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Abstract .  The paper studies generic commutative and anticommutative algebras 
of a fixed dimension, their invariants, covariants and algebraic properties (e.g., the 
structure of subalgebras). In the ease of 4-dimensional anticommutative algebras 
a construction is given that links the associated cubic surface and the 27 lines 
on it with the structure of subalgebras of the algebra. The rationality of the 
corresponding moduli variety is proved. In the case of 3-dimensional commutative 
algebras a new proof of a recent theorem of Katsylo and Mikhailov about the 28 
bitangents to the associated plane quartic is given. 

I n t r o d u c t i o n  

Let V -- C '~. Consider the vector space V* | V* | V of bilinear multipli- 
cations in V. We identify points of this vector space with the corresponding 
algebras, i.e., A E V* | V* | V simultaneously denotes the underlying vector 
space V equipped with the corresponding multiplication. 

One has the GL(V)-module decomposition 

(0.1) v "  v "  v =  x e c =  (Ao 2) e (c0 �9 5), 

where the modules Ao, .A, Co, C are irreducible; their highest weights (as 
of SL(V)-modules) are Wl + w,~_ 2, wn- i, wi + 2wn_ l, w,,_ i, respectively (in 
the Bourbaki numbering of the fundamental weights). 

The elements of A (resp. C) are anticommutative (resp. commutative) 

algebras; the elements of .4o and Co are algebras with zero  t race  (algebra A 
has zero trace if for any v E A the operator of the left multiplication by v 

has zero trace). 
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We denote by [.,-] (resp. (. ,-)) the multiplication in anticommutative 

(resp. commutative) algebras. 
Algebras in the summands .A and C of the decomposition (0.1) have a 

very simple structure, namely 

(0.2) Iv,w] = f(v)w-- f(w)v (f e V*) 

for algebras in ~ and 

(0.3) (v ,w)  = f(v)w + f(w)v (f  E V*) 

for algebras in C. Any subspace of such an algebra is a subalgebra. 
We say that  a generic algebra in .4, C, ,40, or Co satisfies some property if 

there exists a nonempty Zariski open subset in .4, C, rio, or Co, respectively, 
such that  all algebras in this subset share this property. Sometimes we do 
not specify this property and its meaning becomes clear from the context. 
For example, the phrase "Let A E `40 be a generic algebra. Then A has . . . .  " 
means "Consider all algebras in ,4o that  have . . . .  Then this set contains a 
nonempty open subset of `4o." The aim of this paper is to establish some 
nice properties of generic algebras. 

In Section 1, we describe the structure of subalgebras of a generic algebra. 
We find all integers k such that a generic anticommutative (commutative) 
algebra contains k-dimensional subalgebras and describes the variety of sub- 
algebras in these cases. In particular, we prove that  a generic n-dimensional 
anticommutative algebra A has no k-dimensional subalgebras for 3 < k < n; 
the number of 3-dimensional subalgebras is finite and can be precisely com- 
puted; the 2-dimensional subalgebras form a smooth irreducible subvariety 
in the Grassmannian Gr(2, A). Similar results are obtained in the commu- 
tative case. 

In Section 2, we consider 3-dimensional anticommutative and 2-dimensi- 
onal commutative algebras. 

Section 3 is the main section of the paper. Here we consider generic anti- 
commutative 4-dimensional algebras. We construct in the GLa-module A0 
two natural a-sections (see the definition below) arising from the structure 
of subalgebras. As a consequence we find two actions of finite groups with 
the field of invariants isomorphic to C(`4o) GL4 and prove that this field is 
rational. To each A E ,4o we assign a cubic surface K C PA. We show 
that  if A is generic then K is also generic. This enables us to give a full 
description of the variety of 2-dimensional subalgebras. Finally we describe 
the 27 lines on K in terms of the algebra A. 

In Section 4, we show that  n-dimensional commutative algebras can be 
identified with some n-dimensional linear systems of quadrics in It m. 
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In Section 5, we assign to eazJa commutative 3-dimensional algebra with 

zero trace A a plane qua~tic Q c PV*.  We give a new short proof of a 
recent theorem of Katsylo and Mikhailov describing the 28 bitangents to Q 
in terms of the idempotents of A. 

We use the following notation and terminology: 

C(X)  - the field of rational functions on an irreducible algebraic 

variety X,  
- Zariski tangent space of X at x E X,  
- Zariski closure of a set S C X,  
- the field of G-invadant rational functions on an irreducible 

G-variety X,  
P L  - the projectivization of a vector space L, 
(v l , . . .  ,vk) - the linear span of vectors v l , . . .  , vk E L, 

{e l , . . .  , en} - the fixed basis in V, 
{ x l , . . .  , xn} - the corresponding coordinates. 

T=(X) 
S 
c(x)  G 

We say that  a linear operator has at least 2 zero eigenvalues if it has the 
eigenvalue zero of algebraic multiplicity at least 2. 

Let X be an irreducible G-variety, S an irreducible subvariety. Then S is 
called a section of X if G-  S -- X.  The section S is called a a-section if the 
following condition holds: there exists a nonempty open subset U C S such 
that i fx  E U and gx E S then g E H,  where H -- N o ( S )  = {g E G I g S  c S}  

is the normalizer of S in G (see [PV]). In this case for any f E C(X)  G the 

restriction f i x  is well-defined and the map 

c(x)  G c(s)  H, f fls, 

is an isomorphism. Any ~-section defines a G-equivariant rational map 
r : X -* G / H:  if g - i x  E S, then x ~-~ gH. Conversely, any G-equivariant 

rational map r : X --* G / H  with irreducible fibers defines a ~-section 
r  

Let X be a G-variety, S a subvariety, P C G a subgroup such that  
P .  S C S. Then one has the following easy formula: 

(0.4) cod imxG �9 S _> cod imxS  - codimcP.  

Therefore if the right hand side of (0.4) is positive, then S is not a section. 
We use this argument ("dimension count") very often to show that  generic 

points do not satisfy some property. 
The author is grateful to E. Vinberg for attention to this work and to 

V. Popov and A. Kuznetsov for useful discussions. The author also thanks 

the referee for numerous remarks contributing to the improvement of the 
paper. 
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1. S u b a l g e b r a s  in gene r i c  a l g e b r a s  

T h e o r e m  1.1. 
(1) A generic algebra in C or Co has no k-dimensional subalgebras for 1 < 
k < n ;  
(2) A generic algebra in ,4 or ,4o has no k-dimensional subalgebrus for 3 < 
k < n .  

To prove this theorem we need the following lemma: 

L e m m a  1.1. Suppose G is a connected reductive group, P C G a para- 
bolic subgroup, s the homogeneous vector bundle with base G / P  and fiber 
U defined by an irreducible representation R : P --* GL(U), where dim U > 
dim G/P.  Suppose H~ s ~ O. Then the scheme of zeroes of a generic 
global section of 1: is empty. 

Proof of i emma 1.1. Let M - H~ s Consider the P-equivariant 
map 

r  s~-*s(P). 

Since R is irreducible, M ~ 0, and G / P  is a homogeneous space, r is 
surjective. Let MR ---- ke r r  

We have codimMMp = dim U > dim G / P  = codimcP.  Hence, 

codimMG �9 Mp > codimMMp - codimGP > 0. 

On the other hand, homogeneity of G / P  implies that  G. MR is exactly the 
set of global sections that  have zeroes. [] 

Proof of Theorem 1.1. It follows from (0.1)-(0.3) that  it suffices to consider 
only algebras with zero trace. 

The Grassmannian Gr(k, V) is the homogeneous space GL(V) /P ,  where 

(0 ,) P is the group of matrices p = B , where A E GLk and B E GLn-k. 

To prove (1) and (2) we apply Lemma 1.1 to the vector bundles 

/2==$2C * | 1 6 3  and s 1 6 3  * | 163  

on the Grassmannian Gr(k, V), where C is the tautological vector bundle 
and )2 is the homogeneous vector bundle with fiber V. It is easily seen that 
for each of the bundles s and s the fiber U is a simple P-module.  

For / :c  we have 

k+l 
dimU=---~k(n-k)>k(n-k)=dimGr(k,V) as k>l. 
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For s we have 

k 1 I 

d i m U -  k ( n - k ) > k ( n - k ) = d i m G r ( k , V )  as k > 3 .  
2 

Using the Bot t  theorem (see [Bo]) one can check that  H~ V), s  -~ 
.40 and H~ Y),  s ~- Co. 

Any algebra A and any linear subspace L o f  V define in a natural  way 
an element AL E Hom(L @ L, V/L) .  For any A E ,4 (resp. A E C) the map  
L ~-~ AL is a global section SA of s (resp., s 

Thus we obtain the maps of GL(V)-modules ,4 --+ H~ V), s  and 
C --* H~ V),/ :c)  taking A to SA. Note tha t  sA(L) = 0 iff L is a 
subalgebra of A. Thus any section of s  (resp. s has the form SA for 
some A E .40 (resp. A E Co) and zeroes of this section are identified with 
subalgebras of A. [] 

We shall use the ideas of this proof in the proof of the next theorem. 

T h e o r e m  1.2. 
(1) The number of 1-dimensional subalgebras of a generic n-dimensional 
commutative algebra equals 2 n - 1. 

(2) The number of 3-dimensional subalgebras of a generic anticommutative 
n-dimensional algebra equals the top Chern class of the vector bundle s = 
A2E * | ))/C on the Grassmannian Gr(3, n). The following table contains 
these numbers for small n: 

the dimension of the algebra 4 7 

(3) The 2-dimensional subalgebras of a generic anticommutative n-dimen- 
sional algebra form a smooth irreducible (n - 2)-dimensional subvariety in 
Gr(2, n). 

Proof. To prove (1) one can use the same ideas as for (2), but  we shall give 
a more natural  argument in w 

To prove (2) we need tocheck  tha t  generic global sections of the bundle 
s intersect the zero section transversaUy. Then (2) will follow from stan- 
dard intersection theory IF]. Unfortunately, I do not  know any explicit for- 
mula for the number  of 3-dimensional subalgebras of a generic n-dimensional 
ant icommutat ive algebra. On the other hand, for any n this number  can be 
algorithmically computed by means of the well-known procedure of calcu- 
lating Chern classes of homogeneous vector bundles on the Grassmannian 

IF]. 
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The Grassmannian Gr(3, n) is the homogeneous space G / P ,  where G = 

GLn and P is the group of matrices p = 0 B , w h e r e A  E GLa and 

B E GLn-a.  
Suppose M = t t~  s MR is the linear subspace of all sections 

vanishing at eP, N C M the set of all sections that  intersect the zero 
section nontransversally, Np C L the set of all sections that  intersect the 
zero section nontransversally at eP. We should prove that codimMN > 0. 

It is clear tha t  N = G.  Np.  Each section s E MR defines the linear map 

ds : T p ( G / P )  ---+ T p ( G / P )  (9 U, 

where U is the fiber of s over eP. It follows from dim G / P  = dim U that  
s E N p  iff the map ~0 = Pv o ds is not injective, where Pv is the projection 
on V. 

We can naturally identify the representation of P in T p ( G / P )  with the 
isotropy representation of P and, hence, with the representation of P in 
Mat(n  - 3, 3) by p .  X = B X A  -1, for X E Mat(n - 3, 3). If n _> 6, it has 3 

nonzero orbits O1,02 ,  03 with the representatives 

Vl ---- E l l ,  v2 ---- E l l  -b E22, and v3 = E l l  q-E22 -b E33. 

If n ---- 4 or n = 5, it has 1 or 2 nonzero orbits with the representatives u 1 or 
vl and v2, respectively (here Eij are the matrix units). 

Denote by P(x) the stabilizer in P of the line (x> spanned by x. Then 
an easy computat ion shows that the codimensions of P(,,), P(,2), P(v3) in P 
are equal to n - 2, 2n - 5, and 3n - 10, respectively. 

Consider the linear subspaces N~,I, N,,2, Nvs C MR of all algebras that  
share the following property: if s is the corresponding section of s then 
~o(vi) -- 0. To prove (2) it suffices to check that  codimMG- N.,  > 0 for 
i = 1, 2, 3. Since 

codimMG. N, ,  >_ codimMN.,  - codimaP(. , )  

= codimMpNv, + codJmMMp - codimpP(,,) - c o d i m c P  

= codimMpNv, -- codimpP(v 0 , 

this inequality will follow immediately from 

(1.1) codimMpN., > codimpP(v,). 

We have already computed the right hand side of (1.1), the left hand side 
is computed in the following lemma. 
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/ . ,emma 1.2. codimMpN, ,  = 3(n - 3) for  i = 1, 2, 3. 

Proof of  Lerama 1.2. Consider the following open immersion 

Mat(n  - 3, 3) C Gr(3, n), 

given by the formula X ~-. T (S ) ,  where S = (el, e2, e3), T = I + )~, I is the 
identity operator on V and ) (  is the operator with the matrix 

Using this map it is easy to check that the map ~ : M a t ( n -  3, 3) -~ 
A2S * | V / S  has the form 

(1.2) (fl(X)(81 A 82) ---- ([.X81,82] -{- [81, s - X[81,82]) + S 

for any s l , s2  6 S. 
Let  [e,, eli = ~ ckje}. We take X = v,, i = 1, 2, 3, write the right hand 

k 
side of (1.2) in coordinates and set it equal to zero. In the case i = 3 (other 
cases are similar) we get the system of 3(n - 3) linear equations 

(1.3) 
' " i " " " 

c1~ = 4 4 ,  c18 = 4 4 ,  4 8  = 4 5 ,  i > 6, 
, _,+3 e i ? , '  ,+3 _,+3 4+3 ,+3 

C12 = c15 --  C13 ~ C16 - - t :34  ~ C~23 = - -C35 , i = 1,2,3. 

The condition on the trace of the algebra has the form 

= 0 ,  

j= l  

The conditions for the algebra to have S as a subalgebra have the form 

k = 0 ,  l < i , j < 3 ,  k > 4 .  (1.5) cij _ _ _ 

One can easily check that equations (1.3)-(1.5) are linearly independent. 
This completes the proof of Lemma 1.2. [] 

Let us prove (3). We keep the notation used in proof of (2), substituting 
Gr(3, n) for Gr(2, n), etc. First we prove tran.~versality. 

This can be obtained as above. Let us point out only the differences. In 

this case the transversality of a global section s at e P  is equivalent to the 
surjectivity of ~. The action of P on Gr(n - 3, U) is transitive. Fix ~r E 
G r ( n -  3, U). Let N~ C N p  be the linear subspace of all sections s such that  
Im(~o(Tp(G/P)))  C 7r. A simple computation shows that  codimGGN. < 
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3(n - 2) - 1. On the other hand, arguing as in the proof of Lemma 1.2, 
we get c o d i m M g T r  ---- 3(n - 2). Dimension count completes the proof of 
transversality. 

We proved that  the scheme of zeroes Z(s) of a generic global section s 

of the vector bundle 1: = A2E * | V I E  over Gr(2, n) is a smooth unmixed 
(n - 2)-dimensional subvariety. To prove the irreducibility of Z(s) ,  let us 

consider the Koszul complex. 
In our case it is exact since s is regular (see [F]): 

0 --, A '~ -2J  * -L . . .  -L A 2 j  * -h J *  -L 0 ~ Oz(8) ---, O, 

where J is the sheaf corresponding to s An application of the Bo t t  theorem 
(the "singular" case) yields H*(Gr(2, n), A P J  *) --- 0 for 1 < p < n - 2 .  Hence, 

H~ Oz(8)) = H~ n), O) = C. 

This completes the proof of Theorem 1.2. [] 

C o r o l l a r y  1.1. A generic anticommutative algebra is generated by two el- 
ements; a generic commutative algebra is generated by one element. [] 

T h e o r e m  1.3. Generic algebras in ,4, C, .Ao and Co are simple, i.e., have 
no proper ideals ( i f  n > 2 in the anticommutative case). 

Proof. The proof is by dimension count. Consider, for example, the case of 

co. 
According to Theorem 1.2, a generic algebra contains only 1-dimensional 

subalgebras. Let N C Co be the subset of all algebras having a 1-dimensional 
ideal. Since G = GLn acts transitively on PV,  N = G .  N1, where N1 is 
the linear subspace of all algebras having the ideal (el). Let P = G<~I>. 
Then c o d i m v P  = n - 1, P -  N1 c N1, codimc0N1 = n(n - 1). Now apply 
dimension count. [] 

2. G e n e r i c  a l g e b r a s  o f  smal l  d i m e n s i o n s  

Using the classification of irreducible linear actions of connected simple 
groups with nontrivial generic stabilizer due to A. Elashvili and A. Popov 
(see [PV]), one can easily prove that  generic n-dimensional anticommutative 

algebras with zero trace have no automorphisms if n _> 4; the same is true 
for commutative algebras if n >_ 3. 

In this section we consider the cases when generic algebras have a non- 
trivial group of automorphisms, i.e., 3-dimensional anticommutative and 
2-dimensional commutative algebras with zero trace. 
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Generic  3-d imens ional  a n t i c o m m u t a t i v e  algebras w i t h  zero trace 

We have the isomorphism of SL3-modules 

Ao -~ S2V. 

Therefore each nonzero algebra defines a conic in PV*. If A E JIo, then the 
corresponding quadratic function V* = A2V --~ C = AzV has the form 

A2V 9 x ~-, x/X m(x),  

where m is the multiplication in A, hence the corresponding conic can be 
identified with the set of 2-dimensional subalgebras. 

The isomorphism defined above takes each nonsingular quadratic function 
to an algebra isomorphic to s[2- Hence, these algebras are generic. Since the 
Jacobi identity is polynomial, all algebras in A0 are Lie algebras. Quadratic 
functions of rank 2 correspond to algebras with the following multiplication: 

[u, v] -- v, [u, w] -- - w ,  [v, w] = 0. 

The conic consists of two lines in PV* that intersect at the point correspond- 
ing to the derived algebra (v, w). Quadratic functions of rank 1 correspond 
to Heisenberg algebras 

The conic is the double line corresponding to the derived algebra (u). 
Let A E J[0. For any v E A consider the characteristic polynomial of the 

induced operator Iv, -] of the left multiplication by v. Since A is anticommu- 
tative with zero trace, only one coefficient of this polynomial, apart from the 
leading one, may be not equal to zero. This coefficient defines a quadratic 
covariant Ao --, S2V *. Therefore each algebra defines a conic in P V  (that 
may coincide with PV).  Evidently, this conic is the projectivization of the 
set of nilpotents of A. 

When our algebra is generic (isomorphic to s[2), we have a natural  bijec- 
tion between the conic of 2-dimensional subalgebras (i.e. the  conic of Borel 
subalgebras) and the conic of nilpotents, which assigns to each 2-dimensional 
subalgebra its (1-dimensional) derived algebra. This is the canonical bijec- 
tion from a conic to its dual conic. 

We shall use the following lemma in the proof of Theorem 3.6. 

L e m m a  2.1. Let A be a 3-dimensional anticommutative algebra (not nec- 
essarily with zero trace). Consider in P V  the conic Q (that may coincide 
with PV):  

P(v) e Q iff the operator [v, .] has at least 2 zero eigenvalues. 
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Then Q is not a smooth conic if and only if A satisfies one of the following 
conditions: 
(1) A has a two-dimensional commutative subalgebra; 
(2) A has a two-dimensional ideal; 
(3) there exists v E A, v ys O, such that any two-dimensional subspace 
containing v is a subalgebra. 

Proof. Suppose Q is a singular curve or coincides with PV.  Then there 
exists a 2-dimensional subspace L C A such that  for any x E L the operator 
[x, .] has at least 2 zero eigenvalues. If L is a commutative subalgebra, we 
have (1). 

Let L be a noncommutative subalgebra. Then there exists e E L, e ~ 0, 
such that  [e,L] C (e). Take any f E L, f ~ (e), and h E A, h ~ L. In the 
basis {e, f ,  h} the operator [ f ,  -] has a matrix of the form 

0 * . 
0 * 

Since [e, f] r 0 and [f ,-]  should have at least 2 zero eigenvalues, we have 
[ f ,  A] C L. Therefore [L, A] C L, i.e. L is an ideal. 

Suppose L is not a subalgebra. Then [L, L] = (v), v • L. Take any basis 
{e, f }  of L. In the basis {e, f ,  v} the operator [e,-] has a matrix of the form 

0 0 * )  
0 0 * . 
0 * * 

Since [e, f] r 0 and [e,-] should have at least 2 zero eigenvalues, we have 
[e, v]e  (e, v). Therefore we have (3). 

Conversely, suppose A D L, where L is a 2-dimensional commutative 
subalgebra or a 2-dimensional ideal. Then clearly P L  c Q and Q is not a 
smooth curve. 

Suppose we have (3). Then any 2-dimensional subspace L, L 9 v, is stable 
under [v,-]. Therefore Iv, .] induces a scalar operator AI on Al ly  ). If A :- 0 
then (v) is an ideal (and, therefore, A has a 2-dimensional commutative 
subalgebra); in the opposite case A --- L ~ (v), where Iv, e] -- Ae for any 
e E L. Therefore P L  C Q and Q is not a smooth curve. [] 

G e n e r i c  2 - d i m e n s i o n a l  c o m m u t a t i v e  a lgebras  w i t h  zero  trace  

We have the isomorphism of SL2-modules 

Co ~- S 3 V* 
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that  takes any algebra to the cubic function 

v ~ vA (v ,v)  E A2V = C. 

Zeroes of this cubic function correspond to 1-dimensional subalgebras. 

3. G e n e r i c  4 - d i m e n s i o n a l  a n t i c o m m u t a t i v e  a l g e b r a s  

Let .A0 be the GL4-module of 4-dimensional anticommutative algebras 
with zero trace. We shall construct in .Ao two natural to-sections arising 
from the structure of subalgebras. 

3 -d imens iona l  s u b a l g e b r a s  

By Theorem 1.2, a generic 4-dimensional anticommutative algebra A con- 
talns exactly five 3-dimensional subalgebras. Their projectivizations form 
in P V  a configuration of 5 planes. 

L e m m a  3.1. This configuration consists of 5 planes in general position. 

Proof. Let II1 be the set of all triples of distinct planes in ]p3 that  inter- 
sect at a line; let H2 be the set of all quadruples of distinct planes in ]p3 
that intersect at one point and such that any three of them intersect at one 
point. It is easily seen that the actions of GLa on 1-i1 and 1-I2 are transitive. 
Denote by Ni C Mo (i = 1, 2) the set of all algebras that  contain a configu- 
ration of subalgebras whose projectivization lies in Hi. Denote by N~, c N~ 
(i = 1, 2) the linear subspace of all algebras that  contain subalgebras whose 
projectivizations form some "standard" configuration 7ri E Hi, e.g. 

r l  = {xl = 0, z2 = 0, z l  + x2 = 0}, 

~r2 = {xl = 0, x~ = 0, x3 = 0, xl + x2 + x3 = 0}. 

Now we can use dimension count to show that codimAoNi > 0, i = 1, 2 (see 
the proof of Theorem 1.3). [] 

The action of SL4 on the set of configurations of 5 planes in general 
position in P V  is transitive with a finite stabilizer. Let us fix a s tandard 
configuration (the Sylvester pentahedron) in P V  formed by the planes Xl = 

O, X 2 = O, X 3 -~- O, X 4 = O, X l ' ~ - X 2 - ~ X 3 - 4 - X  4 = 0 .  It follows from Lemma 3.1 
that  the set of all algebras, such that  the planes of the Sylvester pentahedron 
are the projectivizations of their subalgebras, is a 5-dimensional linear ~- 
section S of the SL4-module .4o. 

One can easily show that  the multiplication in algebras of S is given 
by the formulas [ei, ej] = a~jei + bijej (1 < i < j < 4), where aij and 
bij satisfy some linear conditions. Consider 6 algebras A1, . . .  , A6 with the 
following structure constants: 
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Aa A2 Aa A4 As A6 
a12 0 1 1 - 1  0 - 1  
b12 1 0 - 1  1 - 1  0 
a13 1 1 0 - 1  - 1  0 
b13 0 --1 1 0 1 --1 
a14 1 0 1 0 --1 --1 
ba4 - 1  1 0 - 1  0 1 
a23 - 1  - 1  1 0 0 1 
b23 1 0 0 - I  1 - I  
a24 0 --1 0 --1 1 1 
b~4 - I  1 1 0 - i  0 
a~ - I  i -1  1 0 0 
b34 0 0 1 - i  - I  1 

Any A E S can be writ ten as SiAl  + . . .  +~6A6, where ~I +- - -+c~6 = 0. 
The stabilizer of the Sylvester pentahedron in the group PSL4 is the 

group $5, represented by the permutations of its planes. Its preimage in 
SL4 is a group H containing 480 elements. This group is generated by A5 
and the preimage of a transposition (see [Be] for the details). The latter is 
isomorphic to Zs and is generated by 

s 0 0 E 4 = -i. 
a= 0 0 s 

0 0 0 

The action of a on S is given by 

�9 = M  , w h e r e M = - s - t  0 J 0 , 3 =  . 

\ cA6 } 6 0 0 J 

The group A5 can be represented as the group of rotations of the dodeca- 
hedron. Let F1 , . . .  , F6 be the pairs of opposite faces of the dodecahedron. 

Consider the vector space of functions 

6 

i = 1  

This vector space has a natural  structure of As-module. The corresponding 
representation R is irreducible and coincides with the representation of A5 

in S after the identification Ai ~ J~, where fi(Fi)  = 5, f i (F j )  = -1 ,  j # i. 
Consider any of two 5-dimensional irreducible representations of $5 that  

extend the representation R. It is not difficult to prove that the action of 
$5 in the projectivization of S coincides with the projectivization of this 
representation. Therefore one has 
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T h e o r e m  3.1. The restriction of  invariants on the a-section S induces an 
isomorphism 

C(.4o) aL, C(CS)C'xs , 

where C* acts on C s by scalar multiplications and Ss by an irreducible 5- 
dimensional representation (any of two). D 

Remark. The Sylvester pentahedron appears also in the theory of cubic 
surfaces. The SLa-module of cubic forms $3(C4) * admits a a-section (so- 
called "Sylvester section") that  has the same normalizer as our S. It was 
proved (see [Be]) that  the restriction of invariants induces an isomorphism 

C(S3(C4) . )GL4 ~, C(C5)C �9 xSs, 

where C* acts by scalar multiplications and $5 by permutations of coordin- 
ates. 

C o m m u t a t i v e  s u b a l g e b r a s  

T h e o r e m  3.2. A generic 4-dimensional anticommutative algebra A (with 
zero trace or without this condition) contains exactly two commutative 2- 
dimensional subalgebras L1 and L2. The lines PL1 and PL2 are skew. 

Proof. First consider the case of .4. The algebra A can be identified with a 
linear map A2V --~ V. Suppose it is generic; then the projectivization of the 
kernel of this map is a generic line in pA2V.  Two-dimensional commutative 
subalgebras are identified with the intersection of this line with Gr(2, 4) C 
pA2V,  which is the Pliicker quadric. 

Now consider the case of A0. Let H1 be the set of all pairs of intersect- 
ing lines in ~3, YI2 the set of all triples of mutually skew lines in ~3. It is 
easily seen that  the actions of GL4 on H1 and II2 are transitive. Denote 
by Ni C Ao (i = 1, 2) the set of all algebras that  contain a configura- 
tion of commutative subalgebras such that  its projectivization lies in H/. 
Denote by N, ,  C Ni (i = 1, 2) the linear subspace of all algebras that  con- 
tain the "standard" configuration of commutative subalgebras formed by 
2-dimensional subspaces 

= {(el, e2), (e2, 

71"2 : {(el, e2), (e3, e4), (el + e3, e2 + e4)}. 

Now we can use dimension count to show that codim~4oNi > 0, i -- 1, 2 (see 

the proof of Theorem 1.3). [] 

Let us fix two 2-dimensional subspaces in C4: 

U1 ~-- (el ,  e2) and  U 2 : (e3, e4). 
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Their projectivizations are skew lines in It ~.  Let S be the linear subspace 
of all algebras which contain 0"1 and/-]2 as commutative subalgebras. Since 
GL4 acts transitively on the set of pairs of skew lines in p3, it follows from 
Theorem 3.2 that  S is a ~section.  The normalizer of this ~-section is the 
subgroup H C GL4, generated by r and H, where 

T= (0  I ) ,  I =  (10 01) 

and ~ ..~ GL2 x GL2 is the group of all matrices of the form ( A  O )  
- -  0 ' 

where A, B E GL2. 
Now we use this ~-section to prove the following theorem: 

T h e o r e m  3.3. The field of invariants C ( A 0 )  GL4 i s  rational. 

Proof. Consider the linear space 

S' -- Hom(Ul,s[(V2)) $ Hom(V2,M(Vl)), 

where s[(U) denotes the vector space of linear operators on U with zero 
trace. Then H acts on S I in a natural way: the first GL2 acts on 0"1, the 
second one acts on U2; the action of 7- on S ~ is defined by the isomorphism 
el ~ e3, e2 --~ e4 between U1 and U2. Therefore the linear action H : S I is 
well-defined. 

L e m m a  3.2. The H-modules S and S ~ are isomorphic. 

Proof of Lemma 3.2. An H-isomorphism between S ~ and S is defined as 
follows: a pair (F, G) E S t corresponds to the algebra with the multiplication 

U1 and 0"2 being commutative subalgebras. The proof is obtained by a direct 
calculation. [] 

Now consider the rational map 

~o: S' --* Gr(2,s[(U2)) x Gr(2,5[(U1)), (F,G) ~ ( Im(F) , Im(G)) .  

The H-variety 
Gr(2,s[(U2)) x Gr(2,s[(U1)) 

contains an open orbit, namely, the orbit of the point (T2, T1), where Ti C 
s[(Ui) consists of all matrices of the form 

(: 0) 
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Hence, the H-variety S' admits a a-section 

So = Horn(U1, T2) r Horn(U2, T1). 

141 

Its normalizer is isomorphic to (C*) 4 ),, D4, where ~)4 is the dihedral group. 
It is embedded in GL4 as the group of matrices generated by the diagonal 
torus and matrices 

' r =  ( 0  ~ ) ,  P =  ( 0  J / ) ,  w h e r e / =  ( ~  ~ ) ,  J =  (01 ~ ) ;  

(notice that ~)a = (r, p I r2  = p2 = (~-p)4 = 1)). 
We have Ti = <~i, Yi), where 

(01) (01 
~ =  0 0 ' ~/~= 

So So has the basis 

xl | ~2,xl | ~72,x2 | ~2,x2 | ~72,x3 | (1,x3 | ~1,x4 | (1,xa |  

Let (a l , . . .  , a4, a t , . . . ,  a~) be the corresponding coordinates. In these co- 
ordinates the action of (C*) a is diagonal. One can show that C(So) (c*)" = 
C(pl,p2,p3,p4), where 

' '  i ' '  a 3 a , l a  ~ a l a 2 a '  
P l  = a2a,3a,  4 ,  P2 = a l a 2 a i  P3 = = �9 , a3a , la ,  2 , P4 a 3 a a a  

The group ~)4 acts on pl, p2, p3, p4 according to the following table 

T p 
Pl p~-I p~-i 
P2 P2 1 P l  1 
P3 P l  1 P4 1 
P4 P41 p~-i 

The final trick is to write this action in the coordinates 

Pi - 1 
qi = p i + l ,  i = 1, . . .  ,4. 

In these coordinates our action becomes linear! Namely, ]D4 acts on ql, q2, 
q3, q4 according to the following table 
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ql 
q2 
q3 
q4 

T p 

--q3 --q2 
--q2 --ql 

--ql --q4 
--(/4 --q3 

A short and straightforward calculation shows that  the field of invariants 

of this action is rational. [] 

Remark. Combining Theorem 3.1 and Theorem 3.3 we get the rationality 

of the field 
c(cS)C" • 

where C* acts on C s by homotheties and $5 acts by an irreducible 5- 

dimensional representation (any of two). Then well-known standard ar- 
gnments (based on Hilbert 's  Theorem 90) show that  the field 

is rational as well. The same arguments also show that  the field C(F~O) SL4 

is rational. 

A s s o c i a t e d  c u b i c  sur face  

Suppose A is a 4-dimensional anticommutative algebra with zero trace. To 
each vector v E A assign the characteristic polynomial of the induced oper- 
ator [v,-]. Clearly, this polynomial may have only two nonzero coefficients 
(apart from the leading one). These coefficients define homogeneous forms 
of degrees 2 and 3 on A. The zeroes of these forms in P V  are called the 
associated quadric and cubic. The main object of the rest of this section 
is the associated cubic K and its relation to the corresponding algebra. It 

is clear that  P(v)  E K iff the operator Iv,-] has a.t least two zero eigenval- 
ues. Therefore if L C A is a 2-dimensional commutative subalgebra, then 
P L  C K.  The coefficients of the cubic form are homogeneous polynomials 
of degree 3 in the structure constants; therefore this construction defines a 

cubical GL4-covariant 
.,4o ~ S3V *. 

Notice that  
dim.,4o = dim S 3 V  * ---~ 20. 

L e m m a  3.3. This covariant is dominant, i.e., it is a finite rational cover- 
ing. 

Proof. To prove the lemma, consider the restriction of this covariant to the 
a-section S defined in the previous subsection. Recall that  S consists of 
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all algebras which contain U1 = (et, e2) and Us = (e3, e4) as commutative 
subalgebras, so 

s = nom(U~,  ~t(u~)) ~ rIom(U~, st(u~)) .  

The image of S under our covariant lies in the linear subspace of S3V * that  
consists of all cubic forms vanishing on U1 and U2. This linear subspace is 
a section of the GL4-module S3V * (a generic cubic surface contains skew 
lines) and can be identified with 

= (ur | s=v;) ~ (u; e s2uD. 

To prove the lemma it suffices to check that  the corresponding map S --* 
is dominant. Consider the differential of this map at the point of S with the 
following multiplication table 

[el ,  e3] = - e ~ ,  [e~,e3] = e , ,  [ e l , e , ]  = e~, [e2, e4] = - e ~ ,  

and [ei, ej] = 0 in all other cases. A direct calculation shows that  this 
differential is an isomorphism. Thus the lemma is proved. [] 

Remark. Note that  this covariant is not a birational morphism and does not 
induce a birational equivalence of projectivizations. The explicit description 
of its generic fibers is an interesting problem. 

C o r o l l a r y  3.1. The associated cubic of a generic 4-dimensional anticom- 
mutative algebra with zero trace is a generic cubic surface. [] 

Now we use the concept of the associated cubic surface K to describe the 
variety of 2-dimensional subalgebras. Recall that 

PLy, PL2 c K. 

T h e o r e m  3.4. There exists a natural isomorphism between the variety of 
noncommutative 2-dimensional subalgebras of a generic anticommutative 4- 
dimensional algebra with zero trace and the variety 

K \ {PL1,PL2}.  

Proof. The isomorphism is constructed as follows: we assign to each non- 
commutative subalgebra L = (v, w) the line spanned by Iv, w]. Clearly, the 
corresponding point of P V  lies in K. Let us prove that  the above commu- 
tators do not belong to the commutative subalgebras. We use dimension 
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count. Consider the linear subspace N of all algebras that  satisfy the fol- 
lowing condition: 

[ e l , e 2 ] - - 0 ,  [ e l , e 3 ] � 9  (el). 

Clearly, 

codim~o N -- 7. 

The normalizer NGL, (N) contains the subgroup of upper triangular matri- 
ces; therefore its codimension in GL4 does not exceed 6. Thus, 

codimA 0 GL4 �9 N > 1. 

But  this set contains all algebras such that there exists a noncommutative 
subalgebra L -- (v, w), where [v, w] lies in a commutative subalgebra. 

Now let 

P{v) e K \ {PL1, PL2}. 

The induced operator Iv, .] has at least 2 zero eigenvalues; on the other hand, 
it has a unique (up to a scalar multiple) eigenvector with zero eigenvalue, 
namely, v. Therefore, there exists a vector w such that  Iv, w] = v. This 
proves the surjectivity of our map. 

To prove the injectivity it suffices to note that  the vector w defined above 
is determined uniquely up to addition of a multiple of v. [] 

Combining Theorem 3.4 with Theorem 1.2, one can easily show that  the 
variety of 2-dimensional subalgebras of a generic 4-dimensional anticom- 
mutative algebra is a Del Pezzo surface of degree 5 (the blow-up of p2 at 
4 generic points). Therefore the varieties of 2-dimensional subalgebras of 
generic 4-dimensional anticommutative algebras are isomorphic. 

S e v e n  l ines o n  t h e  a s s o c i a t e d  cubic  surface  

We have already mentioned that  the projectivizations PL1 and PL2 of the 
2-dimensional commutative subalgebras are two lines lying on the associated 
cubic surface K.  In this subsection we describe in algebraic terms five fines 
on K that are uniquely determined as the lines on K intersecting both  PL1 
and PL2. 

L e m m a  3.4. Suppose A is a generic anticommutative 4-dimensional alge- 
bra with zero trace, L a two-dimensional commutative subalgebra, C1 and 
C2 distinct 3-dimensional subalgebras. Then PL N (PC1 N PC2) is empty. 

Proof. Dimension count. [] 
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T h e o r e m  3.5. Let C be one of five 3-dimensional subalgebras of a generic 
anticommutative 4-dimensional algebra A with zero trace. Consider the sub- 
space L spanned by L1 N C and L2 M C. Then dim L = 2 and P L  lies on K.  
This construction gives five distinct lines on K.  

Proof. Let 

L' = {v E C I Iv,A] c C}. 

Since A is simple (Theorem 1.3), L'  is a proper subspace of C. Since L1, L2 
C (Lemma 3.4), L1 M C, L2 N C c L'; since L,  n L2 = {0} (Theorem 3.2), 
dim L -- 2; therefore, L = L ~. It is clear that  for any v E L ~ the operator 
Iv, .] has at least two zero eigenvalues. Thus, L c K.  Applying Lemma 
3.4 we see that  this construction gives five distinct lines on the cubic sur- 
face. [] 

Fans  a n d  10 n e w  l ines  on  t h e  a s s o c i a t e d  c u b i c  s u r f a c e  

Definition. Suppose A is a 4-dimensional anticommutative algebra, p E P A  
is a point, 7) C P A  is a plane and p E 7 ). Then the flag {p, 7)} is called a fan 
if any line l such that  p E l C 7) is the projectivization of a 2-dimensional 
subalgebra. The point p is called the vertex of the fan. 

Dimension count shows that if the algebra A is generic and {p, 7)} is a 
fan, then there are no 2-dimensional commutative subalgebras L satisfying 
the condition 

p E P L c T ) .  

It follows that  if p = P(v), then the operator [v,-] has the Jordan form 

diag[O, A, A,-2A], A ~ O. 

Conversely, it is clear that  any vector having the induced operator with 
such a Jordan form corresponds to a vertex of some fan. To any fan {p, 7)} 
assign the line F -- ~ ,  7 )] C 7). Clearly, this line is well-defined (for any 
fan of a generic algebra). Let us call it the green line of the fan. Obviously, 
the green line of any fan of a generic algebra lies on the associated cubic 

surface. Arguing as in the proof of Theorem 3.4, one can see that  the green 
lines of fans do not intersect with the projectivizatious of the commutative 

subalgebras. By the same argument, distinct fans cannot have the same 
green line. By the well-known description of 27 lines on a cubic surface, 

there exist exactly 10 lines I1 , . . .  ,I10 that  do not intersect PL1 and PL2. 
Namely, consider any three lines of five lines that  are determined in Theorem 
3.5. Then the cubic contains three lines that  intersect all of them: the 
projectivizations of the commutative subalgebras and one of Ii's. 
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T h e o r e m  3.6. A generic 4-dimensional anticommutative algebra with zero 

trace contains exactly 10 fans; their green lines coincide with the lines on 

the associated cubic surface that do not intersect the projectivizations of the 

commutative subalgebras. 

Proof. For a generic algebra A, there exists a line l C P A  satisfying the 
following conditions: 
(1) l C K; 
(2) l does not intersect the projectivizations of the commutative subalgebras; 
(3) l intersects the projectivizations of some 3-dimensional subalgebras C1 
and C2 at some points of lines defined by Theorem 3.5. (Recall that  points of 
these lines are characterized as points such that  the images of their induced 
operators lie in the 3-dimensional subalgebras, see the previous subsection.) 
(4) I does not lie in the projectivization of any 3-dimensional subalgebra 
(Lemma 2.1 and dimension count show that  the projectivization of any 3- 
dimensional subalgebra of a generic algebra intersects the associated cubic 
at a line defined by Theorem 3.5 and a smooth conic). 

We shall fix in A a convenient basis {el,e2,e3,e4} and show that  the 
conditions (1)-(4) imply that  l is the green line of some fan. Let I n PC1 = 
(el) and l N PC2 = (e2). Since l does not intersect the projectivizations 
of the commutative subalgebras, C1 and C2 are exactly the images of the 
operators [el,-] and [e2, .]. Clearly, P(C1 N C2) is a line that  does not 
intersect l, otherwise l would lie in the projectivization of some 3-dimensional 
subalgebra. We take e3 and ea in C1 AC2; moreover, we define e3 as [el , e2]. 

The matrix of the operator [xel + ye2,-] in the basis {el, e2, e3, e4} has 
the form 

(3.1) 
0 0 ax dx I 
0 0 gy ly 

- y  x bx + hy f x  + m y  ' 
0 0 c x + k y  - b x - h y ]  

where a, b, c, d, f ,  g, h are some structure constants. Clearly, 1 C K iff 

( c ( l  - d) + b(g - a) = 0, 
(3.2) k( l  - d) + h(g  - a) O. 

It can be proved by a direct calculation that  l is the green line of some fan 
iff the system of equations in variables z and w 

(3.3) 

az + dw -= 1, 
gz + wl = 1, 

cz ~ bw, 
kz  --- hw 
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is consistent. 

Write the third order minors of (3.1) that  may be not equal to zero: 

x y  2(al  - dg),  
x2y( al - dg), 

(3.4) xy(g(bx + hy) + l(cx + ky)), 
y2(g(bx + hy) + l(cx + ky)), 
xy(a(bx + hy) + d(cx + ky)), 
x2(a(bx + hy) + d(cx + ky) ). 

Suppose that  a l -  dg = 0. Then there exist x and y not equal to zero 
simultaneously such that  all minors are equal to 0. Indeed, the system of 
equations 

g(bx + hy) + l(cx + ky) = O, 
a(bx + hy) + d(cx + ky) = 0 

is equivalent to the matrix equation 

which has a nonzero solution. But  this property implies that  l intersects 
the commutative subalgebras. Hence al - dg r O. Since 61 and 62 do not 
lie in the commutative subalgebras, we get a system of inequalities that  is 
necessary for l not to intersect the commutative subalgebras: 

al - dg r O, 
(3.5) ab + dc ~ O, 

gh + kl ~ O. 

Go back to the syste m (3.2). It is a system of linear equations in the 
variables l - d and g - a. By (3.5), al - dg ~ 0; therefore this system has a 
uontrivial solution. Hence 

(3.6) ch - bk = O. 

Now we can solve (3.3). By (3.5), k and h are not equal to zero simul- 

taneously. Suppose that  k r 0 (the second case is similar). Pu t  z = hw/k .  
Then the two last equations (3.3) are the identities by (3.6). Substituting 
z = hw/k  in the first two equations, we get the system 

i (ah + dk)w = 1, 
(gh + lk)w = 1. 

This system has a solution because gh + kl ~ 0 by (3.5) and gh + kl = 
ah+dk by the second equation in (3.2). This completes the proof of Theorem 

3.6. [] 
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Notice that  we interpreted only 17 lines on the associated cubic surface 
in terms of the corresponding algebra, but these lines uniquely determine 
the other lines and the cubic surface itself. 

4. "Aitinization" of  commutative algebras 

Consider now GLn-modules C and Co. Theorem 1.2 asserts that  generic 
algebras in these modules have exactly 2 ~ - 1 one-dimensional subalge- 
bras. Easy dimension count shows that  there axe no quadratic nilpotents 
(i.e. vectors v r 0, such that  (v, v) = 0) in these algebras. Hence the set of 
1-dimeusional subalgebras is identified with the set of nonzero idempotents. 
Thus a generic algebra contains exactly 2 ~ idempotents, including zero. In 
this section we shall give an elementary proof of this fact together with a 
construction ("affinization") eliminating the difference between 0 and other 
idempotents. 

Suppose A is a commutative algebra defined by a multiplication (-, .) on 
a vector space V -~ C n. It isuniquely determined by the quadratic map 

V - .  v ,  v Q(v)  _= ( . ,  

Let us construct a canonical linear isomorphism between V* and some linear 
space of affine quadratic functions on V. This isomorphism takes each linear 
form f to the function 

v ~  f ( v - Q ( v ) ) .  

We can embed V in P C  ~+1 with homogeneous coordinates Xl , . . .  ,xn,T 
as  the complement of the hyperplane T = 0. Affine quadratic functions 
on V can be canonically identified with elements of $2(C~+1)*. So our 
construction defines a regular map 

(4.1) C -* Gr (n, $2(C"+1)*), 

i.e., any algebra defines a n-dimensional linear system of quadrics in PCn+I= 
]}m. It is clear that  the idempotents of the algebra coincide with the base 
points of this system lying in the finite part of the projective space; lines 
spanned by nonzero quadratic nilpotents correspond to the base points at 
infinity. Let us show that  this construction "almost identifies" commutative 
algebras and n-dimensional linear systems of quadrics in It m. 

Theorem 4.1. Images of C or Co under the map (4.1) are sections of 
PGL,~+l-variety Gr(n,  $2(C~+1)*). 

Proof. Consider an n-dimensional linear system of quadrics. Suppose that  
there exists a point such that  n elements of a basis of this system intersect 
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transversally at this point (this case is generic). Some projective transfor- 
mation takes this point to (0 : ... : 0 : 1). Then the elements of the basis 
have the form 

(4.2) T f l ( x l ,  ...,x,~) - Ql(Xl, ...,Xn), . . . ,T f~(x l ,  . . . , x , )  - Q,~(xl, . . . ,xn), 

where f j  are linear functions and Qj are quadratic functions. The equations 
of the tangent spaces of the quadrics (4.2) at the point (0 : ... : 0 : 1) have 
the form fx = 0 , . . .  , fn = 0. Since these quadrics intersect transversally, 
we see that  f l , . . .  , fn are linearly independent. Now we can change the 
basis of our linear system in such a way that  fi  ~ xi. We get exactly the 
affine quadrics that  span a linear system corresponding to the commutative 
algebra A with the multiplication 

Consider a projective transformation of ~ of the form 

(4.3) xi~-+xi, ( l < i < n ) ,  T ~ - + T + ~ a ~ x i .  
i = 1  

This transformation takes our linear system to the system that  corresponds 
to the algebra A + A, where .4 is the algebra with the multiplication table 

~i a j  
( e i , e j )  = + 1 < i , j  < n.  

Denote by F the linear form Tr(v,  .) on V. Clearly, F(ei) = ~ - ! a i .  
Therefore, some projective transformation (4.3) takes our system to a system 
that  lies in the image of Co. [] 

C o r o l l a r y  4.1. A generic algebra in C and Co contains exactly 2 n idempo- 
tents, including zero. [] 

5. Generic  3 -d imens ional  c o m m u t a t i v e  a lgebra 

Let A be a commutative algebra with zero trace and underlying vector 
space V = C 3 C p3. Then the construction of the previous section gives a 
3-dimensional linear system of quadrics in p3, which is canonically identified 
with V*. Consider all singular quadrics in this system. The projectivization 
of this set is a quartic in PV*.  We call it the associated quartic. This 
construction gives a nonzero quadratic SL3-equlvariant map 

Co -~ S4V. 
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This map is dominant (see [KM]). We shall use "affinization" to prove the 
following theorem. 

Suppose A is a generic commutative 3-dimensional algebra in V, Q is the 
corresponding quartic in PV*.  The 28 bitangents of Q can be identified 

with 28 points in P V .  

T h e o r e m  5.1. ([KM]) These points are 

C v i ,  C ( v i  - v j ,  v i - v j ) ,  

where vi are 7 nonzero idempotents and i ~ j .  

Proof. We shall prove the generalization of this theorem to the case of a 
generic linear system of quadrics in ]p3; The theorem is an easy corollary 
of this result. Our quartic and its bitangents lie in the projectivization of 
the linear system. Consider 2 distinct points vl, v2 E F 3 that  belong to 
all quadrics in the linear system. The number of such pairs is equal to 28. 
Now consider all quadrics containing a line that  connects vl and v2. These 
quadries form a line in the projectivization of the linear system. Let us 
prove that  this line is a bitangent to the quartic of singular quadrics. Fix a 
basis in C 4 with first two vectors lying in vl and v2. Then the matrices of 
quadrics of our line have the form 

and therefore, 
det G = (det A) 2. 

Hence this line intersects the quartic of singular quadrics at  two double 
points, i.e., it is a bitangent. 

Now suppose that  tlie linear system corresponds to a generic commuta- 
tive algebra. Then its quadrics intersect at the idempotents of the algebra. 
Denote by f the covector corresponding to some quadric that  contains the 
line connecting two idempotents. Consider two cases. 

Let the idempotents be 0 and vi. Then we have f (~v i  - Q ( a v i ) )  = 
a(1 - ot)f(vi) - ~  0 for any c~, therefore f (v i )  = O. 

Let the idempotents be vi vj. Then we have f ( (av i  + (1 - a )v j )  - 
Q(avi + (1 - a)vj))  = a(1 - a) f (v i  - 2(vi, vj) + vj) = 0 for any a,  therefore 
f ( (v i  - vj, vi - vj)) = 0. This completes the proof of Theorem 5.1. [] 
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