank analogues) con-
tains many useful open proper separated substacks.

4.3. DEFINITION. LetMMHV

g,n ⊂Mg,n be the locus of families of stable curves such
that all their geometric fibers are MHV curves for some choice of ~d. Let QMHV

g,n,d ⊂
Qg,n,d be the locus of families of quasi-maps such that, for any geometric fiber
(C,L, α), the curve C is stable and (L,α) satisfies Definition 1.6 (1)–(3).

4.4. THEOREM.
(1) MMHV

g,n is an open substack ofMg,n.
(2) QMHV

g,n,d is an open substack of the proper and separated Deligne–Mumford stack
Qg,n,d of stable quotients as defined in [MOP].

(3) The morphism ν : QMHV
g,n,d →M

MHV

g,n is smooth, of relative dimension n.
(4) Consider the action of GL2 onQMHV

g,n,d via its action onO⊕2
C . The stabilizer of every

point is the diagonal torus C∗. The quotient stack PicMHV
0 C := [QMHV

g,n,d /PGL2]

is an open substack in the rigidified Picard stack of pairs (C,L), where L is a
degree d line bundle on C.

(5) Let ∆ij ⊂ (P1)n be diagonals (1 ≤ i < j ≤ n). We have a commutative diagram

QMHV
g,n,d −−−−→ (P1)n \

⋃
i,j ∆ijy/PGL2

y/PGL2

PicMHV
0 C Λ−−−−→ M0,ny
MMHV

g,n

Proof. Dualizing the homomorphism α : O⊕2
C → L gives an exact sequence

0→ L∗ → O⊕2
C

q−→Q→ 0. (4.4.1)

The moduli space of stable quotients Qg,n,d parametrizes data (4.4.1) such that Q
is locally free at the nodes and at the marked points and has positive degree along
all strictly semistable components of C. All these conditions are clearly satisfied
in our case, in fact q = α. From [MOP] we conclude that

(1) There is a universal curve C over Qg,n,d with n sections and a universal
quotient 0→ S → O⊕2

C → Q→ 0 over C with an invertible sheaf S.
(2) The map ν : Qg,n,d →Mg,n that sends C to its stabilization is proper.
(3) Evaluating sections q(1, 0) and q(0, 1) at the marked points p1, . . . , pn gives

evaluation maps evi : Qg,n,d → P1, which we combine into one morphism

Qg,n,d → (P1)n.
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(4) All structures above are equivariant under PGL2.
(5) Qg,n,d has a 2-term obstruction theory relative to ν given by RHom(S,Q).

In particular, ν is smooth at (C, q) if Ext1(S,Q) = 0, which in our case follows
from the short exact sequence (4.4.1) and H1(C,L) = 0. Since ν : QMHV

g,n,d →Mg,n

is smooth, its imageMMHV

g,n is open. �

4.5. Next we show that PicMHV
0 C is separated (note that the quotient by a free

action of an algebraic group is often not separated). We will introduce a natural
polarization A on MHV curves and study slope-stability of line bundles L with
respect to it. It is well-known that slope stability on reducible curves boils down
to Gieseker’s basic inequality: for any proper subcurve Y ⊂ C, we need to show∣∣∣∣dY − aY dCaC

∣∣∣∣ < 1

2
#Y, (4.5.1)

where
dY = degL|Y , aY = degA|Y and #Y := |Y ∩X \ Y |.

Classically, the most studied case was dC = g − 1, A = ωC , and no marked points.
This is a convenient choice because dC

aC
= 1

2 . In the MHV Brill-Noether theory,
when dC = g+ 1 and marked points are present, an equally convenient choice is a
fractional polarization

A = ωC +
4

n
(p1 + . . .+ pn),

which also gives dC
aC

= 1
2 . The Q-line bundleA is ample as long as C is stable curve

without rational tails (subcurves of arithmetic genus 0 attached to the rest of the
curve at one point), which doesn’t happen for MHV curves by Lemma 3.10.

4.6. LEMMA. A line bundle is A-stable if and only if

dY > gY − 1 +
2

n
nY , (4.6.1)

for every proper connected subcurve Y ⊂ C, where gY is the arithmetic genus of Y and
nY is the number of marked points on it. For semi-stability, the inequality is not strict .

Proof. For every proper subcurve Y ⊂ C, we have to check that∣∣∣∣dY − 1

2
aY

∣∣∣∣ < 1

2
#Y.

For the complementary subcurve Y c := X \ Y , we have dY − 1
2aY = −dY c + 1

2aY c .
Thus we just have to show that 1

2aY − dY < 1
2#Y for every proper subcurve Y ,

in fact for every proper connected subcurve, which is equivalent to (4.6.1). �

4.7. LEMMA.
For an MHV curve C, every line bundle L ∈ PicMHV C is A-stable.

Proof. To verify (4.6.1), we consider several cases.

(1) dY ≥ gY + 2. The equation (4.6.1) is automatic.
(2) dY = gY + 1. The equation (4.6.1) holds unless nY = n, in which case

gY = g by Lemma 3.5 and therefore Y = C by Lemma 3.10, contradiction.
(3) dY ≤ gY . Then dY = gY = 0 by Lemma 3.5 and thus nY ≤ 1 by Lemma 3.2.

Equation (4.6.1) follows.

This finishes the proof. �
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4.8. COROLLARY. The family PicMHV
0 C over MMHV

g,n is compactified by a projective

(and hence separated) family PicMHV C of compactified Jacobians. Its geometric points
represent gr-equivalence classes of A-semistable admissible sheaves on an MHV curve C.

4.9. AMPLIFICATION. If all irreducible components ofC are rational thenPicMHV C
is a stable toric variety of an algebraic torus Pic0 C ' (C∗)g and can be described
as follows. Choose one on-shell diagram for C, i.e. endow each vertex i of the dual
graph Γ of C with degree di such that

∑
di = d. For every vertex i ∈ Γ,

(1) ei is the number of edges (count each loop twice);
(2) li is the number of legs, i.e. the number of marked points on the corre-

sponding irreducible component of C;
(3) θi is the Oda–Seshadri number [OS], in our case

θi = −di +
4li
dn

+
n(ei − 2)

2d
.

Let C0 and C1 be spaces of chains of the graph Γ (with arbitrary coefficients). Let

∂ : C1 → C0

be the differential and let H1 be the first homology group. We can view θ = (θi) as
a vector in C0(Γ,Q). Consider the tiling of the affine space ∂−1(θ) ⊂ C1(Γ,Q) by
the hyperplanes xi = 1

2 + Z, where xi are the natural coordinates on C1 (one co-
ordinate for each edge of the graph). This affine space is parallel to the homology
group H1(Γ,Q) and the tiling has to be viewed modulo the action of H1(Γ,Z). Ir-
reducible components of the compactified Jacobian are given by the g-dimensional
polytopes of the tiling and the rest of the tiling determines how they are glued.

Proof. Follows from [S2] and [OS], see also [A]. �

4.10. EXAMPLE. Let C = C1∪ . . .∪C4 be the following curve of arithmetic genus 1:
the wheel of four P1’s with marked points pi ∈ Ci for i = 1, . . . , 4. The Picard
group has two MHV components:

PicMHV C = Pic1,0,1,0 C
⋃

Pic0,1,0,1 C.

Consider the first component. Since L has degree 0 on components C2 and C4, the
map ϕL : C → P1 contracts them to points, say ϕL(C2) = 0 and ϕL(C4) = ∞.
The restriction of ϕL to C1 and C3 is an isomorphism. Thus ϕL is completely
determined by points x = ϕL(p1) and y = ϕL(p3). We have an identification

Pic1,0,1,0 C ' C∗, z = y/x.

The scattering amplitude map Λ : Pic1,0,1,0 C → M0,4 ' P1 is given by the cross-
ratio of points ϕL(p1), . . . , ϕL(p4) varying with L. This map is an isomorphism:

λ = [x : 0; y :∞] =
∞− x
0− x

· 0− y
∞− y

= z.

The scattering amplitude form is dz
z = dλ

λ with log poles at 0 and ∞. Next we
compute the compactified Jacobian. There are 2 types of stable line bundles and
4 types of semi-stable line bundles (in two gr-equivalence classes), see Figure 7.
Stable components are P1’s and gr-equivalence classes of semi-stable line bundles
correspond to their intersection points in the compactified Jacobian

Pic
MHV

C = Pic
1,0,1,0

C
⋃

Pic
0,1,0,1

C = P1 ∪ P1.

One can visualize topology on Pic
MHV

C through “chip-firing” of black chips.
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gr gr

FIGURE 7. MHV compactified Jacobian in genus 1

4.11. REMARK. The MHV condition impliesA-stability but the converse is not true.
For example, curves with 1-channel factorization can have A-stable line bundles.
Moreover, even the compactifiied Jacobian of an MHV curve will typically contain
non-MHV components contracted by the scattering amplitude map Λ to loci of
smaller dimension either in M0,n or in its boundary (for some compactification
of M0,n). Nevertheless, we view A-stability and MHV conditions as close.

4.12. EXAMPLE. Consider a genus 2 curve with 5 rational components, each with
a marked point, see the left of Figure 8 for on-shell diagrams of all possible sta-
ble line bundles. There are no strictly semistable line bundles in this case. The

2

2

22

2

2

FIGURE 8. MHV compactified Jacobians in genus 2.

compactified Jacobian contains 4 MHV (shaded gray) and 8 non-MHV irreducible
components. They are glued in an alternating fashion, MHV to non-MHV, ac-
cording to Figure 8, which is a fundamental parallelogram of a tiling of a 2-torus:
components adjacent to a side of the parallelogram intersect components adjacent
to the opposite side. The compactified Jacobian is a stable toric surface of the alge-
braic torus Pic0 C ' (C∗)2 with polygons representing its irreducible components,
which are toric surfaces. MHV components are isomorphic to Bl3 P2 (hexagons)
and non-MHV components are isomorphic to P2 (triangles). Crossing each of the
six walls corresponds to firing a black chip across the corresponding edge of the
on-shell diagram. There are two types of non-MHV components, with or without
an irreducible component where L has degree 2. Under the scattering amplitude
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map, surfaces of the first type contract to curves intersecting the interior of M0,5

and surfaces of the second type contract to curves in the boundary.

4.13. EXAMPLE. Another genus 2 example is on the right of Figure 8. There are
4 MHV components (shaded gray) and 11 non-MHV components, which are all
mapped to the boundary of M0,5 by the scattering amplitude map. Three of the
MHV components are isomorphic to Bl2 P2 (pentagons) and one to P1 × P1.

§5. SCATTERING VIA MODULI OF PARABOLIC BUNDLES

5.1. Let C be a smooth hyperelliptic curve of genus g ≥ 2 with a hyperelliptic
involution p 7→ τ(p) (whenever it exists, the hyperelliptic involution is unique).
The quotient by τ is the double cover ϕh : C

2:1−→P1 associated with the line bundle

h = O(p+ τ(p)) ∈ Pic2 C, p ∈ C.

Let p1, . . . , pn ∈ C be distinct marked points, where n = g+3. In our approach the
marked points are decoupled from 2g + 2 Weierstrass points (fixed points of the
hyperelliptic involution). To simplify the analysis, we make an assumption:

5.2. ASSUMPTION. Points ϕh(p1), . . . , ϕh(pn) are different, i.e. pi 6= τ(pj) for i 6= j.
Thus the special feature of the hyperelliptic case is existence of a well-defined point

o(p1, . . . , pn) = (z1, . . . , zn) = (ϕh(p1), . . . , ϕh(pn)) ∈M0,n (5.2.1)

that shouldn’t be confused with the scattering amplitude map

Λ : Picg+1 C 99KM0,n, L 7→ (ϕL(p1), . . . , ϕL(pn)).

5.3. Let Bun(P1; z1, . . . , zn) be the smooth algebraic stack of quasi-parabolic vector
bundles F on P1 of rank 2 with trivial determinant [P]. Recall that a quasi-parabolic
structure on a vector bundle is a choice of a line Vi ⊂ F |zi over each marked point.
This data determines a ruled surface P(F )→ P1 of even degree and points

qi = P(Vi) ⊂ P(F |zi) for i = 1, . . . , n.

5.4. DEFINITION. There is a standard morphism of stacks

Λ : Picg+1 C → Bun(P1; z1, . . . , zn), L 7→ F = (ϕh)∗L.

To see that (ϕh)∗L gives an object of Bun(P1; z1, . . . , zn), we check that its determi-
nant vanishes. It suffices to check that (ϕh)∗O has determinant of degree −(g+ 1).
As with any double cover, (ϕh)∗O ' O⊕M−1, whereM⊗2 ' O(B), where B is a
branch divisor. But the number of branch points is 2g + 2 (c.f. [H2, Ex. IV.2.6].)

To define parabolic lines, note that F |zi = L|pi ⊕ L|τ(pi) (or Lpi/m2
pi if pi is a

Weierstrass point). The line Vi ⊂ F |zi is the kernel of the surjection F |zi → L|pi .

5.5. A generic parabolic bundle F is a trivial bundle P1 × C2 with lines {zi} × Vi
for Vi ⊂ C27 . The corresponding ruled surface is the product P1 × P1 with points
(z1, q1), . . . , (zn, qn) ∈ P1 × P1, where qi = P(Vi). Thus we have a birational map
Ξ : Bun(P1; z1, . . . , zn) 99KM0,n defined as in Figure 2.

5.6. LEMMA. The scattering amplitude map of a hyperelliptic curve C is a composition

Λ : Picg+1 C
Λ−→Bun(P1; z1, . . . , zn)

Ξ
99KM0,n.

The bundle Λ(L) has splitting typeO⊕O away from the theta-divisor E of Corollary 2.4.

7Indeed, the trivial vector bundle on P1 does not deform, therefore these parabolic bundles are
parametrized by a non-empty open substack of Bun(P1; z1, . . . , zn). On the other hand, all parabolic
bundles of rank 2 and degree 0 can be deformed to a parabolic bundle with trivial F .
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Proof. By Grothendieck’s theorem, (ϕh)∗L ' O(−s)⊕O(s) for some s. We require
that s = 0, which is equivalent to the following conditions (i) and (ii):

(i) H0(P1, F ) = H0(C,L) = 2, i.e. L is not special. This happens outside of
the locus W of Corollary 2.4.

(ii) RHom(F,O(−1)) = 0. By Grothendieck–Serre duality, this is equivalent to
vanishing of RHom(L,O(−h + K + 2h)) = RΓ(L∗(K + h)). This means
that L has to be away from the theta-divisor

K + h− x1 − . . .− xg−1 = h+ τ(x1) + . . .+ τ(xg−1) ∈ Picg−1 C,

where we use that K ∼ (g − 1)h. In fact this theta-divisor is the divisor E
of Corollary 2.4, which contains W .

Choosing a basis s1, s2 ofH0(C,L) is equivalent to choosing a splitting F ' O⊕O.
The scattering amplitude map Λ is given by ([s1(p1) : s2(p1)], . . . , [s1(pn) : s2(pn)]),
which is equal to the slopes of V1, . . . , Vn inside C2. Thus Λ = Ξ ◦Λ. �

5.7 (stability). In view of Lemma 5.6, in the hyperelliptic case the scattering am-
plitude map combines effects of the birational morphism Ξ, which as we will see
only depends on the point o = (z1, . . . , zn) ∈M0,n and the map Λ, which is a finer
invariant in the hyperelliptic case. Moreover, the divisor E of Picd C is mapped to
a divisor by Λ but is collapsed to the point o by Λ, which creates a singularity for
the probability measure (see discussion of the real case in Section §8). However,
at the moment the target of Λ is the stack of quasi-parabolic bundles. To make Λ
more concrete, we will choose a projective model for the stack (at the price of mak-
ing Λ a rational map). There is a notion of slope-stability that depends on a choice
of a parabolic weight. Concretely, the weight ~α is a sequence α1, . . . , αn of real
numbers with 0 < αi ≤ 1

2 . A quasi-parabolic bundle (F ;V1, . . . , Vn) is ~α-stable
(resp. semistable) parabolic bundle if and only if every line sub-bundle L ⊂ F
satisfies the slope inequality

k +
∑
i∈I

αi <
1

2

n∑
i=1

αi (resp. ≤), (5.7.1)

where k = degL and I ⊂ {1, . . . , n} is a subset of indices such that L|zi = Vi.
We denote the corresponding moduli space by Bun~α(P1; z1, . . . , zn) or simply by
Bunα(P1; z1, . . . , zn) if α1 = . . . = αn = α. Here is a summary of wall-crossing
with chambers given by inequalities (5.7.1).

5.8. First we consider the standard case
n∑
i=1

αi > 2 as in [B1, M1, AC, BHK, AFKM].

If ~α is strictly semistable then

Pic Bun~α(P1; z1, . . . , zn) = Zn+1.

The Fano model (i.e. the model with −K ample) is

Bun 1
2
(P1; z1, . . . , zn), (5.8.1)

which is a smooth variety if n is odd and has isolated singularities if n is even. As α
increases from 2

n to 1
2 , Bunα(P1; z1, . . . , zn) undergoes the anticanonical minimal

model program, i.e. the sequence of birational transformations that makes −K
more and more positive at every step. It proceeds as follows [B1]:

(1) Bun 2
n

= Pn−3 with (P1; z1, . . . , zn) embedded into Pn−3 as a rational nor-
mal curve of degree n− 3. The MMP starts with Bun 2

n+ε = Blz1,...,zn Pn−3.
(2) The first birational transformation “antiflips” several P1’s, namely lines

connecting points z1, . . . , zn pairwise and the rational normal curve. Each
of these P1’s is blown-up and the exceptional divisor contracted onto Pn−5.
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(3) On the following steps, we antiflip certain Pk’s analogously.
(4) MMP stops when −K becomes big and nef on Bun 1

2−ε
, in fact even ample

when n is odd. If n is even, the anticanonical model Bun 1
2

is obtained by

contracting certain K-trivial P
n−4
2 ’s in Bun 1

2−ε
to singular points.

5.9. The special case
n∑
i=1

αi < 2 was studied in [MY], in which case

Pic Bun~α(P1; z1, . . . , zn) = Zn

if ~α is strictly semistable. The Fano model is the symmetric GIT quotient

(P1)n//PGL2,

which is smooth if n is odd and with isolated singularities if n is even. More gen-
erally, in the special case Bun~α(P1; z1, . . . , zn) is the GIT quotient (P1)n//~α PGL2

with respect to fractional polarization ~α. The map

Ξ−1 : M0,n 99K Bun(P1; z1, . . . , zn)

is equivalent to the natural embedding Ξ−1 : M0,n ↪→ (P1)n//~α PGL2.

5.10. The transition from the special (2) to the standard (1) cases goes as follows.
(2) All stable parabolic bundles have splitting typeO⊕O. The product P1×P1

with points (z1, z1), . . . , (zn, zn) is stable giving the point o ∈M0,n.
(1) The product P1 × P1 above is destabilized by O(−1) embedded by the

sequence 0→ O(−1)→ O⊕O → O(1)→ 0. The point o is blown-up. The
exceptional divisor parametrizes parabolic bundles of type O(−1)⊕O(1).

We summarize the discussion by the following diagram:

1
2 . . . . . . . . . . . . 2

n + ε 2
n

2
n − ε

Fano MMP log Fano Big Bang Fano Bigger Bang Fano

BunF 99K . . . 99K Bln Pn−3 −→ Pn−3 99K (P1)n//PGL2

↪→

Bun(P1; z1, . . . , zn)
Ξ
99K M0,n

5.11. EXAMPLE. Suppose g = 2, n = 5. Apart from P2 there are only two models:

Bun 2
5 + = Bun 1

2
' Blz1,...,z5 P2 = dP4 (standard)

and
Bun 2

5−
' Bl4 P2 = dP5 (special),

the quartic and quintic del Pezzo surfaces. The morphism

Ξ : dP4 → dP5 'M0,5

contracts the conic through z1, . . . , z5 to the point o = (z1, . . . , z5) ∈ M0,5. This
morphism can also be described as projection of z1, . . . , z5 ∈ P2 to P1 from a vary-
ing point of P2 (cf. [CT2]). We will further study this example in Section §7.

Enhancing Λ by Λ corresponds to the transition from the special (2) to the stan-
dard (1) case of projective moduli of parabolic bundles. In the case of the Fano
model, we have the following description of the indeterminancy locus of Λ.
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5.12. THEOREM. Consider the induced map Λ : Picg+1 C 99K Bun 1
2
(P1; z1, . . . , zn).

(1) Λ is regular away from loci U(k, I) (of codimension at least 2) of line bundles

O(kh+
∑
i∈I

pi + x1 + . . .+ xj) ⊂ Picg+1 C for x1, . . . , xj ∈ C,

g + 1 = 2k + |I|+ j, j <
g − 1

2
.

Loci U(k, I) with equality j = g−1
2 give strictly semistable parabolic bundles.

(2) Λ
∗
(−K) ≡ 4Θ.

Proof. First we check (1) using an argument from [BHK]. Suppose F = Λ(L) is
unstable (resp. strictly semi-stable) and take its destabilizing line sub-bundle on
P1 of degree k that contains Vi for i ∈ I . Pulling this line bundle back to C and
using adjointness gives an injection

f : OC(kh) ↪→L

such that f(OC(kh)) vanishes at each point pi for i ∈ I . Thus we can write

L = O

(
kh+

∑
i∈I

pi + x1 + . . .+ xj

)
for some points x1, . . . , xj ∈ C. Equating degrees gives

g + 1 = 2k + |I|+ j.

The slope inequality gives j < g−1
2 (equal for strictly semistable). This gives loci

listed in the theorem. To show (2), notice that the ramification locus of Λ and Λ is
the same by (1), namely the divisor R. By Riemann–Hurwitz and Corollary 2.4,

Λ
∗
(−K) ∼ −KPicg+1 C +R ≡ 4Θ.

This finishes the proof8. �

5.13. COROLLARY. The image of the divisor E ⊂ Picg+1 C of Corollary 2.4 under Λ̄ is a
divisor that parametrizes parabolic bundles of splitting type O(−1) ⊕O(1). This divisor
is contracted by Ξ to the point o ∈M0,n.

Proof. The first statement is clear from the proof of Lemma 5.6. For the second,
notice that L ∈ F if and only if L = h⊗O(x1 + . . . + xg−1) for some points on C.
Generically along E, {x1, . . . , xg−1} is the base locus of L and therefore ϕL = ϕh.
Thus Λ(E) = (ϕh(p1), . . . , ϕh(pn)) = o. �

Next we study the dependence of scattering amplitude on marked points.

5.14. NOTATION. Consider the Weil groupW (Dn) = Snn(Z2)n−1, where we iden-
tify (Z2)n−1 with the set of subsets of {1, . . . , n} of even cardinality. The Weil group
acts on the stack Bun(P1, z1, . . . , zn) as follows: the symmetric group acts by per-
muting marked points and the group (Z2)n−1 acts by elementary transformations:
for every subset I ⊂ {1, . . . , n} of even cardinality, consider an exact sequence

0→ F ′
α−→F →

⊕
i∈I

(F |zi)/Vi → 0. (5.14.1)

8 The papers [BHK, AFKM] contain the formula equivalent to Λ
∗
(−K) ≡ 4gΘ, which is different

from our formula. But there is a mistake in the last line of the proof of Lemma 3.1 in [BHK]. Formulas
(3.19) and (3.20) there are both correct but the conclusion is wrong, in fact the correct conclusion is
exactly that Λ∗(−K) ≡ 4Θ. This mistake does not affect any of the main results in these papers.
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F ′ is a rank 2 vector bundle of degree −|I|with parabolic lines defined as follows:

V ′i =

{
α−1Vi if i 6∈ I
Kerα|zi if i ∈ I.

To force degree to be 0, the elementary transformation is defined as

elI(F ) = F ′
(
|I|
2

)
.

In the language of ruled surfaces, elementary transformations are given by blow-
ing up an even number of parabolic points in fibers and blowing down proper
transforms of fibers. W (Dn) acts on the Fano model BunF (P1; z1, . . . , zn) by ele-
mentary transformations, in fact it is its full automorphism group [AFKM].

5.15. PROPOSITION. Let Cn0 ⊂ Cn be the configuration space of points p1, . . . , pn ∈ C
such that pi 6= pj and pi 6= τ(pj) for i 6= j. Consider a commutative diagram

Picg+1 C × Cn0
Λ−−−−→ BunF (P1)

Ξ−−−−→ M0,ny yζ
Cn0

o−−−−→ M0,n

where top arrows are rational maps and where

BunF (P1)
ζ−→M0,n

is the universal moduli space of parabolic vector bundles:

ζ−1(z1, . . . , zn) = BunF (P1, z1, . . . , zn).

The map o is defined in (5.2.1). The action of W (Dn) has the following compatibility:
(1) The map Ξ : BunF (P1; z1, . . . , zn) 99K M0,n is Sn equvariant. Elementary

transformations elI give birational involutions ofM0,n that depend on z1, . . . , zn.
(2) The square of the diagram is W (Dn) equivariant. The action is defined as follows:

(a) Sn acts everywhere by permuting marked points.
(b) (Z2)n−1 acts trivially9 on M0,n.
(c) Every I ∈ (Z2)n−1 acts on (D; p1, . . . , pn) ∈ Picg+1 C × Cn0 is as follows:

pi 7→

{
τ(pi) if i ∈ I
pi if i 6∈ I

and D 7→ D −
∑
i∈I

pi +
|I|
2
h. (5.15.1)

Proof. For (1), everything follows from definitions except for the remark about
birational involutions on M0,n. Note that P(F ) = P1

z × P1
q and el(I) amounts to an

elementary transformation of this P1 bundle (over P1
z) in points (zi, qi) for i ∈ I .

It suffices to consider the case when I = {1, n}. We change coordinates so that
z1 = q1 = 0, zn = qn =∞. In these coordinates, proper transforms of lines q = λz
after the elementary transformation become horizontal rulings. Thus

(0, q2, . . . , qn−1,∞) 7→
(
∞, q2

z2
, . . . ,

qn−1

zn−1
, 0

)
∼
(

0,
z2

q2
, . . . ,

zn−1

qn−1
,∞
)
.

This is a Cremona transformation with center that depends on z1, . . . , zn.
For (2), notice that the sequence (5.14.1) is the push-forward of the sequence

0→ O

(
D −

∑
i∈I

pi

)
→ O(D)→

⊕
i∈I
Opi → 0,

which gives the formula for F ′ after tensoring with a multiple of O(h). �

9Warning: this M0,n is different from M0,n in the top right corner!
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§6. SCATTERING USING THE MATRIX MODEL

We continue to use notation of Section §5. In particular, C is a smooth hyperel-
liptic curve of genus g ≥ 2 that satisfies Assumption 5.2, i.e. points p1, . . . , pn ∈ C
are different and no pair is in hyperelliptic involution. Let z1, . . . , zn ∈ P1 be their
projections and Λ : Picg+1 C → Bun(P1; z1, . . . , zn) is the standard morphism to
the stack of quasi-parabolic vector bundles. We first review the Jacobi’s descrip-
tion of the Jacobian of a hyperelliptic curve as the space of conjugacy classes of
2× 2 matrices following [M2] and [B2].

6.1. The curve C has equation y2 = f(z), where f ∈ OP1(2g + 2) is a polynomial
without multiple roots. The map π := ϕh : C → P1 is the projection (z, y) 7→ z.
The points (z0, 0) with z0 a root of f(z) are the Weierstrass points. As the sheaf of
OP1 -modules, we have

π∗OC = OP1(−g − 1)⊕OP1 .

The sheaf of algebras structure of π∗OC is completely determined by the map
Sym2OP1(−g − 1) → OP1 , which is simply multiplication by f ∈ OP1(2g + 2).
By Lemma 5.6, when L ∈ Picg+1(C) is away from the theta-divisor E, we have

π∗L = OP1 ⊕OP1 .

The action of π∗OC on π∗L is determined by a 2× 2 matrix

M =

[
V U
W V ′

]
∈ Hom(OP1(−g − 1)⊗ (OP1 ⊕OP1),OP1 ⊕OP1). (6.1.1)

of polynomials U, V, V ′,W in z of degree at most g + 1. Applying M twice should
be a multiplication by the polynomial f(z), which gives equations on polynomials

V ′ = −V
and

− det(M) = V 2 + UW = f(z). (6.1.2)
Let S(f) ⊂ A3(g+2) be the affine subvariety given by equations (6.1.2), where
A3(g+2) parametrizes U, V,W . Then S(f) is smooth for any polynomial f(z) with-
out multiple roots. Moreover, the group PGL2 acts on S(f) (with elements viewed
as 2× 2 matrices) by conjugation freely and the quotient is, by [B2, Theoreme 1.4],

S(f)/PGL2 ' Picg+1 C \ E. (6.1.3)
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6.2. THEOREM. The map Λ (and thus the scattering amplitude map Λ) has degree 2g .

Proof. To determine the degree of Λ, we fix a general point in BunF (P1, z1, . . . , zn)

and count the number of preimages of this point in Picg+1 C. A general parabolic
bundle has splitting type O ⊕ O and the parabolic structure is the set of points
(z1, q1), . . . , (zn, qn), so essentially we choose general points q1, . . . , qn ∈ P1. The
corresponding bundle L ∈ Picg+1 C is away from the theta-divisor E, so we can
locate it using (6.1.3).

6.3. Suppose that neither of the points p1, . . . , pn is a Weierstrass point. Then
(π∗L)|zi = L|pi⊕L|τ(pi) and thus the 2×2 matrixM(zi) has two distinct eigenspaces,
one corresponds to the parabolic structure given by pi and another by τ(pi). The
point qi ∈ P1 gives the slope of this eigenspace. Thus we need to do the following:

(1) Count the number of solutions in S(f) such that each matrix M(zi) has an
eigenspace with a fixed general slope qi.

(2) Divide this number by 2n. Indeed, using pi or τ(pi) gives the scattering
amplitude of the same degree by Proposition 5.15.

Note that taking conjugacy classes of matrices by the PGL2 action is not necessary:
fixing three different slopes of eigenspaces eliminates the conjugacy action.

6.4. The smooth solution set S(f) ⊂ C3g+6 of dimension g+ 3 is the intersection of
2g+3 affine quadrics, one for each coefficient of the degree 2g+2 polynomial f(z).
Solutions at infinity P3g+5 are given by the homogeneous equation V 2 = UW ,
which has expected dimension g + 2. Indeed, if V = 0 then either U = 0 or
W = 0, which gives a union of two projective subspaces of dimension g + 1 each.
If V 6= 0 then the solution is determined by V up to reordering of terms in the
polynomial factorization and rescaling U by λ and W by λ−1. Imposing the slope
qi at zi is a linear equation on U, V,W . Since detM(zi) 6= 0 but TrM(zi) = 0, no
matrix M(zi) has more than two eigenspaces, and so these linear equations have
no base locus on S(f). By Bertini Theorem, the intersection is transversal and has
expected dimension. We claim that there are no solutions at infinity. Indeed, the
solution set of the homogeneous system of equations V 2 = UW can be thought
of as 2 × 2 matrices and is covered by n open charts where M(zi) 6= 0. Since
detM(zi) = TrM(zi) = 0, M(zi) is a non-zero nilpotent matrix and thus have
only one eigenspace. Thus the base locus of the solution set is empty and so it has
an expected dimension by Bertini Theorem, which means it is empty.

6.5. The space of matrices of polynomials with fixed slopes qi is a linear space of
dimension 3(g + 2)− n = 2g + 3 and we are counting intersection points of 2g + 3
quadrics under the assumption that intersection is transersal and does not run
away to infinity. Thus we have 22g+3 intersection points and therefore

deg Λ =
22g+3

2n
= 2g.

6.6. If some of the points zi are Weierstrass points, i.e. pi = τ(pi), the argument
goes as before, except for two issues:

(1) We don’t have to divide the number of solutions by 2 as in 6.3 (2).
(2) By Claim 6.7,M(zi) is a non-zero nilpotent matrix. The subvariety of nilpo-

tent 2 × 2 matrices is a quadric cone and fixing the slope qi gives a ruling
of this cone (intersection with the tangent plane of multiplicity 2). Thus
fixing the slope is not equivalent to pulling back a general hyperplane by
a morphism to projective space as in 6.4. The correct application of Bertini
Theorem is to project this cone onto a conic (isomorphic to P1) and count
this solution only once.
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Thus issues (1) and (2) cancel each other and we get the same count.

6.7. CLAIM. M(zi) is a non-zero matrix.

Indeed, if M(zi) = 0 then U , V and W have a root at zi. But then f has a double
root at zi, contradiction. �

6.8 ([M2]). In the model (6.1.3), one can eliminate the PGL2-action by making
• f a monic polynomial of degree 2g + 1 (one of the roots is moved to∞),
• U a monic polynomial of degree g,
• V a polynomial of degree g − 1,
• W a monic polynomial of degree g + 1.

Under these conditions, the solution set M of equations (6.1.2) in A3g+1 is isomor-
phic to Picg+1 C \E. Solutions look as follows. Suppose U(z) = (z− t1) . . . (z− tg)
has no multiple roots. Choose si = ±

√
f(ti) for i = 1, . . . , g and use Lagrange

interpolation to find V (z) such that V (ti) = si for i = 1, . . . , g. Then U(z) divides

f(z)− V (z)2 and we can define W (z) =
f(z)− V (z)2

U(z)
.

For any c ∈ P1, the Lax pair differential equation gives a translation-invariant
vector field Ḟ = (U̇(z), V̇ (z), Ẇ (z)) on M with components

U̇(z) =
V (c)U(z)− U(c)V (z)

z − c
;

V̇ (z) =
1

2

U(c)W (z)−W (c)U(z)

z − c
− U(c)U(z);

Ẇ (z) =
W (c)V (z)− V (c)W (z)

z − c
+ U(c)V (z).

General points c1, . . . , cg gives linearly independent translation-invariant vector
fields Ḟ1, . . . , Ḟg and thus a translation-invariant polyvector fieldA∨ = Ḟ1∧. . .∧Ḟg ,
which is dual to the translation-invariant volume form A on Picg+1 C. Applying
dΛ to A∨ and dualizing gives the value of the branch of the scattering amplitude
form that corresponds to the point (U, V,W ). More concretely, we can factor the
scattering amplitude map Λ : M →M0,n into maps

E : M 99K (P1)n and Q : (P1)n 99KM0,n,

where Q is the quotient by the PGL2 action and E is the map that assigns to a
matrix of polynomials (6.1.1) the slopes of its eigenspaces

y1 − V (z1)

U(z1)
, . . . ,

yn − V (zn)

U(zn)

at marked points pi = (zi, yi) for i = 1, . . . , n.

§7. BYPASSING THE KUMMER SURFACE

We will make results of the previous section more explicit for genus 2 curves.

7.1. NOTATION. Fix a smooth pointed genus 2 curve (C; p1, . . . , p5).
(1) Let P := p1 + . . .+ p5.
(2) We view C as a degree 5 curve in P3 using the embedding ϕP : C ↪→ P3.
(3) K is a canonical divisor, ϕK : C

2:1−→P1 is a hyperelliptic double cover.
(4) We introduce 16 points in Pic3 C,

δ = P −K, δi = K + pi, δij = P − pi − pj ,

where the indices are 1 ≤ i ≤ 5 and 1 ≤ i < j ≤ 5, respectively.
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(5) Special loci in Pic3 C defined in Corollary 2.4 are as follows:

W = ∅, R = {D | 2D ∈ P + C} ≡ 4Θ,

E = K + C, Eij = C + pi + pj .

(6) We introduce another useful theta divisor on Pic3 C for i = 1, . . . , 5:

Ei = P − pi − C.

Here and elsewhere we don’t distinguish between line bundles and linear equiva-
lence classes of divisors, for exampleE = K+C denotes the locus in Pic3 C of line
bundles of the form O(K + p) for p ∈ C. Hopefully this won’t cause confusion.

7.2. LEMMA. In genus 2, Assumption 5.2 is equivalent to any of the following:
(1) No two points of p1, . . . , p5 are related by the hyperelliptic involution.
(2) No three points of p1, . . . , p5 ∈ P3 are collinear.
(3) 16 divisors E, Ei, Eij are pairwise different.
(4) 16 points δ, δi, δij are pairwise different.
(5) δ 6∈ Eij for any i 6= j.

Proof. Left as a fun exercise for the reader. The hint is C = K − C ⊂ Pic1 C. �

A special feature of the genus 2 case is that divisors of degree 2 are effective.
This can be used to study divisorsD ∈ Pic3 C and their linear systems by associat-
ing toD a residual divisor P −D of degree 2. This gives the following proposition.

7.3. PROPOSITION. Let P2 ⊂ P3 be the plane passing through p1, . . . , p5. Let

dP4 = Blp1,...,p5 P2,

be the del Pezzo surface of degree 4. Recall that M0,5 is the del Pezzo surface of degree 5.
The scattering amplitude map can be extended to a commutative diagram

Sym2 C
Λ−−−−→ dP4

a

y yΞ

Pic3 C
Λ−−−−→ M0,5

where horizontal arrows are rational maps. The maps can be described as follows:
(1) For any (x, y) ∈ Sym2 C, consider the secant line `xy ⊂ P3 connecting x and y

(or the tangent line to C at x if x = y). Then Λ(x, y) = `xy ∩ P2.
(2) The map Ξ is given by projecting p1, . . . , p5 from a varying point of P2 (cf. [CT2]).

It blows down the conic passing through p1, . . . , p5 to the point

o := (ϕK(p1), . . . , ϕK(p5)) ∈M0,5.

(3) a(x, y) = O(P − x− y). The map a gives Sym2 C as the blow-up of Pic3 C at δ.

Proof. Indeed, for x, y ∈ C, |P − x − y| is the pencil of planes in P3 through `xy .
Projecting p1, . . . , p5 from ` is equivalent to projecting them from ` ∩ P2. �

7.4. COROLLARY. The scattering amplitude map Λ : Pic3 C 99KM0,5 has degree 4.

If course this follows from Theorem 6.2, but here is an independent proof.

Proof. It suffices to check this for Λ. We have to count how many secant lines `xy
pass through a general point of P2. By dimension count, projection of C from a
general point of P2 is a nodal curve of degree 5 and therefore arithmetic genus 6.
Thus there will be 6− 2 = 4 nodes, each produced by a secant line. �
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7.5. LEMMA. We have divisorsD,Di,Dij ⊂ C5\
⋃
i<j

∆ij that parametrize configurations

of marked points p1, . . . , p5 ∈ C satisfying any of the following equivalent conditions:
(1) δ ∈ E or δi ∈ Ei or δij ∈ Eij , respectively.
(2) δ ∈ R or δi ∈ R or δij ∈ R, respectively.
(3) δ −K or P −K − 2pi or P − 2pi − 2pj , respectively, is an effective divisor.

Divisors D,Di,Dij can also be characterized using geometric conditions:
(D) the unique quadric surface in P3 containing C is singular.

(Di) the tangent line at pi to C ⊂ P3 intersects C at another point.
(Dij) tangent lines at pi and pj intersect.

Proof. Left as a fun exercise for the reader. �

7.6. THEOREM. LetX be the blow-up of Pic3 C in 16 points δ, δi and δij with exceptional
divisors ∆, ∆i, ∆ij . Let E, Ei, Eij be the proper transforms of divisors E, Ei, Eij .

The scattering amplitude rational map Λ induces a finite 4 : 1 morphism X
Λ−→dP4.

The preimages of sixteen (−1)-curves of dP4 are the following pairs:

Λ
−1

(conic through p1, . . . , p5) = ∆ ∪ E;

Λ
−1

(exceptional divisor over pi) = ∆i ∪ Ei;

Λ
−1

(line through pi, pj) = ∆ij ∪ Eij .

The restriction of Λ to each “∆∪E” pair depends on on whether (p1, . . . , p5) is contained
in the corresponding configuration divisor “D” in C5:

(yes) Λ is ramified (of order 2) along “∆′′ and has degree 2 along “E”.
(no) Λ is an isomorphism along “∆” and has degree 3 along “E”.

Proof. We draw special curves on X and how they intersect, see Figure 9. We use
that Θ2 = 2 and check how special curves pass through the special points. In
Figure 9 we draw the special curves when the configuration (p1, . . . , p5) is away
from (top) and along (bottom) the corresponding D divisors. In the latter case, the
inverse image of an “E” divisor in Pic3 C is the union “∆∪E” and the ramification
divisor on X is the union of the proper transform of R and the “∆” divisor. Note
that the configuration (p1, . . . , p5) can be on someD divisors and not on the others,
so the actual picture could be a mixture of the top and the bottom of Figure 9.

Next we study the map Sym2 C → P2, (x, y) 7→ `xy ∩ P2 of Proposition 7.3. It
is well-defined unless `xy ⊂ P2, which happens at points δij . So the map X → P2

induced by Λ is regular away from ∆ij , in particular it is regular along ∆ ∪ E.
What is the preimage of pi? In Sym2 C, there are two possibilities, one is the

curve (pi, C), i.e. Ei. Another is a point (x, y) such that P − (pi + x+ y) is a degree
2 pencil, which should be K. So another option is the point P − pi −K = δi. Thus
on X away from ∆ij ’s the preimage of pi is Ei ∪∆i.

What is the preimage of the conic Q through 5 points? This conic is the inter-
section of P2 with the unique quadric Q that contains C. Thus a secant `xy must be
contained in Q. If Q is smooth, C has bi-degree (2, 3). One ruling is cut by points in
the hyperelliptic involution, which is the curve ∆. Another ruling is cut by triples
of points contained in the line, i.e. such that P −x− y−K is effective, which is the
curve E. If Q is singular then these two rulings are the same, given by the vertex
of the quadratic cone ∼ P − 2K and pairs of points in the hyperelliptic involution.
This shows that the rational map X 99K dP4 is regular along ∆ ∪ E and maps this
divisor to the proper transform of the conic passing through five points.
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FIGURE 9. “Double sixteen” configuration on X away from (top)
and along (bottom) the corresponding D divisors

Analysis of other “∆ ∪ E” pairs can be done similarly. However, this is not
necessary. By Proposition 5.15, the map X 99K dP4 can be extended to a W (D5)
equivariant map ∐

I⊂{1,...,5}
|I|≡0 mod 2

XI 99K dP4,

whereXI corresponds to a 5-tuple (5.15.1). Since the action permutes “∆∪E′′ pairs,
if the map is regular along one pair (for all XI ), it is regular along all pairs. �
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When does (p1, . . . , p5) belong to all configuration divisors D,Di,Dij?

7.7. THEOREM. We have (p1, . . . , p5) ∈ D∩
⋂
iDi ∩

⋂
ij Dij if and only if p1, . . . , p5 are

Weierstrass points of C, i.e. ramification points of ϕK . Suppose that this is the case.
(1) Let p6 be the remaining Weierstrass point. The 16 special points are

δ = K + p6, δi = K + pi, δij = pi + pj + p6.

Equivalently, this is the set of 2-torsion points in Pic0 C shifted by δ.
(2) Let τ be the involution of Pic3 C induced by the hyperelliptic involution of C.

Let Kum = Pic3 /τ be the Kummer surface with 16 double points and let K3 be
its minimal resolution. Then τ lifts to X = Blδ,δi,δij Pic3 and K3 = X/τ .

(3) The scattering amplitude 4 : 1 cover Λ : X → dP4 factors as

X
2:1−→K3

2:1−→dP4.

(4) The images of “∆” and “E” type divisors give two configuration of 16 rational
curves in K3. Their images in Kum are the 16 nodes and 16 conics called “tropes”.
The image of R is a genus 5 “Humbert” curve.

Proof. Suppose that p1, . . . , p5 are Weierstrass points. Assumption 5.2 is satisfied.
We have P ∼ 3K − p6 by the Riemann–Hurwitz formula. Thus

P − 2K ∼ P −K − 2pi ∼ P − 2pi − 2pj ∼ p6

is effective and the configuration belongs to all divisors.
In the opposite direction, let (p1, . . . , p5) ∈ D ∩

⋂
iDi. Define

P − 2K ∼ z ∈ C, P −K − 2pi ∼ zi ∈ C.

Then z − zi ∼ 2pi − K, i.e. z + τ(pi) ∼ pi + zi for every i, where τ denotes the
hyperelliptic involution. There are two cases, either pi is a Weierstrass point or
z = pi and zi = τ(pi). Thus either all five points are Weierstrass points, which is
what we are trying to prove, or 4 of them are, let’s say p2, p3, p4, p5, and P − 2K ∼
p1. But then p2 + p3 + p4 + p5 ∼ 2K, i.e. p2 + p3 ∼ p4 + p5, which is impossible.

The rest is also easy: (1) is immediate to verify, (2) and (4) are classical and well-
known [D, S3]. To prove (3) it suffices to notice that Λ is τ -invariant if all marked
points are Weierstrass points. �

§8. SCATTERING MEASURES OF M-CURVES

8.1. We refer to [GH] for the basic theory of real algebraic curves and Jacobians.
Let C be a smooth projective complex algebraic curve of genus g . We view the set
of complex points C(C) as a Riemann surface. The curve C endowed with a real
structure (equivalently, an anti-holomorphic involution) is called an M-curve10 if
the set of real points C(R) ⊂ C(C) has g + 1 (the maximal possible number) con-
nected components C1, . . . , Cg+1. These ovals separate C(C) into two connected
subsets interchanged by the complex conjugation p 7→ p̄. Recall from Theorem 2.3
that all smooth curves with n = g + 3 marked points are MHV curves. In this
section we will study the scattering amplitude of M-curves.

8.2. DEFINITION. A smooth MHV M-curve is a pointed M-curve such that its di-
visor of marked points p1 + . . . + pn, n = g + 3, is preserved by the complex
conjugation. Moreover, we assume that we have one of the following two cases:

(A) All marked points are real and all components ofC(R) contain one marked
point each except for one component, which contains three marked points.

10“M” stands for “maximal”.
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(B) All but two marked points are real, one on each component of C(R). The
two remaining marked points are complex-conjugate.

8.3. It is well-known [GH] that the set of real points

Picd(R) ⊂ Picd(C)

of every component of the Picard group of an M-curveC is a union of 2g connected
components denoted by PicdI(R) and indexed by subsets I ⊂ {1, . . . , g + 1} such
that |I| ≡ d mod 2. Namely, if a divisor D = D̄ is preserved by the complex
conjugation then the following conditions are equivalent:

(1) O(D) ∈ PicdI(R);
(2) the divisor D ∩ Ci has odd degree if and only if i ∈ I .

Each component PicdI(R) ⊂ Picd(R) is a torsor of the real Lie group

Pic0
∅(R) ' U(1)g ' (R/Z)g.

In what follows we mostly focus on the MHV component Picd C, so that d = g+1.

8.4. DEFINITION. Let M (k,l)
0,n (R) be the moduli space of n-tuples of distinct points

in P1(C) such that there are k real points and l pairs of complex conjugate points.
We will need the cases (k, l) = (n, 0) and (n− 2, 1):

(A) MA
0,n(R), or simply M0,n(R), the moduli space of n real points in P1(C);

(B) MB
0,n(R), the moduli space of n−2 real and two complex-conjugate points.

See [C2] for compactifications of real forms of M0,n.

8.5. By Amplification 2.4, the scattering amplitude map Λ : Picg+1 C 99K M0,n

is well-defined away from the divisors E, Eij and is unramified away from the
divisor R. Since all components Picg+1

I (R) of an MHV M-curve are Zariski dense
in Picg+1(C), Λ is defined and unramified generically along them. Moreover,

Λ(Picg+1(R)) ⊂M?
0,n(R),

where ? = A or B depending on the type of the curve C. Indeed, if L ∈ Picg+1(R)
then we can choose ϕL ∈ R(C) a real meromorphic function and the marked
points will be mapped to points of the Riemann sphere according of type A or B.

8.6. THEOREM. Let ? = A or B depending on the type of the MHV M-curve C. Then

Λ−1(M?
0,n(R)) ⊂ Picg+1(R).

Moreover, restriction of Λ to any of the 2g connected components Picg+1
I (R) is injective.

Proof. Let (q1, . . . , qn) ∈ M?
0,n(R). Let f ∈ C(C) be a rational function of degree

g + 1 such that f(pi) = qi for every i = 1, . . . , n. First we claim that f ∈ R(C).
We argue by contradiction and suppose that this is not the case. Then

g(z) = if(z)− if(z̄) ∈ R(C)

is a non-zero real rational function. Thus g(z) has finitely many zeros onC(R), and
so f(C(R)) ∩ P1(R) is a finite union of points. By applying a transformation from
PGL2(R), we can assume that∞ 6∈ f(C(R)). Thus g also doesn’t have any poles
onC(R). On the other hand, g(pi) = 0 for every i and div(g)∩Ci is even for every i,
which is true for any real rational function, see [GH, Lemma 4.1]. Thus g has at
least one additional zero on each Ci and therefore has degree at least 2g + 4. This
is a contradiction: zeros of g are intersection points of the diagonal in P1×P1 with
the image of C under the map (f(z), f(z̄)) which has homology class (g+ 1, g+ 1).
Thus we have at most 2g + 2 intersection points.
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Next we show injectivity of the restriction of Λ to any connected component
Picg+1

I (R). We argue by contradiction and suppose that Λ(L) = Λ(L′) for two
different line bundles in the same component. We can find rational functions
f, f ′ ∈ R(C) in the corresponding linear systems such that f(pi) = f ′(pi) = qi
for every i = 1, . . . , n (because Λ(L) = Λ(L′)) and such that f−1(∞) ∩ Ci and
f ′−1(∞) ∩ Ci have the same parity for every i (because they are in the same com-
ponent PicI ). We can also apply a projective transformation from PGL2(R) so that
f and f ′ have disjoint poles. Then f −f ′ has an even number of poles on every Ci.
Therefore f − f ′ has an even number of zeros on every Ci. One of these zeros is pi,
so there must be at least one additional zero on each Ci. Thus f − f ′ has at least
2g + 4 zeros total and we finish as in the first part. �

8.7. COROLLARY. The scattering amplitude map of a generic MHV curve has degree 2g .

Proof. By Theorem 8.6, every point in M?
0,n(R) has at most 2g preimages by Λ.

Since M?
0,n(R) is a real form of M0,n of real dimension n − 3, it is Zariski dense

in it. Thus the scattering amplitude map Λ of any MHV M-curve has degree at
most 2g in both types (A) and (B). Let D ≤ 2g be the maximum of these degrees.

Since the locus of MHV M -curves (C; p1, . . . , pn) of either of these types is a
connected component of the real form of the moduli space Mg,n of real dimension
3g − 3 + n (see [SS]), it is Zariski dense in Mg,n. It follows that the degree of the
scattering amplitude is bounded above by D for a Zariski dense subset in Mg,n.

We claim that the degree of Λ is bounded above by D for all smooth curves.
Indeed, let Picg+1 →Mg,n be the universal Jacobian and let

Λ : Picg+1 99KMg,n ×M0,n

be the universal scattering amplitude map (the reader uncomfortable with stacks
can use a 1-parameter family of curves connecting two curves instead of Mg,n).
Since Λ is generically finite and Mg,n ×M0,n is normal, the Stein factorization of
Λ implies that cardinality of finite fibers can’t be more than D.

Finally, by Theorem 6.2, the scattering amplitude map of a hyperelliptic curve
has degree 2g . Therefore, D = 2g , which completes the proof. �

8.8. DEFINITION. There exists a distinguished connected component of Picg+1(R),

Picg+1
H (R) := Picg+1

{1,...,g+1}(R),

which was studied in [H3]. We call it the Huisman component. Every effective
divisor from Picg+1

H (R) is a union of g+1 points, one in each connected component
C1, . . . , Cg+1 ⊂ C(R). Here are some nice properties of Picg+1

H (R):

8.9. PROPOSITION ([H3]).
(1) Every L ∈ Picg+1

H (R) is non-special and globally generated.
(2) ϕL is unramified along C(R) = C1 ∪ . . . ∪ Cg+1.
(3) ϕL|Ci : Ci → P1(R) is a real-analytic isomorphism for any i = 1, . . . , g + 1.
(4) Fix zg+1 ∈ Cg+1. The map C1 × . . .×Cg → Picg+1

H (R) that sends z1, . . . , zg to
O(z1 + . . .+ zg + zg+1) is a real-analytic isomorphism.

Here’s the second main result of this section.

8.10. THEOREM. In the notation of Amplification 2.4, Picg+1(R) is disjoint from the ram-
ification divisor R in both types (A) and (B). In particular, the scattering amplitude map

ΛI : Picg+1
I (R) \ (E ∪

⋃
i<j

Eij)→M?
0,n(R)

is a real analytic isomorphism onto its image for every component Picg+1
I (R).
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Proof. Suppose D ∈ Picg+1(R) ∩R. By definition of R, this means that

2D ∼ x1 + . . .+ xg−1 + p1 + . . .+ pg+3

for some xi ∈ C. Since C has type (A) or (B), we can assume without loss of gener-
ality that either pg+2 and pg+3 are complex-conjugate points (type B) or additional
points on one of the connected components of C(R) (type A). Let

G = x1 + ...+ xg−1 + pg+2 + pg+3 ∼ 2D − p1 − . . .− pg+1.

SinceO(2D) ∈ Pic2g+2
∅ (R) andO(p1+...+pg+1) ∈ Picg+1

H (R), it follows thatO(G) ∈
Picg+1

H (R), and therefore it is base-point-free and h0(G) = 2 by Proposition 8.9.
On the other hand, it has a complex-conjugate section x̄1 + . . .+ x̄g−1 +pg+2 +pg+3,
which also contains pg+2 and pg+3. So this must be the same section, otherwise
pg+2 and pg+3 are in the base locus of O(G). It follows that G is invariant under
complex conjugation. But then it can’t be in Picg+1

H (R) since either pg+2 and pg+3

are complex-conjugate or belong to the same connected component of C(R), in
either case the degree of G ∩ Ci can’t be odd for all i. Since ΛI is injective by
Theorem 8.6 and its domain is disjoint from R, it is an analytic immersion where
it is defined. �

8.11. AMPLIFICATION. By Corollary 8.7, for smooth complex curves, the scattering
amplitude map Λ : Picg+1 C →M0,n has large degree 2g . However, Theorems 8.6
and 8.10 show that for smooth real M-curves line bundles in every fiber “localize”
into different connected components Picg+1

I (R) of Picg+1(R). In other words, Λ is
determined by open immersions (in the domain of Λ)

ΛI : Picg+1
I (R) 99KM?

0,n(R).

Each component Picg+1
I (R) carries a uniform probability measure |AI | given by

the real-valued volume formAI translation-invariant under the real g-dimensional
torus Pic0

∅(R). Viewed on M?
0,n(R), this gives a differential form AI and a proba-

bility measure |AI | that we call a scattering amplitude probability measure. We will
typically compactify M?

0,n(R) in some way and extend Λ to its domain of defini-
tion (so that in particular it will be determined at least generically along E and
Eij). Since not every reasonable compactification of M?

0,n(R) is an orientable man-
ifold, one has to remember (from calculus) that in this case the integral of a form
is not well-defined, however one can always integrate probability measures. The
scattering measure of the Huisman’s component is especially well-behaved.

8.12. THEOREM. Let C be a smooth MHV M-curve with ovals C(R) = C1 ∪ . . .∪Cg+1.
Furthermore, we assume that pi ∈ Ci for i = 1, . . . , g + 1 and that pg+2, pg+3 ∈ Cg+1

(type A) or pg+2 = p̄g+3 (type B). We compactify M0,n by (P1)g ' (M0,4)g using the
product of forgetful maps

πi,g+1,g+2,g+3 : M0,n →M0,4

for i = 1, . . . , g. The scattering amplitude map induces a real-analytic isomorphism

Rg/Zg ' Picg+1
H (R)

Λ−→(RP1)g

and gives a positive real-analytic scattering amplitude probability measure on (RP1)g .

Proof. By Theorem 8.10, Picg+1
H (R) does not intersect the ramification divisor R.

As an easy reformulation of 8.8(1), Picg+1
H (R) does not intersect E either. Indeed,

let D = z1 + . . . + zg+1 with zi ∈ Ci. Arguing by contradiction, suppose D is
linearly equivalent to a divisor in E, i.e. D ∼ K + x0 − x1 − . . . − xg−2 for some
xi ∈ C. Then h0(D) = 2 by 8.8 but since h0(x1 + . . .+ xg−2) ≥ 1,

h0(D − x0) = h0(K − x1 − . . .− xg−2) = h1(x1 + . . .+ xg−2) ≥ 2
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by Riemann–Roch formula, which contradicts global generation of D.
For every L ∈ Picg+1

H (R), ϕL(pg+1), ϕL(pg+3), ϕL(pg+3) are different. In type
(A) this follows from 8.8(3). In type (B), this follows because points ϕL(pg+2)
and ϕL(pg+3) are not real (the preimage of every real point under ϕL is real). By
Lemma 2.7, the map Picg+1

H (R) 99K (RP1)g is a regular real-analytic immersion at
every point. On the other hand, it is injective by Theorem 8.10. �

8.13. EXAMPLE (genus 1). Let C be an elliptic M-curve with two ovals, X and Y .
We can use a point x ∈ X to identify C(R) with Pic2(R) by tensoring with O(x).

In[5]:= f[x_] := -x * (x + 1) * (x - 1) * (x - 3);

ContourPlot [y^2 == f[x], {x, -2, 6}, {y, -5, 5},

ContourStyle Black , Axes {True , True }, Ticks False , Frame False (*,

Epilog {Black , PointSize [0.02 ] ,Point [{{-0.7,Sqrt [f[-0.7 ]]},{1.2,Sqrt [f[1.2 ]]},

{2.1,-Sqrt [f[2.1 ]]},{2.8,Sqrt [f[2.8 ]]}}],Text [p1,{-0.9,0.2+Sqrt [f[-0.7 ]]}],

Text [p2,{1,0.2+Sqrt [f[1.2 ]]}],Text [p3,{1.8,-.2+-Sqrt [f[2.1 ]]}],

Text [p4,{2.6,Sqrt [f[2.8 ]]-0.3 }]},Prolog

{Gray , PointSize [0.02 ] ,Point [{{-0.7,0},{1.2,0},{2.1,0},{2.8,0}}],Text [q1,{-0.7,0.2 }],

Text [q2,{1.2,0.2 }],Text [q3,{2.1,0.2 }],Text [q4,{2.8,0.2 }]}*)]

Out[6]= 

In[19]:= f[x_] := (x^2 + x + 0.5 ) * (x^2 - 2 * x + 1.1 );

ContourPlot [y^2 == f[x], {x, -2, 6}, {y, -5, 5},

ContourStyle Black , Axes {True , True }, Ticks False , Frame False ]

Out[20]= 

2     

FIGURE 10. Two types of double covers C(R) → P1(R) of an elliptic
M -curve C. A double cover from the Huisman component is on the right.

We denote the corresponding ovals of Pic2(R) by X(2) and Y (2). It is clear that
X+X = X(2), where the left hand side denotes the locus of line bundlesO(x+x′)
for x, x′ ∈ X . It is also clear thatX+Y = Y (2). We claim that Y +Y = X(2). Indeed,
we have a continuous map C → Pic2(R) which sends z to O(z+ z̄). By continuity,
the image of this map has to be equal to X(2). In the notation of 8.3,

X(2) = Pic2
∅(R) and Y (2) = Pic2

{1,2}(R) = Pic2
H(R)

is the Huisman component of Pic2(R). If L ∈ X(2) then the map

ϕL : C(R)→ P1(R)

represents C(R) in the form y2 = f4(x), where f4(x) is a real polynomial with four
real roots (the left side of Figure 10). By tradition, one of these roots is usually
moved to infinity. Here ϕL is projection onto the x-axis. Note that restriction of
ϕL to either X or Y is neither surjective nor injective. By contrast, if L ∈ Y (2),
the map ϕL represents the same curve in the form y2 = f4(x), where f4(x) is a real
polynomial with two pairs of complex conjugate roots (the right side of Figure 10).
In accordance with 8.8, the restriction of ϕL to both X and Y is a real analytic
isomorphism with inverses given by

x 7→
(
x,
√
f4(x)

)
, x 7→

(
x,−

√
f4(x)

)
.

Next we suppose thatC is an MHV elliptic M-curve of type A or B. In other words,
we add 4 marked points so that, depending on the type,

(A) p1, p2, p3 ∈ X and p4 ∈ Y
(B) p1 ∈ X , p2 ∈ Y and p3 = p̄4 are complex-conjugate points.

We have six special points pij = O(pi + pj) ∈ Pic2 C. Depending on the type,

(A) p12, p13, p23 ∈ X(2) and p14, p24, p34 ∈ Y (2).
(B) p34 ∈ X(2), p12 ∈ Y (2) and p13 = p̄14, p23 = p̄24 are complex-conjugate.
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P

P

FIGURE 11. MHV elliptic M curves of Type A (left) and type B (right).

The scattering amplitude map Λ : Pic2 C → P1 is given by the line bundle

L = O(p12 + p34) ' O(p13 + p24) ' O(p14 + p23).

In both cases (A) and (B), L ∈ Y (4), the Huisman component of Pic2(Pic2 C).
The restriction of Λ to both connected components X(2) and Y (2) of Pic2(R) is an
analytic isomorphism with P1(R). In other words, the scattering amplitude map
Λ of an elliptic M-curve of type (A) or (B) looks like the projection onto the x-axis
as on the right side of Figure 10. We get a 4-parameter family of smooth scattering
amplitude probability measures given (up to normalization) by

A =
dx√
f4(x)

,

where f4 is a real polynomial with two pairs of complex conjugate roots. A familiar
2-parameter subfamily is given by

M(a,b)
π

dx√
(x2+a2)(x2+b2)

In[536]:= f[x_] := (x^2 + x + 0.5 ) * (x^2 - 2 * x + 1.1 );

ContourPlot [y^2 == f[x], {x, -2, 6}, {y, -5, 5},

ContourStyle Black , Axes {True , True }, Ticks False , Frame False ]

Out[537]= 

In[538]:= f[x_] := (x^2 + 1) * (x^2 + 2);

ContourPlot [y == Sqrt [1 / f[x]], {x, -6, 6}, {y, -0.5, 1},

ContourStyle Black , Axes {True , True }, Ticks False , Frame False ]

Out[539]= 

2     

where a 6= b and M(a, b) is the arithmetic-geometric mean of a and b.

8.14. REMARK. Notice that the scattering probability measure ρ(x) |dx| is a smooth
measure on M0,4(R) ' RP1 including the point at ∞, i.e. ρ(1/x)

x2 is smooth at 0.
In fact presenting it as a probability measure on R depends on a specific choice
of the identification M0,4(R) ' RP1 and it is well-known that there are |S3| = 6
possibilities, which can result in differently-looking density graphs:
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In[79]:= TableForm [{{AA, BB, CC}, {DD, EE, FF}}]

Out[79]//TableForm= 
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8.15 (genus 1 – continued). In type (A), the real form ofM0,4 isMA
0,4(R) = M0,4(R),

the configuration space of 4 points in P1(R). ViewingM0,4(C) as a Riemann sphere
punctured at 0, 1,∞ via the cross-ratio map, M0,4(R) is identified with the real
axis without 0, 1,∞ and M0,4(R) with P1(R), the equator of the Riemann sphere.
The scattering amplitude map Λ : Pic2(R)→M0,4(R) has the property that

Λ(p14) = Λ(p23) = 0, Λ(p13) = Λ(p24) = 1, Λ(p12) = Λ(p34) =∞. (8.15.1)

In type (B), the real form is MB
0,4(R), the configuration space of two real and two

complex-conjugate points in P1(C). If λ = (p1, p2; p3, p4) is their cross-ratio then

λ = (p1, p2; p4, p3) = 1− λ.

Therefore,

M2,1
0,4 (R) =

{
Re(z) =

1

2

}
⊂ C

and the compactification M
2,1

0,4(R) is obtained by adding a single point (at ∞).

The scattering amplitude map Λ : Pic2(R) → M
2,1

0,4(R) still has property (8.15.1)

but now only∞ is part of the real locus M
2,1

0,4(R). This corresponds to the fact that
points p13 = p̄14, p23 = p̄24 are not in Pic2(R).

8.16 (Real planar locus W). Recall from 2.8 that the planar locus W ⊂ Picg+1 C has
codimension 3 and (for a general curve) parametrizes realizations of C as a de-
gree g + 1 plane curve with g(g−3)

2 nodes away from the marked points p1, . . . , pn.
Generically along W , the scattering amplitude map is resolved by the blow-up
(2.8.2) of W with exceptional divisor Ŵ and the scattering amplitude form van-
ishes along Ŵ with multiplicity 2. Suppose that C is a generic real MHV M-curve.
Then line bundles in W (R) give realizations of C as Harnack curves, more precisely
real plane curves of degree g + 1 and genus g with g + 1 real components. These
curves have g(g−3)

2 acnodes, i.e. isolated real points (where two complex-conjugate
branches of the complex plane curve intersect transversally). If g is odd then all
g + 1 components are ovals (separate RP2 into a disk and a Möbius strip). If g is
even, there are g ovals and one pseudo-line (a generator of π1(RP2)), see [GH]. It
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follows that a general real line in RP2 has even degree on all components of C(R)
if g is odd and on all but one if g is even. So for a general real MHV M-curve

W (R) ⊂ Picg+1
∅ (R)

if g is odd. If g is even, W (R) is contained in the union of Picg+1
I (R) for |I| = 1.

It follows that the scattering amplitude probability measures |A∅| (g odd) and |AI |
for |I| = 1 (g even) are the only ones that vanish to the order 2 along Ŵ (R).

In the rest of the section we study scattering measures of genus 2 curves.

8.17. Let C be a smooth MHV M-curve of genus 2 given by the equation y2 = f(x),
where f is a real polynomial of degree 5 with 5 distinct real roots. We denote the
ovals of C(R) by C1, C2 and C3. Like in Theorem 8.12, we assume that

pi ∈ Ci for i = 1, 2, 3

and that
p4, p5 ∈ C3 (type A) or p4 = p̄5 (type B).

See Figure 3. We follow notation of §7 for special points and divisors. In particular,

K ∈ Pic2
∅(R) and P = p1 + . . .+ p5 ∈ Pic5

{1,2,3}(R).

The special points δ = P −K, δi = K + pi and δij = P − pi − pj are distributed
among four components of Pic3(R) as follows:

Type Pic3
H(R) Pic3

{1}(R) Pic3
{2}(R) Pic3

{3}(R)

A δ, δ45, δ34, δ35 δ1, δ23, δ24, δ25 δ2, δ13, δ14, δ15 δ3, δ4, δ5, δ12

B δ, δ45 δ1, δ23 δ2, δ13 δ3, δ12

The map ϕP embeds C(R) into P3(R). Let P2 ⊂ P3 be the plane passing through
p1, . . . , p5. Let dP4 = Blp1,...,p5 P2 be the quartic del Pezzo surface. Depending on
the type of the MHV M-curve C, there are two possibilities for its real form:

dPA
4 (R) = Blp1,...,p5 P2(R) or dPB

4 (R) = Blp1,p2,p3 P2(R).

8.18. By Theorem 8.10, Pic3(R) is disjoint from the ramification divisorR.11 This im-
plies by Theorem 7.6 that the degree 4 morphism

Λ : Bl16 Pic3 C(R)→ Blp1,...,p5 P2(R) in type (A),

Λ : Bl8 Pic3 C(R)→ Blp1,p2,p3 P2(R) in type (B)

induced by the scattering amplitude map is a real-analytic isomorphism on each
connected component Pic3

I C(R) blown up at 4 (in type A) or 2 (in type B) points.
Note that topologically each of these components is a connected sum of a torus
T 2 with 4 (in type A) or 2 (in type B) RP2’s while dP4(R) is a connected sum of
6 (in type A) or 4 (in type B) RP2’s. The scattering amplitude map Λ provides a
real-analytic isomorphism between these (non-orientable) surfaces.

8.19. By Theorem 7.6, the preimage of each (−1)-curve in dP4 is the union of the
“∆” and “E”-type divisors, where the former is a P1 and the latter is a copy ofC. In
the following table we give the preimages under Λ of real (−1)-curves in dP4(R).
Recall that the “E”-type divisors are

E = K + C, Ei = P − pi − C, Eij = C + pi + pj .

The range of indices k, l in the table is 3, 4, 5. We use notation

E(Ci) = K + Ci, Ei(Cj) = P − pi − Cj , Eij(Ck) = Ck + pi + pj .

11 Since δ ∈ Pic3(R), this has a curious geometric consequence: the unique quadric surface in P3

containing C is smooth (by Lemma 7.5).
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curve in dP4(R) Pic3
H(R) Pic3

{1}(R) Pic3
{2}(R) Pic3

{3}(R)

A conic ∆ E(C1) E(C2) E(C3)
exceptional E1(C1) ∆1 E1(C3) E1(C2)

E2(C2) E2(C3) ∆2 E2(C1)
Ek(C3) Ek(C2) Ek(C1) ∆k

line ∆kl Ekl(C1) Ekl(C2) Ekl(C3)
E2k(C1) ∆2k E2k(C3) E2k(C2)
E1k(C2) E1k(C3) ∆1k E1k(C1)
E12(C3) E12(C2) E12(C1) ∆12

B conic ∆ E(C1) E(C2) E(C3)
exceptional E1(C1) ∆1 E1(C3) E1(C2)

E2(C2) E2(C3) ∆2 E2(C1)
E3(C3) E3(C2) E3(C1) ∆3

line ∆45 E45(C1) E45(C2) E45(C3)
E23(C1) ∆23 E23(C3) E23(C2)
E13(C2) E13(C3) ∆13 E13(C1)
E12(C3) E12(C2) E12(C1) ∆12

8.20. REMARK. The scattering amplitude measure on each connected component
Pic3

I(R) is a probability measure on a real algebraic surface that in any real-analytic
chart U has form ρ(x, y)|dxdy|, where ρ(x, y) > 0 is a smooth, in fact real-analytic
function. The behavior of probability measure under the blow-up is as follows.
Locally, we blow-up the origin (0, 0) of the chart,

π : Bl(0,0) U → U.

The surface Bl(0,0) U is non-orientable and contains an exceptional curve RP1,
the preimage of (0, 0) (see the cover artwork of [S1]). A tubular neighborhood of
the curve RP1 is covered by two charts that correspond to standard charts of RP1.
In each chart, π has the form (u, v) 7→ (u, uv) and thus the probability measure is

ρ(u, uv)|u||dudv|. (8.20.1)

Note that u = 0 is the local equation of the exceptional curve. The probability
measure (8.20.1) vanishes along it to the order of |u|. More generally, if |A| is
a probability measure on a real-analytic manifold X smooth and non-vanishing
generically along a submanifold Y of codimension c then the same measure on
the blow-up BlY X vanishes along the exceptional divisor generically to the order
of |u|c−1.

8.21. Back in our situation, the scattering amplitude measure on dP4(R) is smooth
and positive away from four (in type A) or two (in type B) projective lines that
correspond to “∆” divisors in the Table 8.19. Along these lines, the scattering
amplitude form vanishes like in (8.20.1). These disjoint (-1)-curves can always be
contracted to points giving morphisms dP4(R)→ (RP1)2. Combining everything
together gives a commutative diagram

Bl Pic3
I(R)

Λ−−−−→ dP4(R)y y
Pic3

I(R)
'−−−−→ (RP1)2

where vertical arrows are blow-downs of four (type A) or two (type B) projective
lines and the bottom arrow is a real-analytic isomorphism (note that algebraically
these varieties can’t be more different!). It follows that we can view the scattering
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amplitude measure on dP4(R) as a smooth positive probability measure on (RP1)2

(subject to Möbius transformations of coordinates as in Remark 8.14).

8.22. So far we have treated the Huisman component and the other connected
components of Pic3(R) on the equal footing, but there is an important difference.
For simplicity, we consider Type A only. Recall that the space dP4 is an artifact

Qdot1 [[j]] = (-vdot1 [Z[[j]]] * u[Z[[j]]] - (Y[[j]] - v[Z[[j]]]) * udot1 [Z[[j]]]) / u[Z[[j]]]^2, {j, 1, 5}];

Do[Qdot2 [[j]] = (-vdot2 [Z[[j]]] * u[Z[[j]]] - (Y[[j]] - v[Z[[j]]]) * udot2 [Z[[j]]]) / u[Z[[j]]]^2, {j, 1, 5}];

(*Mapping vector fields to (P^1)^g by cross -ratios *)

A[[1, i]] = CR[Q[[I1]], Q[[I2]], Q[[I3]], Q[[I4]]];

A[[2, i]] = CR[Q[[J1]], Q[[J2]], Q[[J3]], Q[[J4]]];

M11 =

CRDOT [Q[[I1]], Q[[I2]], Q[[I3]], Q[[I4]], Qdot1 [[I1]], Qdot1 [[I2]], Qdot1 [[I3]], Qdot1 [[I4]]];

M12 = CRDOT [Q[[J1]], Q[[J2]], Q[[J3]], Q[[J4]], Qdot1 [[J1]], Qdot1 [[J2]], Qdot1 [[J3]], Qdot1 [[J4]]];

M21 = CRDOT [Q[[I1]], Q[[I2]], Q[[I3]], Q[[I4]], Qdot2 [[I1]], Qdot2 [[I2]], Qdot2 [[I3]], Qdot2 [[I4]]];

M22 = CRDOT [Q[[J1]], Q[[J2]], Q[[J3]], Q[[J4]], Qdot2 [[J1]], Qdot2 [[J2]], Qdot2 [[J3]], Qdot2 [[J4]]];

Jac = Det [{{M11, M12 }, {M21, M22 }}];

A[[3, i]] = phi1 / 2 + psi1 * (1 - phi1 );

A[[4, i]] = Abs [1 / Jac ] ;

);

Do[filler [i], {i, 1, MaxIt }];

T := Table [Style [{A[[1, i]], A[[2, i]]}, Hue [A[[3, i]], 1, 1]], {i, 1, 9000 }]

data = Table [{A[[1, i]], A[[2, i]], A[[4, i]]}, {i, 1, MaxIt }];

data5 = Table [{A[[1, i]], A[[2, i]], A[[3, i]]}, {i, 1, MaxIt }];

Roots :- 1, 0, 1, 2, 3

Marked points :

(- 0.7, 1.8885 )

(1.3, 1.03317 )

(3.3, 3.56769 )

(3.45, 4.95408 )

(4.2, - 13.5832 )

In[404]:= (*ListPlot [T, PlotStyle PointSize [Medium ],

Axes {True ,True } ,PlotRange {{-100,100 },{-100,100 }}] *)

In[405]:= 

In[406]:= (*ContourPlot [y^2==f[x],{x,-2,6},{y,-15,15},Epilog {Green , PointSize [0.02 ] ,

Point [{{Z[[1]], Y[[1]]},{Z[[2]], Y[[2]]},{Z[[3]], Y[[3]]},{Z[[4]], Y[[4]]},{Z[[5]], Y[[5]]}}]}]*)

In[407]:= (*Do[data [[i]]=If[data [[i,1]]<-0.5 &&data [[i,2]]<-0.5,{0,0,0},data [[i]] ],{i,1,MaxIt }]; *)

In[408]:= 

    3

In[409]:= ListPlot3D [data , InterpolationOrder 6,

ColorFunction ColorData ["SouthwestColors "], Axes {True , True , False },

Boxed False , PlotRange {0, 0.009 }, ImageSize Large ]

ListDensityPlot [data , PlotRange {{-20, 30}, {-25, 28}}, InterpolationOrder 6,

ColorFunction ColorData ["SouthwestColors "], ImageSize Large ]

Out[409]= 
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Out[410]= 

In[411]:= (*ListContourPlot [data5 ,PlotRange {{-200,200 },{-200,200 }},InterpolationOrder 8] *)

In[412]:= 

    5

Qdot1 [[j]] = (-vdot1 [Z[[j]]] * u[Z[[j]]] - (Y[[j]] - v[Z[[j]]]) * udot1 [Z[[j]]]) / u[Z[[j]]]^2, {j, 1, 5}];

Do[Qdot2 [[j]] = (-vdot2 [Z[[j]]] * u[Z[[j]]] - (Y[[j]] - v[Z[[j]]]) * udot2 [Z[[j]]]) / u[Z[[j]]]^2, {j, 1, 5}];

(*Mapping vector fields to (P^1)^g by cross -ratios *)

A[[1, i]] = CR[Q[[I1]], Q[[I2]], Q[[I3]], Q[[I4]]];

A[[2, i]] = CR[Q[[J1]], Q[[J2]], Q[[J3]], Q[[J4]]];

M11 =

CRDOT [Q[[I1]], Q[[I2]], Q[[I3]], Q[[I4]], Qdot1 [[I1]], Qdot1 [[I2]], Qdot1 [[I3]], Qdot1 [[I4]]];

M12 = CRDOT [Q[[J1]], Q[[J2]], Q[[J3]], Q[[J4]], Qdot1 [[J1]], Qdot1 [[J2]], Qdot1 [[J3]], Qdot1 [[J4]]];

M21 = CRDOT [Q[[I1]], Q[[I2]], Q[[I3]], Q[[I4]], Qdot2 [[I1]], Qdot2 [[I2]], Qdot2 [[I3]], Qdot2 [[I4]]];

M22 = CRDOT [Q[[J1]], Q[[J2]], Q[[J3]], Q[[J4]], Qdot2 [[J1]], Qdot2 [[J2]], Qdot2 [[J3]], Qdot2 [[J4]]];

Jac = Det [{{M11, M12 }, {M21, M22 }}];

A[[3, i]] = phi1 / 2 + psi1 * (1 - phi1 );

A[[4, i]] = Abs [1 / Jac ] ;

);

Do[filler [i], {i, 1, MaxIt }];

data = Table [{A[[1, i]], A[[2, i]], A[[4, i]]}, {i, 1, MaxIt }];

ListPlot3D [data , InterpolationOrder 6,

ColorFunction ColorData ["SouthwestColors "], Axes {True , True , False },

Boxed False , PlotRange {0, 0.009 }, ImageSize Large ]

ListDensityPlot [data , PlotRange {{-20, 30}, {-25, 28}}, InterpolationOrder 6,

ColorFunction ColorData ["SouthwestColors "], ImageSize Large ]

Roots :- 1, 0, 1, 2, 3

Marked points :

(- 0.1, 0.802801 )

(1.9, 0.738573 )

(3.9, 9.73481 )

(4.35, 15.727 )

(6.6, - 68.2029 )
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Out[36]= 
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Out[37]= 

In[496]:= (*

T:=Table [Style [{A[[1,i]], A[[2,i]]}, Hue [A[[3,i]],1,1]], {i,1,9000 }];

ListPlot [T, PlotStyle PointSize [Medium ],

Axes {True ,True } ,PlotRange {{-100,100 },{-100,100 }}]

*)

In[497]:= 

In[498]:= (*ContourPlot [y^2==f[x],{x,-2,6},{y,-15,15},Epilog {Green , PointSize [0.02 ] ,

Point [{{Z[[1]], Y[[1]]},{Z[[2]], Y[[2]]},{Z[[3]], Y[[3]]},{Z[[4]], Y[[4]]},{Z[[5]], Y[[5]]}}]}]*)

In[499]:= (*Do[data [[i]]=If[data [[i,1]]<-0.5 &&data [[i,2]]<-0.5,{0,0,0},data [[i]] ],{i,1,MaxIt }]; *)

In[500]:= 

In[501]:= 
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Qdot1 [[j]] = (-vdot1 [Z[[j]]] * u[Z[[j]]] - (Y[[j]] - v[Z[[j]]]) * udot1 [Z[[j]]]) / u[Z[[j]]]^2, {j, 1, 5}];

Do[Qdot2 [[j]] = (-vdot2 [Z[[j]]] * u[Z[[j]]] - (Y[[j]] - v[Z[[j]]]) * udot2 [Z[[j]]]) / u[Z[[j]]]^2, {j, 1, 5}];

(*Mapping vector fields to (P^1)^g by cross -ratios *)

A[[1, i]] = CR[Q[[I1]], Q[[I2]], Q[[I3]], Q[[I4]]];

A[[2, i]] = CR[Q[[J1]], Q[[J2]], Q[[J3]], Q[[J4]]];

M11 =

CRDOT [Q[[I1]], Q[[I2]], Q[[I3]], Q[[I4]], Qdot1 [[I1]], Qdot1 [[I2]], Qdot1 [[I3]], Qdot1 [[I4]]];

M12 = CRDOT [Q[[J1]], Q[[J2]], Q[[J3]], Q[[J4]], Qdot1 [[J1]], Qdot1 [[J2]], Qdot1 [[J3]], Qdot1 [[J4]]];

M21 = CRDOT [Q[[I1]], Q[[I2]], Q[[I3]], Q[[I4]], Qdot2 [[I1]], Qdot2 [[I2]], Qdot2 [[I3]], Qdot2 [[I4]]];

M22 = CRDOT [Q[[J1]], Q[[J2]], Q[[J3]], Q[[J4]], Qdot2 [[J1]], Qdot2 [[J2]], Qdot2 [[J3]], Qdot2 [[J4]]];

Jac = Det [{{M11, M12 }, {M21, M22 }}];

A[[3, i]] = phi1 / 2 + psi1 * (1 - phi1 );

A[[4, i]] = Abs [1 / Jac ] ;

);

Do[filler [i], {i, 1, MaxIt }];

data = Table [{A[[1, i]], A[[2, i]], A[[4, i]]}, {i, 1, MaxIt }];

Roots :- 2, - 0.2, 0.2, 2, 7

Marked points :

(- 1.28, 5.59063 )

(0.92, 3.93215 )

(7.4, 33.3322 )

(7.6, 43.1488 )

(8.6, - 90.9632 )

In[36]:= (*

T:=Table [Style [{A[[1,i]], A[[2,i]]}, Hue [A[[3,i]],1,1]], {i,1,9000 }];

ListPlot [T, PlotStyle PointSize [Medium ],

Axes {True ,True } ,PlotRange {{-100,100 },{-100,100 }}]

*)

In[37]:= ListPlot3D [data , InterpolationOrder 6,

ColorFunction ColorData ["SouthwestColors "], Axes {True , True , False },

Boxed False , PlotRange {0, 0.003 }, ImageSize Full , ViewPoint {-1, -2, 1}]

ListDensityPlot [data , PlotRange {{-20, 35}, {-25, 40}}, InterpolationOrder 6,

ColorFunction ColorData ["SouthwestColors "], ImageSize Large ]
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Out[37]= 
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Out[38]= 

In[39]:= (*ContourPlot [y^2==f[x],{x,-2,6},{y,-15,15},Epilog {Green , PointSize [0.02 ] ,

Point [{{Z[[1]], Y[[1]]},{Z[[2]], Y[[2]]},{Z[[3]], Y[[3]]},{Z[[4]], Y[[4]]},{Z[[5]], Y[[5]]}}]}]*)

In[40]:= (*Do[data [[i]]=If[data [[i,1]]<-0.5 &&data [[i,2]]<-0.5,{0,0,0},data [[i]] ],{i,1,MaxIt }]; *)

In[41]:= 

In[42]:= 

In[43]:= (*

data5 = Table [{A[[1,i]],A[[2,i]],A[[3,i]]}, {i,1,MaxIt }];

ListContourPlot [data5 ,PlotRange {{-200,200 },{-200,200 }},InterpolationOrder 8]

*)

In[44]:= 

    5

FIGURE 12. Scattering amplitudes in genus 2, Huisman’s component

of the hyperelliptic case, the actual observable is not this surface but dP5 = M0,5.
The map dP4 → dP5 is a contraction of the conic that corresponds to the excep-
tional divisor ∆ only for the Huisman’s component (see 8.19), in which case the
scattering amplitude map gives a real-analytic isomorphism

Λ : Blδ45,δ34,δ35 Pic3
H(R)→ dP5 = M0,5(R).

The 10 exceptional divisors of dP5 (the “Petersen graph”) are images of the 10
proper transforms lij in dP4 of lines in P2 connecting points pi and pj of the conic
pairwise. The lines l34, l35, l45 are images of the exceptional divisors ∆34, ∆35, ∆45

on Blδ45,δ34,δ35 Pic3
H . These three lines on dP5 are contracted by the map

M0,5 → (P1)2 = (M0,4)2

given by cross-ratios 1345 and 2345. This gives a diagram of Theorem 8.12

Blδ45,δ34,δ35 Pic3
H(R)

Λ−−−−→
'

M0,5(R)y y 1345
2345

Pic3
H(R)

'−−−−→ (M0,4(R))2
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where horizontal arrows are real-analytic isomorphisms. To summarize, for the
Huisman component we have a preferred choice of cross-ratios that gives a smooth
positive scattering amplitude probability measure on (RP1)2. For the reader’s
amusement, we include a few pretty examples of these probability density func-
tions in Figure 12, rendered using Algorithm 6.8.

8.23. For a different choice of two cross-ratios, the scattering amplitude measure
of the Huisman’s component, smooth onM0,5(R), acquires a singularity in (RP1)2

of the same type as the scattering amplitude of a non-Huisman component has
already in the interior of M0,5(R). Consider the local picture as in Remark 8.20,
the real blow-up π : Bl(0,0) U → U , where U is a real-analytic chart. Then π has
the form (u, v) 7→ (u, uv). Suppose the probability measure ρ(u, v)|dudv| on the
blow-up is continuos and positive generically along the exceptional curve u = 0,
with the limit function ρ̄(v) = lim

u→0
ρ(u, v). In coordinates (x, y) of U ,

lim
x→0

ρ(x, vx)|x| = ρ̄(v)

for every slope v. So the restriction of ρ(x, y) to every line y = vx grows as ρ̄(v)
|x|

when |x| → 0. In Figure 13, we show how the probability density function of the
smooth scattering amplitude from the top of Figure 12 looks like in (RP1)2 for two
different choices of cross-ratios. In both pictures notice the line of zero probability
density running through singularities.

Out[209]= 

4     

Out[210]= 

In[39]:= (*ContourPlot [y^2==f[x],{x,-2,6},{y,-15,15},Epilog {Green , PointSize [0.02 ] ,

Point [{{Z[[1]], Y[[1]]},{Z[[2]], Y[[2]]},{Z[[3]], Y[[3]]},{Z[[4]], Y[[4]]},{Z[[5]], Y[[5]]}}]}]*)

In[40]:= (*Do[data [[i]]=If[data [[i,1]]<-0.5 &&data [[i,2]]<-0.5,{0,0,0},data [[i]] ],{i,1,MaxIt }]; *)

In[41]:= 

In[42]:= 

In[43]:= (*

data5 = Table [{A[[1,i]],A[[2,i]],A[[3,i]]}, {i,1,MaxIt }];

ListContourPlot [data5 ,PlotRange {{-200,200 },{-200,200 }},InterpolationOrder 8]

*)

In[44]:= 

    5

4     

Out[316]= 

In[303]:= (*ContourPlot [y^2==f[x],{x,-2,6},{y,-15,15},Epilog {Green , PointSize [0.02 ] ,

Point [{{Z[[1]], Y[[1]]},{Z[[2]], Y[[2]]},{Z[[3]], Y[[3]]},{Z[[4]], Y[[4]]},{Z[[5]], Y[[5]]}}]}]*)

In[304]:= (*Do[data [[i]]=If[data [[i,1]]<-0.5 &&data [[i,2]]<-0.5,{0,0,0},data [[i]] ],{i,1,MaxIt }]; *)

In[305]:= 

In[306]:= 

In[307]:= (*

data5 = Table [{A[[1,i]],A[[2,i]],A[[3,i]]}, {i,1,MaxIt }];

ListContourPlot [data5 ,PlotRange {{-200,200 },{-200,200 }},InterpolationOrder 8]

*)

In[308]:= 

    5

FIGURE 13. Rendering of singularities. Left: 4123, 5123; right: 1345, 5123.

§9. FOREST BEHIND THE HYPERTREES

9.1. Let C be a maximally degenerate stable curve: every irreducible component is a
P1 with three special points (either nodes or marked points). Equivalently, an on-
shell diagram is trivalent. We will characterize MHV curves of this type.

9.2. LEMMA. If C is an MHV curve then L has degree 0 or 1 on every component of C.
The on-shell diagram is a trivalent graph with d black circles (where L has degree 1) and
the remaining white circles (where L has degree 0).

Proof. We argue by contradiction and suppose that the degree of L on some ir-
reducible component B is at least 2. By Lemma 3.10, the remaining part of the
curve A is connected. Let gA be its genus and let dA be the degree of L on A. Then
dA ≤ d−2 = g−1. On the other hand, gA ≥ g−2. If gA > 0 then, by Lemma 3.5 (1),
dA = g−1 and dA = gA+ 1. If gA = 0 then g = 2 and so again dA = gA+ 1. In both
cases, by Lemma 3.5 (2), A contains at most gA + 3 = n− 2 marked points. Thus B
contains at least 2 marked points. This contradicts Lemma 3.10. �

9.3. ASSUMPTION. By Lemma 3.2 and Remark 3.3, ifC is an MHV curve then every
connected component of a subgraph of white circles of the on-shell diagram is
a tree with at most one marked point. In addition, by Lemma 3.5, a connected
subcurve A ⊂ C of arithmetic genus p should satisfy the following conditions:



46 JENIA TEVELEV

(1) If p > 0 then degL|A ≥ p+ 1.
(2) If degL|A = p+ 1 then A contains at most p+ 3 marked points.

From now on we will assume that all these conditions hold.

The precise shape of these subtrees is not important for the calculation of the
scattering amplitude map and form and there are two ways to ignore them.

9.4. DEFINITION. LetC be a maximally degenerate curve satisfying Assumption 9.3.

(1) For each maximal connected subtree of white circles of the on-shell dia-
gram, contract all interior edges of the tree so that it shrinks to a point. We
call this point a white megacircle. It is possible for it to have more than three
outgoing edges. A similar operation appears in [ABC+1]. Geometrically,
this corresponds to a curve Cs obtained by smoothing some nodes of C.

(2) Contract each component ofC whereL has degree 0 to a singular point of a
hypertree curve Σ [CT1, Def. 1.8]. Σ is not a stable curve: it has singularities
worse than nodes and marked points at singularities. But it is convenient:
every morphism to P1 given by a line bundle in Pic

~d C factors through Σ.

The following lemma was essentially proved in [ABC+1].

9.5. LEMMA. Let C be a maximally degenerate curve satisfying Assumption 9.3. Then its
on-shell diagram has the following properties:

(1) Black circles are only connected to white megacircles and marked points.
(2) Each white megacircle is connected to exactly one marked point.
(3) The data of the on-shell diagram is equivalent to the data of triples in {1, . . . , n}:

Γ = {Γ1, . . . ,Γd}.

Each Γi is associated to one of the d black circles of the on-shell diagram. For such
a circle, the associated Γi consists of the markings that are either attached directly
at that black circle, or sit on a white megacircle connected to it.

Proof. The first step is to place a dummy white megacircle with two edges between
every marked point and a black circle directly connected to it. After this operation,
no black circle is connected directly to a marked point. Let r be the total number of
white megacircles. The on-shell diagram can be built step-by-step as follows: start
with r white megacircles connected to marked points. The Euler characteristic of
this graph is r. Now add black circles one-by-one. Every time we add a new black
(trivalent!) circle, the Euler characteristic goes down by at most 2 and exactly by 2
only if the black circle is connected to an already constructed graph at three points.
It follows that at the end of the construction the Euler characteristic will be at least
r − 2(g + 1), on the other hand it should be equal to 1 − g. Thus r ≤ g + 3 = n.
On the other hand, n ≤ r because each white megacircle is connected to at most
one marked point. Thus we have all the conclusions: r = n, all white megacircles
are connected to marked points and black vertices are not connected to each other.
It remains to note that every black vertex is connected to three different marked
points. Indeed, otherwise a black vertex is connected to a white vertex by two
paths, producing a subcurve of arithmetic genus 1 and degree 1. which contradicts
Assumption 9.3. �

Not every maximally degenerate curve satisfying satisfying Assumption 9.3 is
an MHV curve. The precise condition was found in [CT1, Theorems 2.4 and 3.2]:
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9.6. THEOREM ([CT1]). A maximally degenerate stable curve C is an MHV curve if and
only if it is give by triples Γ as in Lemma 9.5 that form a CT hypertree12, i.e. satisfy (‡):∣∣⋃

j∈S
Γj
∣∣ ≥ |S|+ 2 for every S ⊂ {1, . . . , d}.

The scattering amplitude map is birational with the inverse map (called v in [CT1])

Λ−1 : M0,n → Pic
~d C, (9.6.1)

Λ−1(q1, . . . , qn) = v∗OP1(1),

where v : C → P1 is a unique morphism such that v(pi) = qi and v∗OP1(1) ∈ Pic
~d C.

9.7. DEFINITION ([CT1]). A CT hypertree Γ is called irreducible if (‡) is a strict
inequality for every S such that 1 < |S| < d.

9.8. EXAMPLE. In genus 0 and 1, irreducible CT hypertrees are Examples 1.10
and 4.10, respectively. In genus 2, there are none. See Figure 14 for irreducible
hypertrees in genus 3, 4, 5, 6. The database of irreducible CT hypertrees in genus

FIGURE 14.

at most 8 up to symmetries along with equations and classes of the corresponding
hypertree divisors was created by Opie and Scheidwasser [OS].

9.9. The main goal of [CT1] was to construct hypertree divisors DΓ ⊂ M0,n with
good properties. Suppose that Γ is an irreducible CT hypertree and g ≥ 3. Then
Λ−1 contracts a unique divisor DΓ ⊂M0,n given by

12See [CT1] for a motivation and a more general definition for subsets other than triples. There are
other notions of hypertrees in literature, so to distinguish our case we use terminology “CT hypertree”.
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• choosing a configuration of different points p1, . . . , pn ∈ P2 such that dif-
ferent points pi, pj , pk are collinear if and only if {i, j, k} ∈ Γ,
• projecting points p1, . . . , pn from a point p ∈ P2 to points q1, . . . , qn ∈ P1,
• and representing the datum (P1; q1, . . . , qn) by a point of M0,n.

3

4

1

projection

2

5

6

1 4 3 2 5 6
point in M 0,6

planar realization

The reader will notice a parallel with 2.8: the image WΓ := Λ−1(DΓ) ⊂ Pic
~d C is

the analogue of the planar locus W ⊂ Picg+1 C of a smooth MHV curve C that
parametrizes its presentations as a plane curve of degree g+ 1. Like in the smooth
case, the scattering amplitude form on Pic

~d C (when pulled back toM0,n) vanishes
along DΓ with multiplicity 2 because WΓ has codimension 3. This was noticed in
[CT1] and [ABC+1], which both contain (the same) determinantal equation forDΓ.

9.10. REMARK. The same stable curve can give many hypertrees by changing a
vector ~d of multidegrees. It is a non-trivial question to understand all MHV curves
with the same underlying stable maximally degenerate curve C.

We finish this section by studying geometry of spherical CT hypertrees. Re-
call that every checkerboard triangulation of a 2-sphere as in Figure 5 gives a CT
hypertree: vertices of the triangulation give the indexing set {1, . . . , n} and black
triangles give triples (another CT hypertree is given by white triangles.)

9.11. THEOREM. Let Γ be a CT hypertree and let C be the corresponding maximally de-
generate stable MHV curve. Then Γ is spherical if and only if C does not have a 2-channel
factorization (see Definition 3.11) and admits a real algebraic structure such that

(1) C is a stable limit of smooth pointed M-curves Ct of type A (see Definition 8.2).
Let C(R) = W1 ∪ . . . ∪Wg+1 be the union of images of g + 1 ovals of Ct(R).

(2) No Wi is an acnode, i.e. a real node which is a connected component of C(R).
(3) No Wi is contained in a degree 0 component of C (white circle of the on-shell

diagram). Equivalently, Wi is not contracted to a point by the morphism C → Σ.

Proof. Let C be a maximally degenerate stable MHV curve without 2-channel fac-
torization that satisfies (1)–(3). By Theorem 9.6, it corresponds to a CT hypertree Γ.
We need to show that Γ is spherical. According to [S], we can obtainC as follows13.
Start with a smooth pointed M-curve Ct of type A. Topologically, Ct is obtained
by gluing two identical discs D and D̄ with g holes removed. In Ct, these disks

13 More precisely, [S] is restricted to curves without marked points. But there is a trick, a morphism
from Mg,n to the “flag stratum” of Mg+n, which attaches a nodal genus 1 curve to every marking.
All results that we need about the stable reduction follow from the corresponding results for Mg+n.
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FIGURE 15. A hypertree curve (1) of a spherical CT hypertree (2) with
an on-shell diagram (3) is a degeneration of a real algebraic M-curve (4).

are interchanged by the complex conjugation. They are glued along the real locus
C(R) = D ∩ D̄, which is the union of the outside oval of D and g inside ovals. Of
course we can turn any oval into an “outside” oval by turning D inside out. But
there is a good choice: we choose the oval with 3 marked points as an outside one
and the remaining ovals (with one marked point each) as the inside ovals.

Next we fix a hyperbolic metric on Ct \ {p1, . . . , pn}, remove small conjugation-
invariant discs around marked points with geodesic boundaries and choose a
conjugation-invariant pair of pants decomposition of the remaining surface with
geodesic boundaries. The stable curve C is obtained by shrinking the boundaries
of pairs of pants to nodes except for the boundaries around marked points.

We investigate the structure of this pair of pants decomposition. Since C does
not contain acnodes by condition (2), no real oval of Ct is the boundary of a pair
of pants. We claim that no boundary B is entirely contained in D (or D̄) either.
Indeed, if this were the case then by Jordan’s lemma B separates D into two
connected components. Shrinking B (and B̄) creates a pair of complex-conjugate
nodes of C. Neither of these nodes is a separating node because C does not ad-
mit a one-channel factorization by Lemma 3.10. Thus these nodes separate C into
two connected components. But this contradicts the fact that C does not admit a
two-channel factorization14 and satisfies condition (3).

It follows that every pair of pants, a Riemann sphere with three discs removed,
is in fact conjugation-invariant, moreover isomorphic to P1(C) with the usual com-
plex conjugation and three removed discs are centered at three points of P1(R).

14 Interestingly, if this two-channel factorization by complex-conjugate nodes does occur, the result-
ing curve is of the easy type (I) completely described in Theorem 3.16.
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The quotient of Ct with the pair of pants decomposition by the complex conjuga-
tion is the original disc D with g holes and the quotient of each pair of pants is a
curved hexagon with alternating sides that are either arcs of real ovals of C(R) or
arcs connecting the ovals. The pairs of pants arising from the marked points look
as follows: an arc around the marked point connecting two points of the same
real oval Z, then two arcs of Z, then two sides of the hexagon connecting Z to an
oval Z ′, then an arc of Z ′. Other pairs of pants connect three real ovals. We claim
that in fact in the first case Z 6= Z ′ and in the second case all three real ovals are
different. Indeed, if one of the sides of the hexagon (not around the marked point)
connects a real oval to itself then the corresponding border of the pair of pants is
shrunk to a node of C that separates C into two connected components, which is
impossible by Lemma 3.10. We illustrate the decomposition of D into hexagons in
Figure 16, where we shade in gray components of C of degree 0.
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FIGURE 16. Decomposition of the disk D and the corresponding triangulation.

Finally, we produce a checkerboard decomposition of the sphere, as follows.
We shrink pairs of pants arising from the marked points to points. Furthermore,
we shrink hexagons that correspond to other degree 0 components of C to points.
Furthermore, we shrink arcs connecting real ovals of degree 1 components of C to
points. This gives g + 1 black triangles. We glue g + 1 white polygons to the real
ovals of C along the arcs of black triangles. This gives a checkerboard decompo-
sition of the sphere into g + 1 black triangles and g + 1 white polygons. Apriori,
some of these white polygons may have two sides, however if that’s the case then
two adjacent black triangles will produce a two-channel factorization of C, which
is impossible. Thus all white polygons have at least three edges, and therefore
they are all triangles since the total number of edges of black and white triangles
is the same. Therefore, the CT hypertree is spherical. We illustrate the pair of pants
decomposition and the corresponding triangulation in Figure 16.

It remains to prove that every spherical CT hypertree gives a maximally degen-
erate stable MHV curve that can be obtained as a limit of smooth pointed M-curves
Ct of type A. The construction of the conjugation-invariant pair of pants decom-
position should be obvious at this point. The only non-trivial remaining part of
the argument is to explain how to distribute points among the real ovals of Ct(R).
Concretely, we start with a checker-board triangulation of the sphere, attach three
marked points to the “outside” white triangle and now have to distribute the re-
maining g marked points in g inside white triangles so that every triangle contains
exactly one marked point as in Figure 16. In other words, we have to construct
a perfect matching between non-exterior vertices of the triangulation and interior
white triangles. This non-trivial matching has been constructed by Tutte in his
famous Trinity Theorem [T2]. The algorithm goes as follows (see Figure 17).
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FIGURE 17. Tutte matching algorithm [T2]

(1) Start with any checker-board triangulation.
(2) It is easy to see that the vertices of the triangulation can be colored red,

green and blue so that every triangle has vertices of all colors.
(3) There always exists at least one red arborescence: a directed connected tree

connecting an outside red vertex to all inside red vertices with one arrow
pointing into each inside red vertex. Every arrow first crosses a black and
then a white triangle. In our illustration the red arborescence is just a path
but it can of course be a more complicated tree.

(4) At this point we can already construct a partial Tutte matching: match in-
terior red vertices to white triangles right before them in the arborescence.
We indicate this by small red dots in these white triangles.

(5) Construct another connected red tree by connecting blue and green ver-
tices by edges which are not intersected by the red arborescence.

(6) Shrink the red tree leaf-by-leaf and on every step match a vertex from
which the leaf is removed to a white triangle adjacent to the leaf. We indi-
cate the matching by small green and blue dots in these white triangles.

This completes construction of the matching and the proof of the Theorem. �

§10. FURTHER REMARKS

Returning to the general case of factorization ωC(p1 + . . . + pn) = L ⊗ L̃, we
write d = degL = g+k−1, where k is an expected dimension of H0(C,L), known
in physical context as helicity. When k > 2, the line bundle L itself does not
determine a map C → P1, one also needs to choose a two dimensional subspace in
H0(C,L), i.e. a pencil of divisors. There are several ways to turn this set-up into a
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problem about geometry of linear systems. One approach is to consider a diagram

G Λ−−−−→ M0,ny
Picd C

where all arrows are rational maps, the vertical map is generically a Grassmannian
fibration with fiber G(2, H0(C,L)), and the horizontal map sends a pencil into
images of marked points in P1. While there is no natural probability distribution
on G, one can still ask about properties of the map Λ, for example about its degree
if it is generically finite, which happens if g + 2(k − 2) = n− 3, i.e. n = g + 2k − 1.

Another approach is to consider maps ϕL : C → Pk−1 given by complete linear
systems instead of maps to P1 given by pencils. This gives a rational map

Picd C
Λ
99KX(k, n),

where X(k, n) is the moduli space of n points in Pk−1 modulo PGLk, see papers
[KT, ST, T1] for the background on this space and its compactifications. With this
definition, we can again view the volume form on Picd C as a multi-valued mero-
morphic scattering amplitude form on X(k, n), at least if the map Λ is generically
finite, which happens if g = n(k − 1) − k2 + 1, i.e. if n = g

k−1 + k + 1. Another
advantage is that the duality between bundles L and L̃ is manifest: we have

d̃ = deg L̃ = (2g − 2 + n)− (g + k − 1) = g + (n− k)− 1 = g + k̃ − 1,

where k̃ = n− k. In fact we have a commutative diagram

Picd C
'−−−−→ Picd̃ C

Λ

y yΛ̃

X(k, n) −−−−→
'

X(n− k, n)

with rational vertical arrows. Indeed, the Gale duality X(k, n) ' X(n − k, n)
corresponds to the pairing (U ⊂ V )←→ (U⊥ ⊂ V ∗) between subspaces of Cn and
global sections of L and L̃ are indeed perpendicular due to the residue theorem.

10.1. EXAMPLE. The first non-MHV case is the following “666 Puzzle”. Let C be a
genus 4 curve with 6 marked points p1, . . . p6. A choice of a degree 6 line bundle
L ∈ Pic6 C realizes C as a 6-nodal sextic in P2 with 6 marked points. This gives
a generically finite rational map Λ from Pic6 C to X(3, 6), which has dimension 4.
What is the degree of Λ? An easier case for k = 3 would be to consider nodal
genus 2 quartics in P2 with 5 marked points but by the Gale duality this case is
equivalent to the MHV case g = k = 2, so the degree of Λ will be 4.

In the rest of this section we show that, in the maximally degenerate case, our
scattering amplitude form on X(k, n) (which is isomorphic to M0,n in the MHV
case k = 2) is equivalent to the leading singularity form of the scattering amplitude
on the Grassmannian G(k, n) as described in [ABC+2]. It is convenient to pass to
the (C∗)n−1-torsor P̂ic C → PicC which parametrizes line bundles L along with
trivializations ti : L|pi ' C for i = 1, . . . , n. This automatically gives trivializations
t̃i : L̃|pi ' C such that ti⊗ t̃i is the canonical trivialization ωC(p1 + . . .+pn)|pi ' C
given by the residue. The choice of global sections sα ∈ H0(C,L), s̃α̃ ∈ H0(C, L̃)

for α, α̃ = 1, 2 gives spinor 2-vectors λi = ti(sα|pi) and λ̃i = t̃i(s̃α|pi) such that each
(external) momentum can be written as pi = λiλ̃

T
i . The change of trivializations

corresponds to the action of the little torus (C∗)n by λi 7→ tiλi and λ̃i 7→ t−1
i λ̃i.



SCATTERING AMPLITUDES OF STABLE CURVES 53

We have a commutative diagram

P̂ic
~d
C

Λ̂
99KG(k, n)y yπ

Pic
~d C

Λ
99KX(k, n)

Here Λ̂(L, t1, . . . , tn) is the row space of the matrix (ti(sj |pi)) i=1,...,n
j=1,...,k

, where s1, . . . , sk

is a basic of H0(C,L), and π is a (rational) quotient map by the little torus acting

on the Grassmannian. Being a torsor over Pic
~d C, P̂ic

~d
C also carries a canonical

volume form and writing it down as a multi-valued form on G(k, n) in Plücker
coordinates is equivalent to writing a scattering amplitude form on X(k, n).

We specialize to the maximally degenerate case. Let v be the number of irre-
ducible components of C, i.e. the number of vertices of the on-shell diagram, and

let i be the number of internal edges. Then dim P̂ic
~d
C = g + n − 1 = 2v − i.

Furthermore, P̂ic
~d
C has a presentation as a quotient torus

P̂ic
~d
C ' P̂ic

~d
Cν/(C∗)i ' (C∗)2v/(C∗)i

defined as follows. The restriction of L to every irreducible component of C
(equivalently, every connected component of the normalizationCν) is eitherOP1(1)
(for black vertices) or OP1 (for white vertices). In either case, choose its trivializa-
tion at three special points of that component and use these trivializations to glue a
line bundle onC from the line bundle on the normalization. The action of the torus
(C∗)i comes from simultaneously rescaling trivializations at two points of Cν that
glue to the same node of C. The standard dlog form on (C∗)2v/(C∗)i then gives
the formula [ABC+2, (4.41)] for the leading singularity of the scattering ampli-
tude. Various delta-functions in this formula simply encode the fact that choosing
the spinor variables λi and λ̃i corresponds to choosing a 2-dimensional subspace
in H0(C,L) (resp. in the Gale-dual H0(C, L̃) – orthogonal of H0(C,L)).
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