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1 Introduction

Algebraic geometry is the branch of mathematics interested in studying the vanishing

of sets of polynomials, which we call algebraic varieties. Many other tools have been

developed to capture additional data, such as divisors, which are used to organize

the zeros and poles of meromorphic functions. This leads to a fundamental invariant:

the cone of effective divisors. The effective cone is a set in Euclidean space defined

using divisors, which carries useful information about the variety. To understand

the effective cone, it suffices to describe so-called extremal rays; the effective cone is

determined by these, in the same way that a pyramid is determined by its edges.

An interpolation problem is a game where you want to find some geometric object

that passes through a collection of sufficiently general points with certain multiplici-

ties. Such questions date all the way back to the beginning, when Euclid postulated

that there is a line that passes through any two points. For being such a fundamental

question, we know very little about interpolation in general. We have known what

happens in the one dimensional case for over two hundred years through Lagrangian
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polynomials. However, past the most basic case we are in the dark. In P2, we have a

good prediction of what will happen through Nagata’s Conjecture, although we are

very far from being able to prove it. In investigating interpolation on more compli-

cated varieties, an interesting problem is computing Seshadri constants, which are

the maximum multiplicity an irreducible curve can have at a given general point. We

call the curves that pass through a point with maximal multiplicity Seshadri excep-

tional curves [5]. These definitions will be made precise in the next section. There is

also Gromov-Witten theory, which comes from studying mirror symmetry in string

theory, can also be used to investigate such questions by counting the number of

curves imposed with tangency conditions. Techniques from interpolation are often

more versatile though, and can be used when Gromov-Witten can’t.

In the paper Seshadri constants on elliptic ruled surfaces by Luis Garćıa Fuentes

[2], we see that on the surface S−1, which is defined as the indecomposable elliptic

ruled surface with invariant e = −1 and is isomorphic to the symmetric square of an

elliptic curve, there exists a Seshadri exceptional curve Cn ∼ n(n + 1)X0 − 2nf with

multiplicity 2n2 − 1 at some sufficiently general point, for any n. However, the proof

that these curves exist essentially just shows that there is a divisor with more global

sections than the number of conditions necessary to impose a high multiplicity at

a point, and does not tell us anything about what these curves are or what other

properties they may have.

In interpolation problems, we not only want to know that there exists some

object meeting the conditions that we impose, but we want to understand what they

are. I want to understand what these special curves are and what other interesting

2



properties they may have. In particular, I am interested in the surface S given by

π ∶ S = BlxS−1 → S−1

where x ∈ S−1 is the sufficiently general point that the curves Cn are based at. The

main theorem to be proved is as follows:

Theorem 1.1. The convex cone of effective divisors on S, Eff(S), is generated by

the curves

{C̃g ∼ g(g + 1)X0 − 2gf + (2g2 − 1)E}g>0

where C̃g is a smooth genus g curve, for each g.

This would give us an exceptionally beautiful effective cone for S−1, since it would

be generated by infinitely many curves C0, C1, ... where each Cg is a genus g curve.

In addition to simply finding the geometry object that satisfies an interpolation

problem, geometers usually want to find out how many such objects exist and the

relations between them. In the paper referenced above, Fuentes never mentions the

base elliptic curve for S−1 or how it affects the Cn curves. These Cn can be seen

to have two parameters, the j-invariant of the base elliptic curve and the point p

where we impose high multiplicity. I am interested in varying these parameters and

studying the resulting surface cut out in Mn, the moduli space of genus n curves.

That is, I want to see how changing the base elliptic curve up to isomorphism and the

point that has high multiplicity affects the resulting curves Cn up to isomorphism.

This leads to my first two questions:

(Q1): Are the Seshadri exceptional curves, Cn, on the elliptic ruled surface S−1
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smooth after blowing up the point of high multiplicity?

(Q2): Assuming these curves are smooth after the blow up, how does varying the j-

invariant of our base elliptic curve and point of high multiplicity change the resulting

Cn.

After answering (Q2) it is natural to consider what happens when constructing

a surface similar to S−1 over nodal and cuspidal cubics so that we can extend our

results toMg, the compactification ofMg, which also includes singular cubics. Since

S−1 ≅ Sym2E, we should consider the surface Sym2C where C is a singular cubic. This

leads to the question:

(Q3): What is the surface Sym2C where C is a singular cubic curve. What are the

Seshadri exceptional curves Cn on this surface? Are these curves smooth? How are

they related to our results on the smooth elliptic ruled surface?

These questions posed after Theorem 1.1 remain unanswered and are open for

further investigation.

2 Introduction to Divisors

The study of divisors provides a lot of information about algebraic varieties that we

are interested and are essential in the study of algebraic geometry. We begin by

defining what a (Weil) divisor is. Let X be a variety throughout this section.

Definition 2.1. A prime divisor on X is an irreducible one dimension subspace.

Definition 2.2. Let Div(X) be the free Abelian group generated by all prime divisors

on X. If D ∈Div(X), then we call D a (Weil) divisor. That is, D = ∑niDi where

ni ∈ Z and Di is an irreducible one dimensional subspace.
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Definition 2.3. We call a divisor D = ∑niDi an effective divisor if ni ≥ 0 for all

i.

Definition 2.4. We say that D ∈ Div(X) is a principal divisor if it is a divisor

of zeros and poles of a rational function on X.

Definition 2.5. Let D1,D2 ∈ Div(X). We say that D1 is linearly equivalent to

D2, denoted D1 ∼D2, if D1−D2 is a principal divisor. Notice that linear equivalence

is and equivalence relation.

Example 2.1. Consider X = P2. Then, if D ∈ Div(X) we have that D ∼ dL where

L is a line in P2, and D is a degree d curve. This is because if D and D’ are any

two degree d curves, then they are given by the vanishing of f(x,y,z) and f’(x,y,z) two

homogeneous degree d functions. We then have that f(x,y,z)
f ′(x,y,z) is a rational function

on P2 with zeroes being the zero locus of f(x,y,z), which is D, and poles being the

zero locus of f ’(x,y,z), which is D’. Thus D-D’ is principal, so D and D’ are linear

equivalent.

Definition 2.6. We define the complete linear system of a divisor D, denoted

∣D∣ as follows:

∣D∣ = {D′ ∈Div(X)∣D′ is effective and D ∼D′}

Example 2.2. Let π ∶ S = Bl3P2 → P2 be the blow up of P2 at 3 sufficiently general

points p1, p2, and p3. Let E1,E2, and E3 be the exceptional divisors on S for the 3

pointes respectively. Let L be the preimage of general line in P2. Then every divisor
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on S is linearly equivalent to a divisor of the form

dL −m1E1 −m2E2 −m3E3

To see this, take a degree d curve on P2, passing through points p1, p2, p3 with mul-

tiplicities m1,m2,m3 respectively. Since dL ∼ C and L does not pass through any of

the 3 points, we also have

dL ∼ π−1(C) = C̃ +m1E1 +m2E2 +m3E3

where C̃ = π−1(C ∖ {p1, p2, p3}). Then by the definition of linear equivalence,

dL − C̃ −m1E1 −m2E2 −m3E3

is a principal divisor. Rearranging the terms, we have:

(dL −m1E1 −m2E2 −m3E3) − C̃

Ô⇒ C̃ ∼ dL −m1E1 −m2E2 −m3E3

Now consider a degree d curve C ′ passing through points p1, p2, p3 with multiplicities

m′
1 ≥m1,m′

2 ≥m2,m′
3 ≥m3. Then from the above discussion we have

C̃ ′ ∼ dL −m′
1E1 −m′

2E2 −m′
3E3
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We can then see that

C̃ ′ + (m′
1 −m1)E1 + (m′

2 −m2)E2 + (m′
3 −m3)E3 ∈ ∣dL −m1E1 −m2E2 −m3E3∣

Since this divisor is effective by the way we chose C ′, and we get

dL −m1E1 −m2E2 −m3E3

when we substitute C̃ ′ for its linear equivalence. This is a complete description of

the linear system ∣dL −m1E1 −m2E2 −m3E3∣.

Now, if D is a divisor, we define

L(D) = {f ∈ k(S)∣(f) +D is effective }

We have h0(D) = dimL(D). If L(D) has a basis f1(x), ..., fl(x) then we can define a

rational map for the divisor D as follows:

ϕD ∶X ⇢ Ph0(D)−1 by x↦ [f1(x) ∶ ... ∶ fl(x)]

Definition 2.7. Let D be a divisor. If ϕD is an embedding, then we call D very

ample. If ϕmD is an embedding for some integer m, then we call D ample. If ϕD

is a morephism, then we call D globally generated.

Now let S be a smooth projective surface. The equivalence classes of Div(S) under

linear equivalence form a group.

Definition 2.8. We call the group of linear equivalence classes the divisor class
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group denoted Cl(S). That is,

Cl(S) = Div(S)∼

We can then define the following product on Cl(S), known as the intersection

product : Let D1 and D2 be curves with no common components. Then

D1 ⋅D2 = the number of points in D1 ∩D2 counting multiplicity ∈ Z

Theorem 2.1. The intersection product on Cl(S) gives a well defined inner product.

Example 2.3. Consider P2. Earlier, we showed that all degree d curves are in the

same linear equivalence classes. Thus,

Cl(P2) = Z

Consider L a line in P2. Then we have L ⋅ L = 1 since L ∼ L′ for any other line L′,

and L ⋅L = L ⋅L′ = 1. Then if C is a degree d curve and C’ is a degree d’ curve,

C ⋅C ′ = (dL) ⋅ (d′L) = (dd′)(L ⋅L) = dd′

Theorem 2.2.

Definition 2.9. We say divisors D1 and D2 are numerical equivalent if D1 ⋅C =

D2 ⋅C for all curves C.

Definition 2.10. We say a divisor D is a nef divisor if D ⋅C ≥ 0 for all curves C.
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We can then consider the quotient group resulting from quotienting Cl(S) by

numerical equivalence. The resulting group is a free Abelian group of rank ρ, which

is called the Neron-Severi group and is denoted by NS(S). We call the rank of this

group, ρ, the Picard number of the surface S. Note that if a surface has Picard

number ρ = 1 then numerical equivalence and linear equivalence are the same. We

can turn NS(S) into a ρ-dimesnional real vector space as follows:

NSR(S) = NS(S) ⊗R

Now we will define the nef and effective cones, which are convex cones of divisors

and provide a lot of information about the surface of interest. We define the effective

cone on S denoted Eff(S) as:

Eff(S) = {D ∈ NS(S)∣D ≡D′ for some D′ effective divisor} ⊂ NS(S)

and the pseudo effective cone as

Eff(S) = Cone(Eff(S)) ⊂ NSR(S).

We now define the nef cone as

Nef(S) = {D∣D ⋅C ≥ 0∀C} ⊂ Eff(S)

Theorem 2.3. If S is a surface, then Eff(s) is the dual cone (in the sense of convex

geometry) of Nef(S) the convex Nef cone.
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3 Introduction to Seshadri Constants

Seshadri Constants were first introduced by Demailly in an attempt to use them to

prove the Fujita Conjecture [1]. Although this feat was unsuccessful, they became

interesting in their own right because of their use in measuring the local positivity of

ample line bundles on algebraic varieties [5]. In general, Seshadri constants are very

hard to compute. It is even unknown whether or not they are always rational; there

are currently no known examples of irrational Seshadri Constants, but there are very

few examples where the Seshadri constants are known at all. Recall the following

theorem seen in Hartshorn [4]:

Theorem 3.1 (Seshadri’s Criterion). Let X be a smooth projective variety and L be

a line bundle on X. Then L is ample if and only if there exists a positive number ε

such that for all points x on X and all (irreducible) curves C passing through x one

has

L ⋅C ≥ ε ⋅multxC

It is natural to ask what the optimal ε is. This question is what led to the

following definition:

Definition 3.1. Let S be a smooth surface. Let A be a nef divisor on S. Let x ∈ S

any point. We define the Seshadri Constant of A at x as:

ε(A,x) ∶= infC∋x {
A ⋅C

multx(C) ∣ C irred curve passing through x}

We can see that this is equivalent to the following alternative definition:

Definition 3.2. Let S be a smooth surface. Let A be a nef divisor on S. Let
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f ∶ BlxS = S̃ → S be blow up of S at the point x ∈ S. We define the Seshadri

Constant of A at x as:

ε(A,x) ∶= sup{ε ∈ R ∣ f⋆A − εE is nef }

We have the following easy upper bound for Seshadri constants:

Lemma 3.2. For a smooth surface S, nef divisor A on S, and point x ∈ S we have

ε(A,x) ≤
√
A2

Proof. By definition 3.2 we know that f⋆A − ε(A,x)E is nef, so we have that

(f⋆A − ε(A,x)E)2 ≥ 0

By simple intersection theory we then have

A2 − ε(A,x)2 ≥ 0 Ô⇒
√
A2 ≥ ε(A,x)

When this upper bound is not reached we know that there must exist a curve C

such that

ε(A,x) = A ⋅C
multxC

We will call such a curve a Seshadri Exceptional Curve. In particular the curve
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C will satisfy

C2 < (multxC)2

This leads us to the following definition:

Definition 3.3. An irreducible curve C passing through a point x ∈ S with multiplic-

ity m ≥ 1 that satisfies C2 <m2 is called a Seshadri exceptional curve based at

x.

Given a Seshadri exceptional curve C we can then define the following continuous

map:

qC ∶ Nef(S) → R by qC(A,x) =
A ⋅C
multxC

This discussion leads us to a third equivalent definition of a Seshadri constant:

Definition 3.4. Let S be a smooth surface. Let A be a nef divisor on S. Let x ∈ S

any point. We define the Seshadri Constant of A at x as:

ε(A,x) ∶=min{{qC(A,x) ∣ C is a Seshadri exceptional curve at x} ∪ {
√
A2}}

Definition 3.5. Let C be a Seshadri exceptional curved based at x. We can then

consider the open set of Nef divisors A satisfying

qC(A,x) <
√
A2

This set is called the influence area of C, and is denoted by QC.

Lemma 3.3. If C is a Seshadri exceptional curve based at x, then C is the unique

Seshadri exceptional curve in QC
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Proof. First we will show that C ∈ QC . Since C is Seshadri exceptional we know

C2 <m2 Ô⇒
√
C2 <m Ô⇒ 1

m
< 1√

C2

so it follows that

qC(C,x) =
C2

m
< C2

√
C2

=
√
C2

so C ∈ QC . Now suppose that there exists another Seshadri exceptional curve D that

is different from C such that D ∈ QC . Then we will have

D ⋅C
multxC

<
√
D2 Ô⇒ D ⋅C <multxC ⋅

√
D2

However, since D is a Seshadri exceptional curve, we have that
√
D2 <multxD giving

us

D ⋅C <multxC ⋅multxC

which is impossible since and C and D are distinct curves.

Corollary 3.1. If C is a nef Seshadri exceptional curve based at x, then

ε(C,x) = qC(C,x) =
C2

multxC

4 Finding equations of curves Cn

Recall from the introduction, we would like to prove theorem 1.1 regarding the curves

Cn ∼ 2n(n + 1)X0 − 2nf
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where X0 is a section on S−1 and f is a fiber. To show that the curves Cn are smooth,

I begin by using Macaulay2 to explicitly find equations for the curves for small n.

I have broken down the problem of constructing explicit equations for the Seshadri

exceptional curves into several subproblems:

1. Find the homogenous coordinate ring R(S−1) ∶= k[x0, ..., xn]/I(S−1) [4]

2. Construct the linear system L(2n(n + 1)X0 − 2nf) in Macaulay2

3. Find the equation of the Seshadri exceptional curves Cn

To construct equations for the curves Cn I simply need to find the generators of the

linear system L(2n(n+1)X0−2nf). The idea is to find a way of representing the linear

system L(2n(n + 1)X0 − 2nf) as a vector space of polynomials in R(S−1), and then

finding a linear combination of the generating polynomials which has multiplicity

2n2 − 1 at some general point.

4.1 Finding the homogenous coordinate ring of S−1

In finding R(S−1) it is useful to use the following description of S−1, where E is an

elliptic curve:

S−1 ≃ Sym2E ≃ E ×EÒ(P,Q) ∼ (Q,P )

If we consider this quotient as the quotient by the S2 action on E × E that maps

(P,Q) ↦ (Q,P ), then we have:

R(S−1) ≃ R(E ×E)S2 .
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We can consider E ×E as being embedded in P2
[x1∶y1∶z1] ×P2

[x2∶y2∶z2]. So

R(E ×E) ≃ k[x1 ∶ y1 ∶ z1;x2 ∶ y2 ∶ z2]Ò(F1, F2)

where

F1(x1, y1, z1, x2, y2, z2) = y21z1 − x31 − ax1z21 − bz31 ;

F2(x1, y1, z1, x2, y2, z2) = y22z2 − x32 − ax2z22 − bz32 .

Now the S2 action on E ×E is realized in R(E ×E) by

[x1 ∶ y1 ∶ z1;x2 ∶ y2 ∶ z2] ↦ [x2 ∶ y2 ∶ z2;x1 ∶ y1 ∶ z1].

ThusR(E×E)S2 is exactly the set of polynomials in k[x1 ∶ y1 ∶ z1;x2 ∶ y2 ∶ z2]Ò(F1, F2)
that are bihomogenous and multisymmetric. Since

x1x2, y1y2, z1z2, x1y2 + y1x2, x1z2 + z1x2, y1z2 + z2y2

generate all such polynomials in k[x1 ∶ y1 ∶ z1;x2 ∶ y2 ∶ z2] let’s consider the ring map

ϕ ∶ k[e1, e2, e3, e4, e5, e6] → k[x1 ∶ y1 ∶ z1;x2 ∶ y2 ∶ z2]Ò(F1, F2)

where each ei maps to one of the six generators listed above. Then we have

R(S−1) = R(E ×E)S2 ≃ k[e1, e2, e3, e4, e5, e6]Òker ϕ

15



since ker ϕ is the ideal consisting of all relations between the generators and the

preimages of F1 and F2.

Macaulay2 code for generating R(S−1) :

P2xP2= QQ[ x , y , z , x ’ , y ’ , z ’ ] ; S = QQ[ f1 , f2 , f3 , f4 , f5 , f 6 ] ;

e1=x∗x ’ ; e2=y∗y ’ ; e3=z∗z ’ ; e4=x∗y’+y∗x ’ ;

e5=x∗z ’+z∗x ’ ; e6=y∗z ’+z∗y ’ ;

F1 = z∗yˆ2−xˆ3−x∗zˆ2−z ˆ3 ; F2 = z ’∗ y ’ˆ2−x ’ˆ3−x ’∗ z ’ˆ2− z ’ ˆ 3 ;

ExEinP2xP2 = P2xP2/ i d e a l (F1 , F2 ) ;

F = map(ExEinP2xP2 , S , {e1 , e2 , e3 , e4 , e5 , e6 } ) ;

kerF = trim ke rne l F ;

Sym2E = S/kerF ;

Lemma 4.1. The embedding described above to embed S−1 into P5 is given by the

divisor ∣3X0∣ on S−1. That is, it is the map

ϕ3X0 ∶ S−1 ⇢ P5

4.2 Constructing the linear system L(2n(n + 1)X0 − 2nf)

Recall that S−1 is an elliptic ruled surface given by

σ ∶ E ×EÒ(P,Q) ∼ (Q,P ) → E ; (P,Q) ↦ P +Q.

I want to construct the linear system L(2n(n + 1)X0 − 2nf) in Macaulay2, where

X0 is the section of minimum self intersection and f is a fiber of σ that is invariant
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under the involution (P,Q) ↦ (Q,P ).

it is clear that the fiber above “∞” will be given by the ideal (y1 + y2), since

P + Q = “∞” ⇐⇒ P and Q are reflections of each other about the y-axis. This

ideal is not defined in R(S−1) since it is not bihomogenous. However, notice that if

P and Q are points of E that are reflections of each other across the y-axis, then

we also have that x1 = x2. Thus, we can fix the issue of (y1 + y2) not being in our

ring by instead using the ideal (x2y1 + x1y2) which is in R(S−1), and give the same

locus of S−1. However, this gives a reducible divisor, so we will use the irreducible

component that corresponds to the desired divisor, which in our case is the one with

self intersection 0, since one of the two irreducible components does not.

We can let X0 be the set of points (P,Q) where P = “∞” or Q = “∞”, so it is

given by the ideal (x1x2, x1z2, z1x2, z1z2) since all four of these polynomials are zero

⇐⇒ P = [0 ∶ 1 ∶ 0] or Q = [0 ∶ 1 ∶ 0]. I will now outline a method of constructing

linear systems in Macaulay2.

Constructing linear systems in Macaulay2 using the Divisor package

In the “Divisor” package provided by Macaulay2 [?], there is a function called map-

ToProjectiveSpace, which computes the map to projective space associated with the

global sections of a Cartier divisor. This function outputs the explicit equations of

the map, which we know also forms a basis of the linear system. All divisors on S−1

are Cartier divisors since it is smooth, so this method will produce the desired basis.

The following code finds a basis for the linear system:

i 16 : loadPackage ”Div i so r ” ;

i 17 : f = d i v i s o r i d e a l ( f 4 )

o17 = 1∗Div ( f6 , f4 , 2∗ f 2 ∗ f 3+2∗ f 3 ˆ2+f1 ∗ f 5+f3 ∗ f5 , 4∗ f 1 ∗ f3 − f 5 ˆ2 ,
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4∗ f 1 ˆ2+2∗ f 2 ∗ f 5+2∗ f 3 ∗ f 5+f5 ˆ2) + 1∗Div ( f4 , f 2 ∗ f3 − f 3 ˆ2+f1 ∗ f5 ,

f 2 ˆ2+3∗ f 3 ˆ2−3∗ f 1 ∗ f 5+f2 ∗ f5 − f 6 ˆ2 , f 1 ∗ f2 − f 1 ∗ f 3+f1 ∗ f 5+f5 ˆ2 ,

f 1 ˆ2− f 1 ∗ f3 − f 3 ∗ f 5 ) o f Sym2E

o17 : WDiv

// no t i c e that the above i s a r educ i b l e d i v i s o r .

//We w i l l l e t f be the f i r s t o f the two , which i s the de s i r ed one .

i 17 : f = d i v i s o r i d e a l ( f6 , f4 , 2∗ f 2 ∗ f 3+2∗ f 3 ˆ2+f1 ∗ f 5+f3 ∗ f5 , 4∗ f 1 ∗ f3 − f 5 ˆ2 ,

4∗ f 1 ˆ2+2∗ f 2 ∗ f 5+2∗ f 3 ∗ f 5+f5 ˆ2 ) ;

o17 = 1∗Div ( f6 , f4 , 2∗ f 2 ∗ f 3+2∗ f 3 ˆ2+f1 ∗ f 5+f3 ∗ f5 , 4∗ f 1 ∗ f3 − f 5 ˆ2 ,

4∗ f 1 ˆ2+2∗ f 2 ∗ f 5+2∗ f 3 ∗ f 5+f5 ˆ2) o f Sym2E

o17 : WDiv

i18 : X = d i v i s o r i d e a l ( f5 , f3 , f1 , f 4 ˆ3− f 2 ˆ2∗ f 6+f4 ∗ f 6 ˆ2+f6 ˆ3)

o18 = 1∗Div ( f5 , f3 , f 1 ) o f Sym2E

o18 : WDiv

i19 : D = X + bf

o19 = 1∗Div ( f5 , f3 , f 1 ) + 1∗Div ( f4 , f 2 ∗ f3 − f 3 ˆ2+f1 ∗ f5 ,

f 2 ˆ2+3∗ f 3 ˆ2−3∗ f 1 ∗ f 5+f2 ∗ f5 − f 6 ˆ2 , f 1 ∗ f2 − f 1 ∗ f 3+f1 ∗ f 5+f5 ˆ2 ,

f 1 ˆ2− f 1 ∗ f3 − f 3 ∗ f 5 ) o f Sym2E

o19 : WDiv

i20 : mapToProjectiveSpace D

o20 = map(Sym2E,QQ[Y1 , Y2 , Y3 ] ,

{ f 4 ∗ f 5 − 2 f1 ∗ f6 , 2 f 3 ∗ f 4 − f 5 ∗ f6 , 4 f 1 ∗ f 3 − f 5 ˆ2})

o20 : RingMap Sym2E <−−− QQ[Y1 , Y2 , Y3 ]
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This method produces a dimension 3 vector space, as desired. As a sanity check,

we can do Riemann-Roch calculations to confirm that it has the correct dimension

for other cases as well.

Another method of constructing linear systems: We can use lemma 1.1

to assist us in constructing linear systems. Since our embedding is given by ϕ3X0

we can use this to construct any linear system that has nX0 where 3∣n. That is,

if our linear system is L(3kX0 − af −mE) then we can start by finding L(3kX0)

and imposing restrictions on the system of polynomials. Now since our embedding

is ϕ3X0 , the linear system L(3kX0) is then just all degree k hypersurfaces in R(S−1),

or, is generated by all degree k monomials in 6 variables modulo I(S−1). We can

then, using the method outlined in the next section, find a basis for the vector

subspace which contains I(f)a and I(p)m−a. This subspace is exactly the linear

system L(3kX0−af−mE). Since the linear systems we are working with are described

by L(2n(n + 1)X0 − 2nf − (2n2 − 1)E), this method will work when 3∣2n(n + 1), or

when n ≡ 0,2(mod3). One issue that may restrict the usage of this method is the

fact that our initial linear system L(3kX0) will contain (k+5
5
), which will be too large

to work for larger n.

4.3 Finding Seshadri exceptional curves

Once we have a method for finding the basis of the vector space L(aX0 + bf) we

can finally find equations for the Seshadri exceptional curves Cn. We know that

Cn ≡ 2n(n + 1)X0 − 2nf , and on elliptic ruled surfaces numerical equivalence is the

same as taking a point on another fiber. However this is equivalent to fixing a point
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on our fiber and taking divisors linear equivalent to 2n(n + 1)X0 − 2nf . We know

that a divisor is linear equivalent to our divisor if it is some linear combination of

the generators for the vector space L(2n(n + 1)X0 − 2nf), and a linear equivalent

divisor is the Seshadri exceptional curve Cn if it has multiplicity 2n2 − 1 at a some

general point on the fiber. i.e. if x is some general point and f1, ..., fk are the

generators of ∣2n(n + 1)X0 − 2nf ∣ then we want to find a1, ...an constants such that

a1f1 + ... + anfn(mod I(x)2n−1) ≡ 0 in R(S−1).

Finding the constants ai is equivalent to finding the null space of the matrix of

coefficient vectors for fi(mod I(p)2n−1). Once we have found the linear combination

which gives this curve of high multiplicity in the linear system we have found an

equation for our Cn curve, however this equation we get will not be an irreducible

curve. It will reduce to a union of some powers of X0 and f along with Cn, so we

must decompose it to find the equation for the irreducible Cn curve that we are

looking for. I currently do not have a good way of doing this because the decompose

function for ideals in Macaulay2 is too computationally expensive.

4.4 Issues with methods

• Takes really long time to compute linear systems, currently cannot compute

any for n > 3
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5 Low genus curves

5.1 Genus 1 curves

From using the method outlined in section 1 we have found an equation for C1

confirming that C1 is a smooth curve. Thus from the above result, C1 has genus 1

and is therefore an elliptic curve.

Lemma 5.1. The C1 curves are given by a pencil of elliptic curves which are iso-

morphic to the elliptic curve that S−1 is ruled over.

From [2] we know that

C1 ∼ 4X0 − 2f.

From a simple Riemann-Roch calculation we have that h0(S−1,4X0 − 2f) = 2 so this

divisor gives a map to P1.

Lemma 5.2. The map φ ∶ S−1 → P1 given by the linear system ∣4X0 − 2f ∣ is given

by (P,Q) ↦ ±(P −Q) where (P,Q) ∈ Sym2E and “ − ” is the inverse of the group

operation on E.

5.2 Genus 2 curves

From the paper we know that C2 ∼ 12X0 − 4f and has multiplicity 7 at some point.

I currently have 2 approaches in progress for finding these curves:

First approach When using the divisor package mentioned above along with the

linear algebra method for finding the curve of high multiplicity, I am able to find an
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ideal which contains C2, however, it takes too long to decompose the ideal so I can

not find what the irreducible components are. I do know that one of the irreducible

components will be the fiber, and will have multiplicity four. I can then use the

saturation method to remove the four fibers from the ideal, which results in the ideal

of an irreducible curve. This curve is our C2. However, the ideal for the curve is

extremely large so Macaulay cannot tell us if it is smooth. We can work around

this by showing that the minors of the Jacobian of our ideal intersect to give the

entire ring. That is, we can find the determinant of a few minors and compute their

intersection and hope that we get (1). These computations also take a very long

time and I have, so far, been unable to show that C2 is smooth.

Second approach Note that the C2 curve is a hyperelliptic curve of genus 2. We

have the short exact sequence of sheaves:

0→ OBlS−1(KBlS−1) → OBlS−1(KBlS−1 −C2) → OC2(KC2) → 0

Which then gives us the long exact sequence of cohomology groups:

0→H0(BlS−1,KBlS−1) →H0(BlS−1,KBlS−1+C2) →H0(C2,KC2) →H1(BlS−1,KBlS−1) → ...

We know that h0(C2,KC2) = 2 since ∣KC2 ∣ gives a double cover of P1. Further, from

looking at the ramified points of this map we can reverse engineer the hyperelliptic

curve C2. From a Macaulay2 calculation we know h0(BlS−1,KBlS−1+C2) = 2, so from

the long exact sequence we get that these two vector spaces are isomorphic. Thus,

to understand the map ∣KC2 ∣ we only need to understand ∣KBlS−1 +C2∣ restricted to
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C2.

5.3 Genus n curves

Lemma 5.3. Let C̃n ⊂ Blp(S−1) be the proper transform of Cn. Then C̃n is a genus

n curve.

Proof. By the above lemma, blowing up S−1 at x will resolve the singularity so C̃n

is a smooth curve. We can then apply Riemann-Roch, thus we can use the genus

formula

2g − 2 = C̃n.(C̃n +KBlp(S−1))

where g is the genus of C̃n and KBlp(S−1)) is the canonical divisor on Blp(S−1). We

have

C̃n ≡ 2n(n + 1)X0 − 2nf + (2n2 − 1)L and KBlp(S−1)) ≡ −2X0 + f −E.

Where L is the exceptional divisor. Thus,

g = 1+ 1Ò2(4n2(n+ 1)2 − 8n2(n+ 1)− (2n2 − 1)2 − 4n(n+ 1)+ 4n+ 2n(n+ 1)+ 2n2 − 1)

= 1 + 1Ò2(2n − 2) = n
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6 The convex cone of effective divisors on S

Theorem 6.1. The effective cone Eff(S) is generated by the curves C̃n, where C̃n

are the proper transforms of the Seshadri exceptional curves Cn on S−1.

Proof. Suppose C is an irreducible curve on S−1 passing through a point x with

multiplicity m > 0, and C2 <m2. Then we can define the continuous function

qC ∶ Nef(S) → R by qC(A,x) =
A ⋅C
m

We then define QC , which we call the influence area of C, to be the open set of nef

divisors satisfying

qC(A,x) <
√
A2

In the case of S−1, we have the curves Cn ≡ 2n(n+1)X0−2nf with multxCn = 2n2−1,

so C2
n =multxCn − 1. Thus the map qCn is defined and gives us the influence area:

QCn = {A ≡ aX0 + bf ∈ Nef(S−1)∣(1 +
1

n
)2 < a

2b + a < (1 + 1

n − 1
)2}

Recall that the nef cone of S−1 is generated by the divisors 2X0 − f and f . We can

then rewrite the influence area in terms of linear combinations of these generators as

follows:

QCn = {A ≡ a(2X0 − f) + bf ∈ Nef(S−1)∣(1 +
1

n
)2 < a

b
< (1 + 1

n − 1
)2}

Notice that these sets cover all divisors A ≡ a(2X0 − f) + bf where a
b > 1, or where

a > b. Now we also know that f has multiplicity 1 through any point lying on the
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fiber, and f 2 = 0, so qf is defined. We can now calculate the influence area of f :

f ⋅ (2aX0 + (b − a)f) = 2a and (2aX0 + (b − a)f)2 = 4ab

So a nef divisor A satisfies qf(A,x) <
√
A2 if b > a. That is,

Qf = {A ≡ a(2X0 − f) + bf ∈ Nef(S−1)∣
a

b
< 1}

We now have all nef divisors on S−1 covered by one of the above influence areas,

except for the divisors A ≡ 2aX0. All nef divisors on S will be of the form A −mE.

Since we are blowing up at a point away from X0, 2aX0 −mE will never be nef on

S, so this is not a problem. Let A be a nef divisor in the influence area QC . We can

now define the basins

BC = {Ã = A −mE∣A ∈ QC and m ≤ qC(A)}

I claim that Nef(S) = (∪nBCn)∪Bf . To see this, first notice that any divisor outside

of these basins are not nef. For if A ∈ QC and m > qC(A) then

Ã ⋅ C̃ = A ⋅C −m ⋅multxC < 0

Now Suppose Ã = A−mE ∈ BC is not nef. So there is some divisor D̃ =D−mDE

such that Ã ⋅ D̃ < 0. Now Ã2 = A2−m2 > 0 Ô⇒ Ã is effective, so Ã = Ã1+ Ã2+ ...+ Ãr

where Ãi are irreducible divisors. Since Ã ⋅ D̃ < 0, there is some Ãi = Ai −multxAiE

which has Ãi ⋅ D̃ < 0. But then Ai ⋅D <multxD ⋅multxAi, which is impossible unless
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Ai = D. However, if this were the case, then we would have D2 < multxD2 which

means that D is a Seshadri exceptional curve based at x. However, we know that if

Ãi ∈ QC then qD(Ai) > qC(Ai) since Ai ∈ QC if and only if qC(Ai) <
√
A2

i , and all of

the influence areas are disjoint, so we must then have qD(Ai) ≥
√
A2

i Ô⇒ qC(Ai) <

qD(Ai). From this, we know that

Ãi ⋅ D̃ = Ai ⋅D −multxAi ⋅multxD =multxD(qD(Ai) −multD) > 0

Thus all of the divisors in the basins BC are nef and these are all of the nef divisors.

Now we know that Eff(S) = Nef(S)∗ dual cones. So

Eff(S) = {φ ∈ V ∗∣φ(x) ≥ 0 ∀x ∈ Nef(S)}

Since the faces of Nef(S) were given by C̃n ⋅ Ã = 0, these will be the generators of

the dual cone, so Eff(s) is generated by f,C1,C2,C3, ...
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