
HYPERGRAPH CURVES

A Capstone Experience Manuscript

Presented by

Ilya Scheidwasser

Completion Date:
June 2009

Approved by:

Professor Jenia Tevelev, Mathematics

Professor Giancarlo Urzua, Mathematics

1. Abstract

Title: Hypergraph Curves
Author: Ilya Scheidwasser, Computer Science
CE Type: Independent Capstone Thesis
Approved By: Jenia Tevelev, Mathematics Dept
Approved By: Giancarlo Urzua, Mathematics Dept

I examine hypergraph curves as presented by Jenia Tevelev and Ana-Maria Castravet in
the paper Exceptional Loci on M0,n and Hypergraph Curves1. I present a combinatorial
definition of hypergraphs and various conditions on them, several transformations on hy-
pergraphs that preserve certain conditions, and a complete list of weak hypergraphs for
n ≤ 9 up to some transformations, along with the dual graphs of their stabilized versions.
I also present a theorem about hypergraph stability, and an examination of two different
Clifford Indices on various hypergraphs.

2. Introduction

I present the definition of a hypergraph curve and various basic properties on it which
will be used throughout the paper.

Definition 1. A hypergraph curve (or, simply, a hypergraph) is a set of abstract lines and
points such that each point is contained in at least one line and each line contains at least
three points. The number of points, n, must be equal to

∑
li − 2 where li is the number

of points on some line i. I call this sum the “line sum” of the hypergraph, denoted by the
function lSum. The genus of a hypergraph is given by n − 3. A point on a hypergraph is
said to have a size k when it has exactly k lines containing it, and a line on a hypergraph
is said to have a size k when it has exactly k points on it.

Definition 2. A hypergraph X is weak when every subgraph (i.e., subset of lines) Y of
X such that 1 < |Y | < |X| (where |S| is the number of lines in S) has the property that
p(Y) ≥ lSum(Y) + 2.

Definition 3. A weak hypergraph X is strong when it contains no weak subgraphs Y such
that 1 < |Y | < |X|.

Definition 4. A hypergraph is planar when it can be mapped to the projective plane P2 in
such a way that the graph lies on at least two separate lines, and no two points are mapped
to the same point.

Definition 5. Stabilization is an operation performed on hypergraphs in the following way:
given a point of size k ≥ 3 with lines b1, b2, ..., bk containing it, we replace it with a line
of size k with exactly one bi intersecting it at each point. Doing this for every such point
is called stabilization, and the resulting set of lines is called the stabilized version of the
hypergraph.

A hypergraph is stable when its stabilized version satisfies Gieseker’s “basic inequality”,
described in the next section. Note that stabilization does not necessarily produce a stable
hypergraph; in fact, it does not necessarily produce a hypergraph at all, since the number
of points and the line count change. However, the stabilized version of a hypergraph has
no points with size > 2.

Definition 6. The dual graph of a hypergraph is defined so that every point in a dual graph
corresponds to a line in the stabilized hypergraph, every edge in the dual graph corresponds
to a point in the stabilized hypergraph, and two points in the dual graph are connected by an
edge exactly when two lines in the stabilized hypergraph meet at a point.

Definition 7. The combinatorial Clifford index of a hypergraph, abbreviated by combCliff,
is f − 2, where f is the least number of edges one can remove from the hypergraph’s dual
graph to split it into two disconnected parts, each of which contains a cycle.

The resolution Clifford index of a hypergraph, abbreviated by resCliff, is defined by Bayer
and Eisenbud in [BE].

3. A Stability Theorem

I present a theorem about stability which is a generalization of a proposition in [CT].
The proposition is identical to (a) in this theorem, but it applies to hypergraphs with only
point sizes 2 and 3 and only lines of size 3.

Theorem 8. Given either (a) a stabilized weak hypergraph X with n points and with every
point having at least two lines through it or (b) a stabilized strong hypergraph X with n
points and with every point having at least one line through it, I show that the following
equation holds ∀Y ⊂ X with 1 < |Y | < |X|:

|n(Y)− n(X)
m(X)
m(Y)

| <
1
2
#Y (1)

Here, n(S) is the number of black lines in S. m(S) is
∑

li⊂S
(|li| − 2) − p1, where l are the

lines (black or white) in S and p1 is the number of “loose points” (i.e. those with only one
line through them) in S. #Y is |Y ∩X \ Y |.

Proof. First, I show that m(X) = 2L− 4, where L is n(X). Note that we can assume that
L > 2, since L = 1 hypergraphs have no subsets and L = 2 hypergraphs cannot be weak
when every point has at least two lines through it. We know:

m(X) = n− 2 +
∑

(i− 2)Pi (2)

where Pi is the number of points of size i in the non-stabilized graph (correspondingly, for
i > 2, the number of white lines of size i in X). The quantity n−2 is the contribution from
the black lines and

∑
(i− 2)Pi is the contribution from the white lines plus the extra term

−p1. We also know: ∑
Pi = n (3)

and: ∑
iPi =

∑
iLi (4)

where Li is the number of black lines of size i in X, since the left hand side is the total
number of times a point is hit by a line, and the right hand side is the total number of times
that a line contains a point. We then combine (3) and (4) to get:

∑
(i− 2)Pi = −2n +

∑
iLi (5)

We know: ∑
(i− 2)Li = n− 2 (6)

We then combine (2), (5), and (6) to get:

m(X) = n− 2− 2n + n− 2 + 2L = 2L− 4 (7)

We therefore need to show: |n(Y)− Lm(Y)
2L−4 | < 1

2#Y , i.e.

|(2L− 4)b− Lm(Y)| < (L− 2)#Y (8)

where b is just n(Y), the number of black lines in Y .
Next, we show that Y C , the complement of Y , satisfies this inequality iff Y does. First,

consider the right hand side, (L−2)#Y , i.e. (L−2)|Y ∩X \ Y |. Clearly L does not depend
on Y , so we only need to consider #Y . We know Y = X \ Y C and X \ Y = Y C , so
#Y = |Y ∩X \ Y | = |X \ Y C ∩ Y C | = |Y C ∩X \ Y C | = #Y C . Now consider the left hand
side: |(2L − 4)b − Lm(Y)|. We know b(Y C) = L − b(Y) and m(Y C) = m(X) −m(Y) =
2L− 4−m(Y). So

|(2L− 4)b(Y C)− Lm(Y C)| =

|(2L− 4)(L− b(Y))− L(2L− 4−m(Y))| =
|2L2 − 2Lb(Y)− 4L + 4b(Y)− 2L2 + 4L + Lm(Y)| =

|Lm(Y)− (2L− 4)b(Y)| =
|(2L− 4)b(Y)− Lm(Y)|.

Hence, by interchanging Y with Y C , we can assume that Lm(Y)− (2L− 4)b ≥ 0. We then
need to show:

Lm(Y)− (2L− 4)b− (L− 2)#Y < 0 (9)
Consider every white line w1 of arbitrary size k not in Y , with at least one neighboring

black line in Y . Enumerate the black lines in Y touching w1 as b1, b2, ..., bi, and the rest
as bi+1, ..., bk, with 1 ≤ i ≤ k (and k ≥ 3). I show that adding every such w1 to Y
does not decrease the value of the left hand side in (9), so showing that the inequality is
satisfied in this case shows that it is satisfied in general. Clearly, this operation does not
affect the values of L or b, so we only need to show that the following does not decrease:
Lm(Y)− (L− 2)#Y . Adding w1 to Y increases m(Y) by k− 2. If the original value of #Y
is x + i, where i is the contribution from w1 intersecting b1 through bi, then the value after
adding w1 to Y is x + k − i. Hence, #Y increases by k − 2i.

Then LHSnew −LHSold, the difference in values of the left hand side, is L(k− 2)− (L−
2)(k − 2i), and we need to show that this is ≥ 0. So we need to show:

L(k − 2)− (L− 2)(k − 2i) ≥ 0, i.e.

Lk − 2L− Lk + 2Li + 2k − 4i ≥ 0, i.e.

(L− 2)i + k − L ≥ 0.

Since i ≥ 1 and L > 2, (L− 2)i− L ≥ −2, so we only need to show k ≥ 2. But we already
know that k ≥ 3. Hence we can assume that all white lines hit by a black line in Y are also
in Y , and by showing (9) in this situation, we show (9) in general.

We know that m(Y) =
∑

(i− 2)bi +
∑

(i− 2)li−p1, where bi is the number of black lines
in Y with i points and li is the number of white lines in Y with i points. Let f =

∑
(i−2)bi

and d =
∑

(i−2)li−p1, so m(Y) = f +d. Define l′i to be the number of isolated white lines
of size i in Y (i.e., those not hit by any black lines in Y) and l′ to be

∑
l′i. Also define pi

to be the number of points of size i hit by Y ’s image in the non-stabilized hypergraph and
p to be

∑
pi. Then let e =

∑
(i− 2)l′i and c =

∑
ipi. Then we know:

d = e + c− 2p (10)

since e is the contribution to d by isolated white lines in Y and c− 2p =
∑

(i− 2)pi is the
contribution to d by white lines hit by Y ’s black lines, which we can assume are all in Y ,
plus the extra term −p1.

We also know:
#Y = 2l′ + e + c− 2b− f (11)

2l′ + e is the contribution to #Y by isolated white lines in Y . The quantity c is the total
number of times a point in Y ’s image in the non-stabilized hypergraph is hit by a line (not
necessarily in #Y) and 2b+f =

∑
ibi is the total number of times a black line in Y hits one

of these points, so their difference is the contribution to #Y by everything except isolated
white lines.

We can therefore rewrite (9) as:

L(f + e + c− 2p)− (2L− 4)b− (L− 2)(2l′ + e + c− 2b− f) < 0, i.e.

(2L− 2)f + 2e + 2c− 2Lp− (2L− 4)l′ < 0, i.e.

e− (L− 2)l′ + (L− 1)f + c− Lp < 0 (12)

Consider the first two terms of (12): e − (L − 2)l′ =
∑
−(L − i)l′i. I show that this is

nonpositive by showing that every term is nonpositive. Suppose the kth term is positive:
−(L − k)l′k > 0. Then this means that k − L > 0. This is clearly impossible (as noted
earlier), so e− (L− 2)l′ ≤ 0, so we only need to show:

(L− 1)f + c− Lp < 0, i.e.

Lp− c− (L− 1)f > 0, i.e.

(L− 3)p− (L− 1)f + 3p− c > 0, i.e.

−
∑

(i− 3)pi > (L− 1)f − (L− 3)p

The weak condition states that p ≥ f + 2, so we need to show:

−
∑

(i− 3)pi > (L− 1)f − (L− 3)(f + 2), i.e.

−
∑

(i− 3)pi > 2f − 2L + 6 (13)

We know
∑

Pi = n and
∑

iPi = 2L + F , where F is
∑

(i− 2)Li. This is because
∑

iPi

is the total number of times a point is hit by a line on the non-stabilized hypergraph, and
2L + F =

∑
iLi is the sum of every line’s number of points. Then we know

∑
(i− 1)Pi =

2L + F − n. Then
∑

(i− 1)pi ≤ 2L + F − n since pi ≤ Pi. Then:

−
∑

(i− 1)pi ≥ −2L− F + n (14)

We can rewrite (13) as:

−
∑

(i− 3)pi > 2f + 6 + F − n + (−2L− F + n) (15)

Suppose Y ’s image on the non-stabilized hypergraph hits every point. Then (14) has
equality. We therefore need to show:

2p > 2f + 6 + F − n

But in this case, we know that p > f + 2, since p = n, n = F + 2, and f < F . Then we
need to show:

2f + 4 ≥ 2f + 6 + F − n, i.e.

n ≥ F + 2
Since we know n = F + 2, the inequality is satisfied.

Now suppose Y ’s image on the non-stabilized hypergraph does not hit every point. In
case (a), this means that (14) does not have equality. We therefore need to show:

2p ≥ 2f + 6 + F − n

The weak condition tells us that p ≥ f + 2, so we need to show:

2f + 4 ≥ 2f + 6 + F − n, i.e.

n ≥ F + 2
Again, since n = F + 2, the inequality is satisfied.

In case (b), if Y ’s image on the non-stabilized hypergraph does not hit every non-loose
point, then by the same argument, the inequality is satisfied. If, however, every non-loose
point is hit but not every loose point is hit, then (14) has equality, so we need to show:

2p > 2f + 6 + F − n

Since the hypergraph is weak, we know that p ≥ f + 2; however, since the hypergraph is
strong, we also know that p '= f + 2, since having p = f + 2 would imply that Y is a weak
subgraph. Hence, p > f + 2, so the inequality is satisfied.

Remark: If the hypergraph is weak and contains loose points, then we can redefine m(S)
as

∑
li⊂S

(|li|− 2)− p1 + ε, and the inequality holds for some small positive ε whose range of

possible values is dependent on the hypergraph. !

4. Transformations and Enumeration of Weak Hypergraphs

I have written a program to generate all hypergraphs for some value of n, up to some
transformations, and to test various conditions on them. The program’s runtime increases
considerably as n does, as do the number of hypergraphs generated: The program generates
hypergraphs for n = 9 in nine seconds and finds 41 hypergraphs, of which 27 are nonweak,
3 are strictly weak (i.e., weak but not strong), and 11 are strong. It generates hypergraphs
for n = 10 in 25 seconds and finds 251 hypergraphs, of which 134 are nonweak, 24 are
strictly weak, and 93 are strong. It generates hypergraphs for n = 11 in 9 minutes and 47
seconds and finds 2435 hypergraphs, of which 1164 are nonweak, 244 are strictly weak, and
1027 are strong.

The program generates hypergraphs by stepping through every possible collection of
lines that satisfies the basic hypergraph conditions and checking whether the resulting hy-
pergraph is identical to one already encountered, or can be ruled out because of certain
transformations. I will first present the transformations used to narrow the list of hyper-
graphs and show that they preserve the weak condition and planarity; i.e., the original
hypergraph has a given condition if and only if the transformed hypergraph does.

Transformation A starts with two points that are not connected by a line in a hypergraph
G1 with n points and l lines, and produces a new triple (a line of size 3), l1, which intersects
both points and has a loose point. The resultant hypergraph is called G2.

Theorem 9. Transformation A preserves the weak condition.

Proof. First, I show that if G1 is weak, then G2 is weak.
Let S2 be a subgraph of G2 with 1 < |S2| < |G2| = l+1, and let S1 be the corresponding

subgraph in G1.
If S2 does not contain l1 then it has the same number of points and the same line count

as S1. If S2 has less than l lines, it must satisfy the inequality p(S2) ≥ lsum(S2) + 2 (the
weak inequality), since S1 is not G1 and therefore satisfies the weak inequality. Otherwise,
we know that p(S2) = n = l + 2 = lsum(S2) + 2, by the definition of a hypergraph, so it
satisfies the weak inequality.

If S2 contains l1, it has one more point than S1 and its line count is one higher. If S2
has more than two lines, it must satisfy the weak inequality because S1 has more than one
line and therefore satisfies the weak inequality. Otherwise, S1 has one line, so we know
that p(S2) = p(S1) + 1 = lsum(S1) + 3 = lsum(S2) + 2, by the definition of line sum, so
it satisfies the weak inequality.

Hence, S2 always satisfies the weak inequality, so G1 being weak implies G2 being weak.
Next, I show that if G2 is weak, then G1 is weak. Let S1 be a subgraph of G1 with

1 < |S1| < |G1| = l, and S2 be the corresponding subgraph of G2, so that l1 is never in S2.
Clearly, S1 always has the same number of points and the same line count as S2. Since
|S1| = |S2|, we know that 1 < |S2| < |G1| < |G2|, so S2 satisfies the weak inequality, so S1
does as well. Hence, G2 being weak implies G1 being weak and vice versa, so Transformation
A preserves the weak condition. !

Note that applying A to a strong hypergraph always produces a strictly weak hypergraph,
since the subgraph S2 of G2 corresponding to the entire graph G1 is a weak subgraph with
the property 1 < |S2| = |G1| < |G2|.

Theorem 10. Transformation A preserves planarity.

Proof. Suppose G1 is planar. Then some two lines l2 and l3 in G1 can be mapped to two
different lines in P2. If l1 hits two lines that were originally mapped to the same line, then
l1 maps to the same line. If l1 hits two lines that mapped to different lines, these two lines
can still be mapped to different lines. In either case, l2 and l3 can still be mapped to two
different lines.

Suppose G2 is planar. Suppose that some two lines in G2 can be mapped to two different
lines in P2, and that neither line is l1. Then removing l1 from G2 still allows this map.

Now suppose that one of the lines is l1, and call the other l2. Suppose that l1 does not
hit l2; then call the lines that it hits l3 and l4. Then l3 or l4 must be mappable to a different
line than l2; if both had to map to the same line as l2, then l1 would also have to map to
the same line as l2. Then removing l1 still lets one of these lines map to a different line
than l2.

If l1 hits l2, call the other line that it hits l3. Then l3 must map to a different line than
l2, since otherwise, l1 and l2 could not map to different lines. Then removing l1 still allows
these lines to map to different lines.

Hence, G1 is planar is G2 is planar and G2 is planar if G1 is planar, so Transformation
A preserves planarity. !

Transformation B adds a loose point to any line l1 of a hypergraph G1 to produce a new
hypergraph G2.

Theorem 11. Transformation B preserves the weak condition.

Proof. Suppose G1 is weak. Let S2 be any subgraph of G2 with 1 < |S2| < |G2|. Then the
corresponding subgraph S1 has the property 1 < |S1| < |G1|. S2 has one more point and
one higher line count than S1, so S2 must satisfy the weak inequality since S1 does.

Suppose G2 is weak. Let S1 be any subgraph of G1 with 1 < |S1| < |G1|. Then the
corresponding subgraph S2 has the property 1 < |S2| < |G2|. S2 has one more point and
one higher line count than S1, so S1 must satisfy the weak inequality since S2 does. !
Theorem 12. Transformation B preserves the strong condition.

Proof. Suppose G1 is strong. Then G2 is weak, since B preserves the weak condition. Let
S2 be any subgraph of G2 with 1 < |S2| < |G2|. Then the corresponding subgraph S1 has
the property 1 < |S1| < |G1|. S2 has one more point and one higher line count than S1, so
S2 cannot be a weak subgraph since S1 is not a weak subgraph.

Suppose G2 is strong. Then G1 is weak, since B preserves the weak condition. Let S1
be any subgraph of G1 with 1 < |S1| < |G1|. Then the corresponding subgraph S2 has the
property 1 < |S2| < |G2|. S2 has one more point and one higher line count than S1, so S1
cannot be a weak subgraph since S2 is not a weak subgraph. !

We can easily see that Transformation B preserves planarity, since no lines are added or
removed.

Transformation C is pictured below.

Given a stabilized weak hypergraph X with n points and with every point
having at least two lines through it, I show that the following equation holds
∀Y ⊂ X with 1 < |Y | < |X|:

|n(Y)− n(X)
m(X)
m(Y)

| <
1
2
#Y (1)

Here, n(S) is the number of black lines in S. m(S) is
∑

li⊂S
(|li|− 2), where l

are the lines (black or white) in S. #Y is |Y ∩X \ Y |.
First, I show that m(X) = 2L − 4, where L is n(X). Note that we can

assume that L > 2, since L = 1 hypergraphs have no subsets and L = 2
hypergraphs cannot be weak when every point has at least two lines through
it. We know:

m(X) = n− 2 +
∑

(i− 2)Pi (2)

where Pi is the number of points of size i in the non-stabilized graph (corre-
spondingly, for i > 2, the number of white lines of size i in X). n− 2 is the
contribution from the black lines and

∑
(i − 2)Pi is the contribution from

the white lines. We also know:
∑

Pi = n (3)

and: ∑
iPi =

∑
iLi (4)

where Li is the number of black lines of size i in X, since the left hand side
is the total number of times a point is hit by a line, and the right hand side
is the total number of times that a line contains a point. We then combine
(3) and (4) to get: ∑

(i− 2)Pi = −2n +
∑

iLi (5)
We know: ∑

(i− 2)Li = n− 2 (6)

We then combine (2), (5), and (6) to get:

m(X) = n− 2− 2n + n− 2 + 2L = 2L− 4 (7)

We therefore need to show: |n(Y)− Lm(Y)
2L−4 | < 1

2#Y , i.e.

|(2L− 4)b− Lm(Y)| < (L− 2)#Y (8)

where b is just n(Y), the number of black lines in Y .
Next, we show that Y C , the complement of Y , satisfies this inequality iff Y

does. First, consider the right hand side, (L−2)#Y , i.e. (L−2)|Y ∩X \ Y |.
L does not depend on Y , so we only need to consider #Y . Y = X \Y C and
X\Y = Y C , so #Y = |Y ∩X \ Y | = |X \ Y C∩Y C | = |Y C∩X \ Y C | = #Y C .
Now consider the left hand side: |(2L − 4)b − Lm(Y)|. b(Y C) = L − b(Y)
and m(Y C) = m(X)−m(Y) = 2L− 4−m(Y). So

|(2L− 4)b(Y C)− Lm(Y C)| =

|(2L− 4)(L− b(Y))− L(2L− 4−m(Y))| =
|2L2 − 2Lb(Y)− 4L + 4b(Y)− 2L2 + 4L + Lm(Y)| =

|Lm(Y)− (2L− 4)b(Y)| =
1

Transformation C starts with two lines l1 and l2 in a hypergraph G1 that intersect at at
least two points, and which each have at least one point not shared with the other line. The

points are numbered so that l1 contains points 1 through j and l2 contains points i through
k, with 1 < i < j < k, so that l1 has j points, l2 has k− i + 1 points, and their intersection
has j − i + 1 points.

Transformation C then produces a new hypergraph G2 in which the number of points is
the same, but the lines are replaced with two new lines l3 and l4, such that l4 contains all k
points and l3 contains points 1 through j − i + 1 points, i.e. the same number of points as
the intersection of l1 and l2 in G1. If l1 and l2 intersect at only two points (the minimum
for this transformation), then l3 does not exist.

The line count of l1 is j−2, the line count of l2 is k− i−1, the line count of l3 is j− i−1,
and the line count of l4 is k− 2. Hence G1 and G2 have the same number of points and the
same line count (k + j − i− 3), so Transformation C always produces a valid hypergraph.

Theorem 13. Transformation C preserves the weak condition.

Proof. First, I show that G2 is weak if G1 is weak.
Note that both graphs are nonweak if l1 and l2 intersect at more than two points: the

number of points in the subset of G1 formed by l1 and l2 is k, while the line count is
k + j − i− 3 = (k− 2) + (j − 1 + i); since the size of the intersection, j − 1 + i, is at least 3,
the subset violates the weak inequality. Since the subset of G2 formed by l3 and l4 has the
same number of points and the same line count, it also violates the weak inequality. Hence,
we only need to consider the case in which j = i + 1 and l3 does not exist.

Let S2 be a subgraph of G2 such that 1 < |S2| < |G2|. Suppose S2 does not contain l4.
Then the corresponding subgraph S1 in G1 has the same number of points and the same
number of lines as S2, and has the property that 1 < |S1| < |G1|, so S2 satisfies the weak
inequality.

Suppose S2 conatins l4. Then the corresponding hypergraph S1 in G1 that contains l1
and l2 has the same number of points and the same line count S2, and has the property
that 1 < |S1| < |G1|, so S2 satisfies the weak inequality.

Next, I show that G1 is weak if G2 is weak.
Let S1 be a subgraph of G1 such that 1 < |S1| < |G1|. Suppose S1 contains both l1 and

l2. Then the corresponding subgraph S2 of G2 which contains l4 has the same number of
points and the same line count, and satisfies 1 ≤ |S2| < |G2|. Since a single line satisfies
the weak inequality and G2 is weak, S1 satisfies the weak inequality.

Suppose S1 contains neither l1 nor l2. Then the corresponding subgraph S2 of G2 which
does not contain l4 has the same number of points and the same line count and satisfies
1 < |S2| < |G2|, so S1 satisfies the weak inequality.

Suppose S1 contains l1 but not l2. Then the corresponding subgraph S2 of G2 that
contains l4. S2 has a + k points, where k is the number of points in S2 not on l4. It has a
line count of k − 2 + b, where b is the line count due to lines in S2 other than l4. Since G2
is a weak hypergraph and 1 < |S2| ≤ |G2|, we know that it satisfies the weak inequality:
a + k ≥ k + b, i.e. a ≥ b. S1 contains a + j + c points, where c is the number of points
numbered j + 1 through k on the subgraph. Its line count is j − 2 + b. Then the weak
inequality for S1 is a + j + c ≥ j + b, i.e. a + c ≥ b. Since a ≥ b, a + c ≥ b, so S1 satisfies
the weak inequality.

Suppose S1 contains l2 but not l1. Then this is essentially equivalent to the previous case,
since there is no real distinction between l1 and l2. Hence, S1 satisfies the weak inequality.

G2 is weak if G1 is weak and G1 is weak if G2 is weak, so Transformation C preserves
the weak condition. !

If l1 and l2 intersect at more than two points, then G1 is nonweak. If l1 and l2 intersect
at exactly two points and G1 contains at least one other line, then the subgraph composed
of l1 and l2 is a weak subgraph. Hence, the only case in which G1 is strong is when l1 and

l2 intersect at exactly two points and are the only lines in the hypergraph. We then know
that G2 is strong if G1 is strong, since a single line is a strong hypergraph. G1 is only
strong when G2 is a single line.

Transformation C clearly preserves planarity because l1 and l2 must map to the same
line, and l3 and l4 must map to the same line.

I use these transformations to narrow my list of weak hypergraphs. I do this by establish-
ing one of the hypergraphs G1 or G2 in each transformation as the ‘simpler’ hypergraph, and
then omitting every hypergraph that looks like the more ‘complex’ version. In particular:

For Transformation A, I consider G1 to be the simpler hypergraph. Hence, I omit all
hypergraphs that contain a triple with exactly one loose point. Any hypergraph with such
a line can be transformed through repeated applications of A to one without such a line,
preserving the weak condition and planarity, and possibly producing a strong hypergraph
from a weak one (as discussed earlier).

For Transformation B, I consider G1 to be the simpler hypergraph. Hence, I omit all
hypergraphs that contain a line of size at least 4 with at least one loose point. Any such
hypergraph can be transformed through repeated applications of B to one without such a
line, preserving the weak condition, the strong condition, and planarity.

For Transformation C, I consider G2 to be the simpler hypergraph. Hence, I omit all
hypergraphs that contain two lines intersecting at at least two points where one line is
not contained in the other. Any such hypergraph can be transformed through repeated
applications of C to one without such a pair of lines, preserving the weak condition and
planarity, and sometimes producing a strong hypergraph (a single line) from a weak one.

A complete list of weak hypergraphs for n ≤ 9 up to these transformations, as well as
the dual graphs of their (not pictured) stabilized versions, is below:

I include hypergraphs only up to n = 9 because drawing hypergraphs and dual graphs in
an aesthetically appealing way given output from the program is very time-consuming as n
increases; also, higher values of n yield many more hypergraphs, as has been shown.

Not pictured are the strong hypergraphs composed of single lines. The last three hy-
pergraphs are the only strictly weak hypergraphs; note that all three contain at least one
copy of the n = 6 strong hypergraph. Black points on dual graphs correspond to lines on
the original hypergraphs, while white points correspond to inserted lines on the stabilized
hypergraphs, i.e. points on the original hypergraphs with size at least 3. Each dual graph
for n = 9 includes a justification for its uniqueness from the other dual graphs; the earlier
dual graphs are simple enough that such justification is not necessary. In particular, these
justifications list the number of points in the dual graph and the number of polygons of
small size in the dual graph.

In order to run efficiently, my program relies on the idea of ‘symmetries’ within hyper-
graphs. A symmetry is a way of classifying a hypergraph to easily distinguish it from many
(though not all) other hypergraphs. This is necessary because one of the central problems
with a hypergraph generator is determining whether two hypergraphs are identical. Hyper-
graphs in my program are represented as arrays of lines, and each line is an array of points.
Hence, the strong n = 6 hypergraph may be represented in the following way:

0 1 2
0 3 4
1 3 5
2 4 6
When generating new hypergraphs, the program needs to test whether each hypergraph

has already been encountered and stored by comparing it with every hypergraph already
encountered. Simply testing whether two hypergraphs are represented the same way does
not determine whether they are identical since a single hypergraph can be represented in
many different ways. One way to test whether two hypergraphs G1 and G2 are identical is
to permute the points of G1 in every possible way, and then to check whether their lines
are identical. However, this is extremely time consuming, as the number of permutations
of n points is n!, and such comparisons need to be made for every stored hypergraph every
time a (potentially) new hypergraph is constructed.

To drastically cut down on the number of permutations tested, my program computes
and stores every hypergraph’s symmetries. A symmetry is computed using the following
recursive algorithm:

First, each of the hypergraph’s points is labeled with a number corresponding to its size.
Hence, a hypergraph with points of size 1, 2, and 5 would have every size-1 point labeled
‘0’, every size-2 point labeled ‘1’, and every size-5 point labeled ‘2’.

Then, each point is given a list of lists of adjacent points’ labels. I.e., if a point is on
three lines, one of which contains (other than the point itself) a points labeled ‘0’ and ‘1’,
another of which contains points labeled ‘1’ and ‘1’, and a third of which contains points
labeled ‘0’, ‘0’, and ‘2’, then it is given the following list of lists:

0 1
1 1
0 0 2
The top-level list stores three lists; each lower-level list represents one of the lines that

the point lies on; and each entry in a lower-level list contains the labels of the points on
that line. Each lower-level list is sorted, and the higher-level lists are sorted first by size and
then by content. Hence, the list ‘0 0 2’ is last because it has the highest size; the list ‘0 1’ is
before the list ‘1 1’ because it comes before it in lexicographical order. This particular list
would belong to a point of size 3 (since it lies on three different lines) which lies upon two

triples and one line of size 4 (since it has two neighbors on two lines and three neighbors
on one line).

After every point has such an entry, points are relabeled in the following way: for every
original label, the points are given a new label, such that their new labels order them
according to their lists, but the orders between different original labels stay the same.
Suppose, for instance, that the original labels were ‘0’, ‘1’, and ‘2’, and that the points in
label ‘0’ had two different lists among them, but the points in label ‘1’ all had the same
list, as did the points in label ‘2’. Then the points originally labeled ‘0’ would be relabeled
‘0’ and ‘1’, so that ‘0’ corresponded to the lower list (in lexicographical order) and ‘1’
corresponded to the higher list. Then the points originally labeled ‘1’ and ‘2’ would be
relabeled ‘2’ and ‘3’, respectively. In this way, every point originally labeled ‘0’ still has
a lower label than every point originally labeled ‘1’ or ‘2’, but a new distinction between
points originally labeled ‘0’ has been added.

At this point, the process repeats; every point is given a list of lists corresponding to its
neighbors’ labels, and points are then relabeled. This continues until the relabeling does
not change any labels; this happens when all the points within every given label have the
same list of lists. This end result, a description of each point’s label along with each label’s
corresponding list of lists, is stored as the ‘symmetry’ of the hypergraph. This data is called
a ‘symmetry’ because two points within the same list are in some sense identical; they have
the same size, lie on lines of the same size, are adjacent to points of the same size that lie on
lines of the same size, and so on. The process of finding a symmetry must always terminate
eventually, since every step divides points in a given label into several separate labels; once
every point has its own label, the process must end (though the process often ends before
this happens).

Clearly, the same hypergraph represented in two different ways will have the same sym-
metry, since symmetries do not depend on point numberings. Moreover, if two hypergraphs
have different symmetries, then they clearly cannot be the same hypergraph, since symme-
tries represent concrete data about the hypergraph’s structure.

When comparing a newly-constructed hypergraph to a stored hypergraph, my program
will first calculate the new hypergraph’s symmetry, and then compare it to the stored sym-
metry of the stored hypergraph. If the two symmetries are different, then the hypergraphs
are different. If the two symmetries are the same, then the program permutes points to see
whether the hypergraphs are identical. However, every point does not need to be permuted
with every other point; points only need to be permuted when they have the same label.
This cuts down on permutation time significantly.

In fact, symmetries are used in intermediate steps of hypergraph generation to further
speed up the program. Hypergraphs are not generated all at once; rather, they are generated
line by line. I.e., the program will first generate every possible single line within n points,
up to symmetry; this just ends up being one line for each size from 3 to n. It then generates
every possible set of two lines within n points, up to symmetry, and throws out the previous
results. It continues in this way, adding single lines, until it reaches the maximum amount
of lines, n−2. At every step of the way, it checks whether each resulting set of lines qualifies
as a hypergraph by checking whether every point is hit and whether the line count is n− 2.

Transformation C is also used to throw out some sets of lines during intermediate steps;
any time two lines are encountered that intersect at at least two points, and one line is not
contained in the other, the line set is thrown out. Transformations A and B can only be
checked at the end, when a complete hypergraph has been created, since they rely on loose
points; a loose point in an intermediate set of lines may increase in size later on.

Another transformation that preserves some conditions (but which was not used for graph
simplification due to time constraints) is called Transformation D. Transformation D begins

with a hypergraph G1 with a line l1 and a nonzero set of lines l2 all intersecting l1 at at the
same point; each line in this set is given an index from 1 to j, so that j ≥ 1. Some amount
i of the l2 lines with 0 ≤ i < j is kept at the point, while the rest of the lines are moved
to a new point on l1. Hence, no new lines are created, but l1 is incremented in size. The
resulting hypergraph is called G2 (the result is indeed a hypergraph because the number of
points and the line count are both incremented). Note that when i = 0, this transformation
is identical to Transformation B; however, this transformation does not preserve the same
conditions as Transformation B and is not used to simplify the list of hypergraphs, so it is
mentioned separately.

Theorem 14. If G1 is weak in Transformation D, then G2 is weak.

Proof. Let S2 be a subgraph of G2 with 1 < |S2| < |G2|. Let S1 be the corresponding
subgraph of G1. Then we know 1 < |S1| = |S2| < |G1| = |G2|.

Suppose S2 does not contain l1, and contains either some l2k lines with k ≤ i or some
l2k lines with k > i, or neither (but not both). Then S2 has the same line count and the
same number of points as S1, so S2 satisfies the weak inequality.

Suppose S2 contains l1. Then S2 has one more point and one higher line count than S1,
so S2 satisfies the weak inequality.

Suppose S2 does not contain l1, and contains some l2k lines with k ≤ i and some l2k
lines with k > i. Then S2 has the same line count as S1 and has one more point than S1,
so it satisfies the weak inequality.

Since these are all the cases, S2 always satisfies the weak inequality, so G2 is weak. !
Theorem 15. If G1 is strong in Transformation D, then G2 is strong.

Proof. Let S2 be a subgraph of G2 with 1 < |S2| < |G2|. Since G1 is weak, G2 is weak, so
S2 satisfies the weak inequality. Let S1 be the corresponding subgraph of G1.

Suppose S2 does not contain l1, and contains either some l2k lines with k ≤ i or some
l2k lines with k > i, or neither (but not both). Then S2 has the same line count and the
same number of points as S1, so S2 is not a weak subgraph.

Suppose S2 contains l1. Then S2 has one more point and one higher line count than S1,
so S2 is not a weak subgraph.

Suppose S2 does not contain l1, and contains some l2k lines with k ≤ i and some l2k
lines with k > i. Then S2 has the same line count as S1 and has one more point than S1.
If S2 is a weak subgraph, then it has m points and a line count of m− 2 for some m; then
S1 has m − 1 points and a line count of m − 2, and therefore does not satisfy the weak
inequality. This is a contradiction, so S2 is not a weak subgraph.

Since these are all the cases, S2 is never a weak subgraph, so G2 is strong. !
Transformation D could be used to further narrow the list of hypergraphs, as well as to

considerably speed up the program’s runtime, by throwing out any hypergraphs or inter-
mediate line sets containing points of size greater than 2, since any point with a higher
size can be split into two points with D. Note that all hypergraphs would then be already
stabilized.

The Fibonacci-like construction in [CT] can be shown to break the stability condition; i.e.,
a hypergraph that is initially stable may lose stability after the construction is applied to it.
The Fibonacci-like construction begins with a hypergraph containing a point of size 2, p1,
which is contained in lines l1 and l2. Another point p2 is then chosen which is not contained
in l1 or l2. The lines l1 and l2 are then disconnected, and a new triple is created which
intersects both lines at new points and also contains p2. This construction was shown in [CT]
to produce weak hypergraphs when given a weak hypergraph. The following diagram shows
an example of the Fibonacci-like construction producing an unstable hypergraph when given

a stable hypergraph. Below the two hypergraphs, the diagram shows the construction in
general.

Not all weak hypergraphs are stable. The following hypergraph is unstable and weak;
the diagram includes an explanation of its instability.

The subset Y examined consists of the lines 3-4-7 and 3-4-6. The stability condition is
written to the right of the hypergraph, and the left hand side (LHS) of the inequality is

shown to be equal to the right hand side (RHS), violating the condition. The expression
p(X IN (X MIN Y)) is #Y.

5. Clifford Indices

I have found the resolution Clifford indices and the combinatorial Clifford indices of
several hypergraphs from my list of weak hypergraphs. These indices are of interest to
Green’s conjecture.

Combinatorial Clifford indices were found by examining the dual graphs of the stabi-
lized hypergraphs. Resolution Clifford indices were found using the well-known program
Macaulay [Mac]: the canonical embedding was found for the stabilized hypergraph, then
Macaulay was used to intersect the ideals corresponding to each line on the stabilized hy-
pergraph, and then Macaulay was used to find the resolution Clifford index. We know
that a stabilized hypergraph of size n composed of triples (i.e., the original hypergraph is
composed of triples and has no points of size greater than 3) with a 3-connected dual graph
can be canonically embedded in Pn−4, the projective space of dimension n− 4, as a set of
lines. The canonical embedding is discussed in pages 134 and 135 of [M]. The ideals of the
individual lines were found by hand, and Macaulay was used to intersect them to find the
ideals of the entire hypergraph.

The canonical embeddings were found using another program I wrote. This program
finds canonical embeddings for hypergraphs whose stabilized versions have only triples. It
is given the hypergraph and an order in which to process the lines; it then iterates through
the lines in this given order and assigns weights to points according to the following rules:
If a point on this line already has a weight on the other line it lies on, then assign it the
negation of the weight. If two points on this line have weights on this line, then assign
the third point a weight equal to the negation of their sum, so that the total weight is 0.
Otherwise, add a new weight to a point on the line so that it is zero for every variable except
a new, unused variable, which gets weight 1. Hence, for example, the first line visited will
always get weights [1,0,0,...], [0,1,0,...], [-1,-1,0,...]; the first point gets the first variable, the
second point gets the second variable, and the third point gets the negative sum of the
first two. The order of the lines needs to be assigned in such a way that every line except
the first line hits some previous line. Hence, in a properly-ordered hypergraph, the second
line visited (if it hits the first line at the first point) will have weights [-1,0,0,...], [0,0,1,...],
[1,0,-1,...].

The resolution Clifford index is relevant to Green’s conjecture, mentioned in [BE]; the
combinatorial and resolution Clifford indices are both relevant to Bayer and Eisenbud’s
“Combinatorial Clifford Index Conjecture”, from [BE]. This latter conjecture states that if
the resolution Clifford index Cliff of a trivalent 3-connected graph G of genus g satisfies
the inequality CliffG < [(g − 1)/2], then CliffG is equal to the combinatorial Clifford
index of G.

The following is a list of line ideals, hypergraph ideals, and Clifford indices for each hy-
pergraph. The line ideals are first, followed by the single hypergraph ideal. Hypergraphs
are numbered according to their order from left to right and top to bottom in the list of
weak hypergraphs, from 1 to 19. Note that every hypergraph listed below has a dual graph
which is trivalent and 3-connected; the dual graphs are trivalent since the hypergraphs only
have triples and points of size less than three, and the dual graphs have been found to be
3-connected through examination. The coordinates range from x1 to xn−3.

3:
x3, x4, x5

x2, x4, x5

x1, x2, x5

x1, x2, x3

x3, x4, x1 − x2

x1 − x2, x3 + x4, x1 + x5

x1 + x3, x1 − x4, x1 + x5

x2, x1 + x3, x4 + x5

x2x4 − x1x5 + x2x5 − x3x5, x1x4 − x3x5, x2x3 + x1x5 − x2x5 + x3x5

Resolution Clifford index 2, combinatorial Clifford index 2

4:
x3, x4, x5

x2, x4, x5

x1, x3, x5

x1, x2, x5

x2, x4, x1 − x3

x2, x1 + x5, x1 + x4 − x3

x3, x4, x1 − x2

x3, x1 + x5, x1 + x4 − x2

x1x5 − x2x5 − x3x5 + x4x5, x1x4 + x4x5, x2x3

Resolution Clifford index 2, combinatorial Clifford index 2

7:
x3, x4, x5, x6

x4, x5, x6, x1 − x2

x5, x6, x1 − x2, x1 − x3

x2, x3, x5, x6

x2, x3, x6, x1 − x4

x6, x1 − x2, x1 − x3, x1 − x4

x1 − x2, x1 − x3, x1 − x4, x1 + x5

x1, x3, x4, x5

x3, x1 − x4, x1 + x5, x2 − x6

x1 − x2, x1 − x4, x1 + x5, x1 − x6

x4x6 +x5x6, x1x6 +x5x6, x2x5−x3x5−x3x6−x5x6, x1x5−x4x5, x2x4−x3x4 +x3x6 +x5x6,
x1x3 − x2x3

Resolution Clifford index 2, combinatorial Clifford index 2

10:
x3, x4, x5, x6

x2, x4, x5, x6

x1, x2, x5, x6

x1, x2, x3, x6

x1, x3, x4, x6

x1, x3, x4, x2 − x5

x2, x4, x5, x1 + x3

x2, x1 + x3, x4 + x5, x3 + x6

x1 + x3, x3 + x4, x5 + x6, x1 − x2 + x5

x5, x6, x1 − x2, x3 + x4

x2x6−x4x6−x5x6, x1x6 +x3x6, x3x5−x4x6, x1x5 +x4x6, x1x4−x2x4−x4x6, x2x3 +x2x4

Resolution Clifford index 2, combinatorial Clifford index 2

12:
x3, x4, x5, x6

x2, x4, x5, x6

x1, x2, x5, x6

x1, x2, x3, x6

x1, x2, x3, x4

x1, x3, x4, x5

x1, x5, x3 + x4, x2 − x6

x3, x6, x1 − x2, x4 + x5

x1 − x5, x2 + x4, x3 − x6, x1 − x2 + x3

x2, x4, x1 + x3, x5 + x6

x1x6 + x3x6 + x4x6, x3x5 + x3x6 + x4x6, x1x5 − x2x5 − x3x6 − x4x6, x2x4 + x2x5 − x4x6,
x1x4 + x2x5, x2x3 + x4x6

Resolution Clifford index 3, combinatorial Clifford index 2

17:
x3, x4, x5, x6

x2, x4, x5, x6

x2, x5, x6, x1 + x3

x2, x6, x1 + x3, x1 + x4

x1, x2, x3, x4

x2, x6, x1 + x4, x1 + x5

x1, x3, x5, x6

x3, x4, x5, x1 − x2

x3, x6, x1 + x5, x1 − x2 + x4

x3, x4, x1 − x2, x1 + x5 + x6

x4x6, x3x6, x1x6 − x2x6, x1x5 − x2x5 + x4x5, x1x4 + x3x4 − x3x5 + x4x5, x2x3, x2
2x5 +

x3x4x5 − x2
4x5 + x2x2

5 − x3x2
5 + x4x2

5 + x2x5x6

Resolution Clifford index 1, combinatorial Clifford index 1

18:
x3, x4, x5, x6

x2, x4, x5, x6

x1, x2, x5, x6

x1, x2, x3, x6

x1, x2, x3, x4 + x5

x1, x2, x3, x4

x3, x4, x1 − x2, x5 − x6

x1 − x2, x3 + x4, x5 − x6, x1 + x5

x1 − x2, x1 + x3, x4 + x5, x4 + x6

x4, x5, x6, x1 + x3

x1x6 − x2x6, x3x5 − x3x6, x2x5 − x2x6, x1x5 − x2x6, x2x4 − x3x6, x1x4 − x3x6, x3x4x6 +
x2

4x6 + x4x5x6 + x3x2
6, x2x3x6 + x2

3x6 − x2
4x6 − x4x5x6, x1x2x3 + x2x2

3 + x2
4x6 + x4x5x6

Resolution Clifford index 1, combinatorial Clifford index 1

19:
x3, x4, x5, x6

x2, x4, x5, x6

x1, x4, x5, x6

x1, x5, x6, x2 − x3

x1, x6, x2 − x3, x2 + x4

x3, x4, x6, x1 − x2

x3, x4, x1 − x2, x1 + x5

x4, x2 + x5, x2 − x6, x1 − x2 + x3

x1, x2 − x3, x2 + x5, x2 − x6

x1, x2 − x3, x2 + x4, x2 + x5

x2x6+x5x6, x1x6+x3x6+x5x6, x3x5+x4x5+x3x6+x4x6, x1x5−x2x5−x4x5−x3x6−x4x6,
x2x4 − x3x4, x1x4, x1x2x3 + x2

3x6 − x4x5x6 − x3x2
6 − x4x2

6
Resolution Clifford index 1, combinatorial Clifford index 1

Note that when multiple hypergraphs have the same dual graph (for their stabilized
versions), only one hypergraph is listed, since they will necessarily have the same ideals and
Clifford indices.

The first two hypergraphs listed, 3 and 4, have 8 points and hence have genus 5; therefore,
[(g − 1)/2] = 2 = CliffG, so the Combinatorial Clifford Index Conjecture is supported.
Hypergraphs 7, 10, and 12 have 9 points and genus 6, so [(g − 1)/2] = 2; their resolution
Clifford indices are all greater than or equal to 2, so the conjecture is supported. Hyper-
graphs 17, 18, and 19 also have genus 6, but their resolution Clifford indices are less than
2. However, their combinatorial Clifford indices are all equal to their resolution Clifford
indices, so the conjecture is again supported.

6. Future Research

The most obvious possibility for future research is to examine hypergraphs for higher
values of n. By implementing Transformation D to remove all hypergraphs with points
of size greater than 2, the program could be sped up considerably. The resolution and
combinatorial Clifford indices could then be examined for these hypergraphs.

In order to do this, however, the canonical embedding program would need to be modified
to work with stabilized hypergraphs with non-triple lines. This would be a relatively trivial
modification. It would also be helpful to automate the finding of combinatorial Clifford
indices, as well as the determination of line ideals from the canonical embedding program’s
output weights. Both processes were relatively easy to do by hand, but would become more
time-consuming for larger hypergraphs. If both processes were automated, then the entire
process of generating a hypergraph, stabilizing it, finding the dual graph, and finding its
Clifford indices could be automated by moving between C++ and Macaulay. This would
then provide a fast way of testing Bayer and Eisenbud’s conjecture for hypergraphs of
sufficiently small sizes; depending on how much Transformation D speeds up runtime and
narrows down the list of hypergraphs, this could be as high as n = 20 or so. The effects of
the various transformations on Clifford indices of hypergraphs could also be examined.

References

[BE] D. Bayer and D. Eisenbud, Graph curves, Advances in Mathematics. 86 (1991), no.1, 1-40.
[CT] A.-M. Castravet, J. Tevelev, Exceptional Loci on M̄0,n and Hypergraph Curves, arXiv:0809.1699
[M] R. Miranda, Graph Curves and Curves on K3 Surfaces, Lectures on Riemann surfaces, Trieste,

1987, 119-176.
[Mac] D. Grayson, M. Stillman, Macaulay 2, http://www.math.uiuc.edu/Macaulay2/

