
HONORS THESIS
EQUATIONS FOR THE LOG CANONICAL MODEL OF HYPERPLANE

ARRANGEMENT COMPLEMENTS

SHELBY COX

1. Introduction

The main objects of study in algebraic geometry are the sets of zeroes of finitely many

polynomial equations, called algebraic varieties. Sometimes varieties are defined explicitly

from given equations, but we can also consider algebraic varieties that arise implicitly from

certain procedures, like constructing the variety of a moduli space. When we know the

equations that define a variety, we better understand the variety: we can find singularities

of the variety and study properties like projective normality. Therefore, in the cases where

the equations need to be derived, it is important that we know as much as possible about

them.

One classical way in which algebraic varieties can implicitly arise is the embedding of

canonical curves. In particular, when the curve is not hyperelliptic, the linear system associ-

ated to the canonical class gives us an embedding of the curve into projective space. In this

case, there are several results. For example, Petri’s theorem tells us that for curves of genus

greater than or equal to 4, the ideal of the embedding is generated by the degree 2 elements,

except in certain special cases, where the ideal is generated in degrees 2 and 3.

More recently, mathematicians have begun to study the canonical ring and the log canon-

ical model. The canonical ring is defined to be R =
⊕

n≥0H
0(X,nKX), or global sections

of tensor powers of the canonical line bundle. Taking the projective spectrum of R, denoted

by Proj(R) gives the canonical model. A fundamental theorem of Birkar-Cascini-Hacon-

McKernan is that the canonical ring is always finitely generated. Similarly, we can associate

Date: June 12, 2018.
1

2 SHELBY COX

to a variety X and a divisor of the variety, D, a log canonical algebra, defined in the same

way, except that we allow our sections to have simple poles along the divisor.

Over the summer, I began researching the equations of the log canonical model of hyper-

plane arrangement complements through an REU with Professor Jenia Tevelev. Our original

questions have led to numerous further questions in algebraic geometry and representation

theory.

1.1. Goals and Methodology. Let A = {H1, . . . , Hm} ⊂ Pn be an arrangement of hyper-

planes defined by the linear equations f1, . . . , fn. Denote by M(A) the complement of A.

Denote by R(A) the log canonical algebra of M(A). We know that R(A) is generated in

degree 1, that the degree 1 component is isomorphic to the top degree component of the

Orlik-Solomon algebra and that there is an algorithm for computing a basis for R(A) [1].

Despite these results, explicit equations for the ideal of the log canonical model are still

not known. Although it would be unrealistic to expect to explicitly write the equations of the

log canonical model for any given hyperplane arrangement complement, we would ultimately

like to obtain a result similar to Petri’s theorem for hyperplane arrangement complements,

which tells us when the log canonical model is sufficiently “nice,” i.e., we would like to know:

(Q1) For what hyperplane arrangements is the log canonical algebra: (a) Koszul? ; and

when is the homogeneous ideal of the log canonical model (b) generated in degree 2? ; (c)

generated by a quadratic Groebner basis?

In order to address this question computationally, we interpret the basis of R(A) as a

subset of the following meromorphic functions:{
1

fi1 · · · fik
| Hi1 ∩ · · · ∩Hik = {0}

}

For a given (sufficiently small) line arrangements, we can immediately answer (b) and (c)

using Macaulay2 by defining a homomorphism and asking for a Groebner basis of the kernel:

φ : Q[T1, . . . , Tm]→ Q(x1, . . . , xn)

HONORS THESIS 3

Tα 7→
1

fα1 · · · fαn

But before we can even begin to answer Q1, we need to find a basis for the log canonical

algebra. It is a result of Orlik and Solomon [2] that the log canonical algebra is generated in

degree 1, but they do not give any explicit generators. Brion and Vergne do give an explicit

algorithm for finding generators in [1], but it is not clear if the relations we seek in Q1 are

easy to write down with the basis that the Brion-Vergne algorithm generates. In addition,

a theorem of Zaslavsky states that there is a numerical equivalence between the number of

bounded regions of a hyperplane arrangement and the dimension of the log canonical algebra.

Therefore, one aspect of my project will be to answer the natural question:

(Q0) Is there a natural one-to-one correspondence between basis elements of R(A) and

bounded regions of A?

We are especially interested in these questions for Coxeter arrangements, which are as-

sociated with root systems. Most of my research so far has centered on computing the log

canonical model for Coxeter arrangements of type A, where we already know that the log

canonical algebra is Koszul [3]. Using Macaulay2, I found that for n ≤ 4 the ideal of the log

canonical model of An has a quadratic Groebner basis. I also found a basis of the log canon-

ical algebra for the braid arrangement from which quadratic equations of the log canonical

model can be easily obtained. Based on the findings of Keel-Tevelev [3], we also wonder if

these relations and the relations obtained by acting with Sn+2 generate all equations of the

ideal.

In general though, computations for larger Coxeter arrangements, like E8, are not feasible.

Instead of trying to calculate the ideal directly, we can begin to explore the log canonical

compactification of large arrangements through computations for subarrangements. One

way we can obtain a subarrangement is by restricting the arrangement, i.e., we only consider

the basis elements of the log canonical algebra which include the equation of a certain

hyperplane. Through explicit computations for the hyperplane arrangements A3 and A4, I

noticed that some generators of the A4 ideal came directly from the generators of the ideal

4 SHELBY COX

of A3 by restricting the A4 arrangement to specific hyperplanes, which leads to the following

question:

(Q2): How is the log canonical model of subarrangements related to the log canonical

model of the whole arrangement? In particular, how are their homogeneous ideals related?

In addition to the questions outlined above, I would like to further investigate the Orlik-

Solomon algebra and how it relates to the log canonical algebra, explore the connection

between the Whitehouse module and the log canonical algebra of the braid arrangement,

and answer (Q1) for reflection arrangements.

Knowing the equations of the log canonical model will help mathematicians better under-

stand and study its properties. This work is important because not much is known about

the log canonical model, even for complements of hyperplane arrangements. We may also

broaden the project to study all reflection arrangements, as classified by Shepherd and Todd

in [4]. In this way, the project would contribute to a large body of existing information about

reflection arrangements.

2. Background

2.1. Definitions. A hyperplane is a linear subspace of codimension 1. A hyperplane ar-

rangement is a set of hyperplanes of the same dimension. We can consider a hyperplane

arrangement in affine or projective and complex or real space. We have the following defini-

tions related to hyperplane arrangements in RPn, though they can easily be generalized to

Rn, Cn or CPn:

Definition. Let A = {Hi} be an arrangement of hyperplanes in RPn.

(1) A minimal region of A is a connected component of the complement RPn\A. More

generally, a region of A is a connected component of RPn \ B, where B ⊂ A

(2) A simplex is a region of a subset of n+1 of the Hi. A minimal simplex is a region

that is minimal and a simplex.

(3) We call A simplicial if all its minimal regions are simplices

HONORS THESIS 5

(4) Fix a hyperplane H∞, which is general with respect to A. A region of A is bounded

with respect to H∞ if H∞ does not intersect it.

(5) An affine hyperplane arrangement is central if all the hyperplanes in the arrangement

pass through a common point (usually the origin).

T1

Figure 1. A simple line arrangement.

Example 2.1. The above arrangement has four minimal regions. One unbounded minimal

region is shaded, and the only bounded minimal region is labeled T1. This arrangement is

simplicial.

T5

T6

T4

T1

T3

T2

Figure 2. The arrangement
A3, with the minimal bounded
regions labelled Ti.

Figure 3. A3 with a different
choice of H∞ (the dashed line).

Example 2.2. The above arrangement is the Coxeter arrangement A3, with two different

choices of H∞. Note that A3 is simplicial, with 6 minimal bounded regions, regardless of the

choice of H∞. The region made up of T2 and T3 is not a simplex.

6 SHELBY COX

The Log Canonical Algebra. Let D be a divisor and let (X,D) be a log canonical

pair. Then the log canonical algebra R(KX +D) is:

R(KX +D) :=
⊕
n≥0

H0(X,n(KX +D))

Let X be a (wonderful) compactification of the complement of A, Pn \ A, with normal

crossing boundary. Denote by p, l, . . . the points, lines, etc. to be blown-up, and by H the

proper transform of Hi. Then the canonical divisor on X is:

KX = −(n+ 1)H + (n− 1)
∑
p

Ep + (n− 2)
∑
l

El + · · ·

And the boundary divisor on X is:

∆ =
∑
p,l,...

E +
r∑
i=1

(
H−

∑
p∈Hi

Ep −
∑
l∈Hi

El − · · ·
)

And the log canonical divisor is the sum of the canonical divisor and the boundary divisor:

KX + ∆

Using X as the compactification, we can define the log canonical algebra (LCA) of

Pn \ A to be:

R(A) :=
⊕
n≥0

H0(X, n(KX + ∆))

Remark. The log canonical algebra is independent of the choice of compactification of

Pn \ A, hence the name “canonical.”

Then the log canonical model (LC) is defined to be:

LC(Pn \ A) := Proj(R(A))

Remark 1. If X is the wonderful compactification of Pn \ A, then “usually”

X = Proj(R(A))

HONORS THESIS 7

Geometrically, this means that KX + ∆ is ample on the wonderful model.

In general, if Y is a variety, D is a divisor on Y and S =
⊕

n≥0H
0(Y, nD), then Proj(S) =

Y if and only if D is ample on Y.

For real line arrangements, the two possibilities for the log canonical model are described

below.

Figure 4. The complement of a line arrangement whose wonderful compact-
ification is not the log canonical model.

Example 2.3. The wonderful compactification of the hyperplane arrangement complement

in figure 4 is just the blow-up of P2 at two points, Blp1,p2P2. But the log canonical model is the

blow-up Blp1,p2P2 with the line connecting p1 and p2, p1p2, contracted. It is an (easy) exercise

to check that the log canonical model of the above hyperplane arrangement complement is

P1 × P1.

Example 2.4. Suppose A is a line arrangement so that each line has 3 distinct points of

intersection with other lines in the arrangement. Then X = Proj(R). Note that this is the

only other possibility in P2.

2.2. Previous Work.

Theorem 1 (Orlik-Solomon Theorem). For A, f , X as before,

(1) H0(X,Ωn
X(log)) = Hn(M(A);C)

(2) H0(X,Ωn
X(log)) is generated in degree 1, by df

f
.

Remark 2. For a hyperplane arrangement A ⊂ Pn, we can also consider the corresponding

central arrangement in affine space of dimension one greater, An+1. The projectivization

8 SHELBY COX

A2 P1

Figure 5. Projectivization is a C∗-bundle

map is a C∗-bundle, so the LCA of the projective hyperplane arrangement is the same as

the LCA of the corresponding central affine arrangement.

This is important, for example, because the Orlik-Solomon theorem is stated in terms of

3-forms and there is no natural way to think of forms as sections on P2.

Remark. The first degree components of the LCA of a hyperplane arrangement complement,

R1(A), is isomorphic to the top degree component of the Orlik-Solomon algebra of M(A)

[1].

Remark. For a line arrangement, the Orlik-Solomon theorem tells us that 3-forms with

log poles corresponding to the triangles (simplices) of the arrangement generate the LCA

(although, in most cases, this set is not linearly independent).

x2 = 0

x3 = 0x1 = 0

Figure 6. A very simple projective line arrangement.

HONORS THESIS 9

Example 2.5. If A = {x1, x2, x3} (as in the figure above), then R(A) is generated by the

3-form:

dx1
x1
∧ dx2
x2
∧ dx3
x3

x3 = 0
x1 = 0

x2 = 0

x1 − x2 = 0
x1 − x3 = 0

x2 − x3 = 0

Figure 7. The projectivized A3 arrangement.

Example 2.6. Figure 7 shows the Coxeter arrangement A3, projectivized. The Orlik-

Solomon theorem tells us that the 16 (6 choose 3, minus 4) 3-forms corresponding to non-

degenerate triangles generate R(A3). In fact, we can do much better. That is, R(A3) is

generated by just 6 of those 16 3-forms, which are linearly independent.

One way to pick generators for A3 is to take the 3-forms corresponding to the smallest

triangles in the picture:

df1
f1
∧ df5
f5
∧ df6
f6
,
df1
f1
∧ df4
f4
∧ df5
f5

df2
f2
∧ df4
f4
∧ df6
f6
,
df2
f2
∧ df5
f5
∧ df6
f6

df3
f3
∧ df4
f4
∧ df5
f5
,
df3
f3
∧ df4
f4
∧ df6
f6

Question: Do the forms corresponding to minimal bounded regions always generate R(A)?

2.3. Primary Literature. The following is a brief review of the primary literature impor-

tant to my project.

([3]) Keel-Tevelev. In this paper, Keel and Tevelev state several important results for

the log canonical algebra of the complement of the Coxeter arrangement, An. In particular,

they relate it to the blow up of M0,n, the closure of the moduli space of curves of genus 0

10 SHELBY COX

with n marked points, and prove that the algebra is Koszul. They also describe implicitly

the equations of the log canonical model. One of the goals of my project is to be able to

write the equations down explicitly.

([1]) Brion-Vergne: In their paper, Brion and Vergne state the correspondence between

the Orlik-Solomon Algebra and the Log Canonical algebra, which allows us to apply Za-

slavsky’s theorem to our problem. They also provide an algorithm for finding a basis of the

top degree component of the Orlik-Solomon Algebra, which makes our problem computable.

In this paper, they also consider a larger algebra than the log canonical one, which may

be useful to me later. If A = {Hi} is a hyperplane arrangement with its equations given by

{fi}, the larger algebra Brion and Vergne consider is generated by all fractions of the form

1/fi. In contrast, the first degree component of the log canonical algebra is generated by

fractions with the product of three linear terms in the denominator.

([5]) Zaslavsky’s Theorem. Zaslavsky’s theorem is an important result about the di-

mension of the top degree component of the Orlik-Solomon algebra, which I can relate to

my problem via the correspondence described in the previous subsection. If A is either a

real affine or real projective hyperplane arrangement, then Zaslavsky’s theorem states:

Theorem 2 (Zaslavsky). The dimension of the top degree component of the Orlik-Solomon

Algebra of the complement of A is equal to the number of minimal bounded regions of the

arrangement.

Zaslavsky’s proof uses advanced combinatorial methods; we can provide another proof

using methods from algebraic geometry.

([2]) Yuzvinsky. Yuzvinsky’s paper provides a survey of Orlik-Solomon algebras of hy-

perplane arrangement complements, which may be useful to me as I further explore the

connection between the Orlik-Solomon Algebra and Log Canonical Algebra.

([4]) Shepherd-Todd. Shepherd and Todd give a classification of all hyperplane arrange-

ments. Although most are too large for the log canonical model to be directly computed

using Macaulay2, it would be interesting to find the log canonical model for different classes

HONORS THESIS 11

of hyperplane arrangements, as outlined in this paper. Other classifications of line arrange-

ments are given by Hoge and Rohrle in [6].

3. Results

3.1. An Alternate Proof of Zaslavsky’s Theorem.

Theorem 3 (Zaslavsky’s Theorem). The number of minimal bounded regions of an arrange-

ment A is equal to the number of basis elements of R(A).

Zaslavsky’s original proof was a purely combinatorial argument, but we can also provide

a proof using algebraic geometry. First, recall the Kawamata-Viehweg vanishing theorem:

Theorem 4 (Kawamata-Viehweg Vanishing Theorem). Let X be a smooth projective alge-

braic variety, and let ∆ = ∆0 + A be a Q-divisor of X so that

(i) ∆0 has coefficients ci with 0 < ci < 1

(ii) ∆0 has simple normal crossings

(iii) A is ample

Then H i(ωX(∆)) = 0 for i > 0.

We can use the Kamawata-Viehweg vanishing theorem to prove the following lemma:

Lemma 4.1. Suppose A = {Hi}ri=1 is a hyperplane arrangement, and let X be the wonderful

compactification of its complement. Then H i(X, n(KX + ∆)) = 0 for all i > 0.

Proof. The boundary divisor of X is

∆ =
∑
i

Ei +
r∑
i=1

(H−
∑
p∈H

Ep −
∑
l∈H

El − · · ·)

Now let A be any ample divisor, and write:

A := dH−
∑

miEi

12 SHELBY COX

Let kp =
∑r

i=1Hi · Ep and let k = max(ki, r) = r. Then take

c′ := 1− 1

2k + 1

ci := 1 + (c′ − 1)ki − δmi

β := (1− c′)r − δd

δ :=
1− c′

max(mi) + 1

Now define

A := δA+ βH

∆0 := c1E1 + · · ·+ csEs +
∑

c′(H −
∑
p

Ep)

Then, in fact,

∆0 + A =
∑
i

ciEi +
∑

c′(H −
∑
p

Ep) + δA+ βH

=

[
1 + (c′ − 1)ki − δmi − c′ki

]
Ei +

[
rc′ + δd+ (1− c′)r − δd

]
H

= (1− ki)Ei + rH

= ∆

and

(i) ∆0 has coefficients between 0 and 1. Obvious by the choice of c′, ci:

c′ = 1− 1

2k + 1
∈ (0, 1)

⇐⇒ 1

2k + 1
∈ (0, 1)

which is true since r > 0.

ci = 1 + (c′ − 1)ki − δmi ∈ (0, 1)

⇐⇒ δmi − (c′ − 1)ki ∈ (0, 1)

HONORS THESIS 13

which follows from the fact that:

0 < |δmi| < (1− c′)ki <
1

2

From right to left: the first inequality is obvious; the second inequality follows from the

choice of δ and because ki ≥ 1 for each i; the last inequality is because of our choice of

c′.

(ii) ∆0 has simple normal crossings. This follows directly from the fact that we chose X to

be the wonderful compactificiation.

(iii) A is ample. Since A is ample by assumption and βH is NEF (since β is positive), A is

ample by Kleiman’s criterion.

Hence, by the Kamawata-Viehweg vanishing theorem, H i(X, n(KX + ∆)) = 0 for all i >

0. �

Alternate Proof of Zaslavsky’s Theorem. We can proceed using induction on the number of

hyperplanes, and the deletion-restriction sequence. Let A = {H1, . . . , Hr} ⊂ Pn. Obviously

the result holds if we take the fewest number of hyperplanes possible, r = n + 1 (there is

only one bounded region, and it must be a simplex).

Now suppose that A has r+ 1 hyperplanes. Then let A′ = A\Hr+1, and let A = A |Hr+1 .

Hr+1 be the proper transform of Hr+1 in X, and let ∆′ = ∆−Hr+1.

One can show using the Kawamata-Viehweg vanishing theorem that H i(X, n(KX+∆)) = 0

for i > 0. So by adjunction, we have the short exact sequence:

0→ H0(X, KX + ∆′)→ H0(X, KX + ∆)→ H0(X, KHr+1
+ ∆Hr+1

)→ 0

since H i(X, Kx + ∆) = 0 for all i > 0 by lemma 2.1. By our inductive assumption,

dim(H0(X, KX+∆′)) is equal to the number of bounded regions of A without the hyperplane

Hr+1, and dim(X, KHr+1 + ∆Hr+1) is equal to the number of bounded regions that Hr+1 in-

tersects in A. Every bounded region Hr+1 intersects will give one new bounded region when

14 SHELBY COX

we add Hr+1 to the arrangement. Hence,

dim(H0(X, KX + ∆)) = dim(H0(X, KX + ∆′)) + dim(X, KHr+1 + ∆Hr+1)

is exactly the number of bounded regions of A after adding Hk+1. �

Proposition 4.1. There is a canonical basis of the log canonical algebra given by the com-

position:

H0(M(A)) Hn(RPn,A) Hn(CPn,AC) Hn(MC(A)) Hn
dR(MC(A))

That is, pick a hyperplane at infinity, H∞; then the elements of H0(M(A)) correspond-

ing to the bounded regions with respect to H∞ give a basis (under the composition) of

Hn
dR(MC(A)), which in turn gives rise to a basis of the degree 1 part of the log canonical

algebra.

Note. For the following two lemmas, we work in affine space. That is, choose one

hyperplane of A to be the hyperplane at infinity, and use it to orient the resulting affine

vector space.

Lemma 4.2. Let A be a minimal bounded region of M(A). If A is simplicial, with bounding

equations f1, . . . , fn+1, then

df1
f1
∧ · · · ∧ dfn+1

fn+1

is the form corresponding to A under the composition.

Proof. We can reduce to the case where the hyperplanes of A = {Hi} form a basis of

RPn and there is exactly one minimal bounded region, A. We need to show that the form

corresponding to A under the maps in the proposition is

ω = c
df1
f1
∧ · · · ∧ dfn+1

fn+1

for some constant c.

Let

C =
{
z = (z1, . . . , zn+1) | |zi| = 1

}
⊂ Cn+1

HONORS THESIS 15

Note that C is dually associated with ω.

By basic complex analysis, ∫
C

df1
f1
∧ · · · ∧ dfn+1

fn+1

= c(2πi)n+1

On the other hand, A and C are cycles intersecting transversely in a single point, so

A · C = 1

So take c = 1
(2πi)n+1 .

Since both vector spaces are one-dimensional, we conclude that ω is in fact the form

corresponding to A. �

Lemma 4.3. Let A be any bounded region of M(A), and let {Ti} be any triangulation of A.

Then the form

ωT1 + · · ·+ ωTk

is the form corresponding to A under the composition.

Proof. It suffices to study the case when A can be triangulated by adding one hyperplane to

the arrangement. In RP2, this reduces to studying the case when A is a quadrilateral, and

adding one diagonal of A to the arrangement, illustrated below:

f2

f3

f4

f1
g

Figure 8. A triangulation of a quadrilateral in P2.

Let A = {Hi}, and let Hg be the hyperplane we add to triangulate A. Then consider the

following diagram:

16 SHELBY COX

Hn(CPn,AC) Hn(MC(A))

Hn(CPn,AC ∪Hg) Hn(MC(A ∪Hg))

j∗

[N ′]_

r

[N]_

Where [N ′] is an orientation class of MC(A) and [N] is the restriction of that class to

MC(A ∪ Hg). The horizontal maps are Lefschetz duality, the left vertical map is from the

long exact sequence of the pair (CP,AC) and the right vertical map is restriction. It is easy

to see that the diagram commutes.

Furthermore, the right column is part of a short exact sequence:

0 Hk(MC(A)) Hk(MC(A ∪Hg)) Hk−1(MC(A |Hg)) 0r α−1◦τ

where α is the excision of M(A)\Tub(A |Hg) (where Tub(A |Hg) is a tubular neighborhood

of A |Hg in A) and τ is the Thom isomorphism (this sequence is explained in detail in [2]).

It follows that r is injective.

It follows from injectivity of r and the previous lemma that if there is a form corresponding

to A, it must be the form ωT1 + ωT2 .

So we just have to show that the form ωT1 +ωT2 has no pole along the new hyperplane, Hg.

Choose some ordering on the vertices of A. It may be necessary to reorder the hyperplanes

of A. If n is even, order the hyperplanes so that Hfi ∩Hfn+3−i
∩Hg is a linear subspace of

codimension 2. If n is odd, let fn+2 be the hyperplane which bounds both T1 and T2, and

reorder the other hyperplanes so that fi ∩ fn+3−i ∩Hg is a linear subspace of codimension 2.

For now assume that n is even. The case when n is odd is very similar. Further order the

fi so that

ωT1 =
dg

g
∧ df1
f1
∧ · · · ∧

dfn/2+1

fn/2+1

Then we must have

ωT2 = −dg
g
∧ dfn+2

fn+2

∧ · · · ∧
dfn/2+2

fn/2+2

since adjacent simplices must naturally have opposite orientations.

HONORS THESIS 17

Note that since Hfi ∩ Hfn+3−i
∩ Hg is a linear subspace of codimension 2, the restriction

of fi to Hg, fi, is a multiple of fn+3−i restricted to Hg. Hence,

dfi

fi
=
dfn+3−i

fn+3−i

Then,

resg(ωT1 + ωT2) = resg(
dg

g
∧ df1
f1
∧ · · · ∧

dfn/2+1

fn/2+1

) + resg(
dg

g
∧ dfn+2

fn+2

∧ · · · ∧
dfn/2+2

fn/2+2

)

= resg(
dg

g
∧ df1
f1
∧ · · · ∧

dfn/2+1

fn/2+1

)− resg(
dg

g
∧ df1
f1
∧ · · · ∧

dfn/2+1

fn/2+1

)

= 0

Hence, ωT1 +ωT2 has no pole along Hg. This proves that ωT1 +ωT2 is the form corresponding

to A. �

3.2. Equations of the Log Canonical Model.

3.3. Warm-Up. To find equations for the log canonical model, we exploit the connection

between forms and fractions. That is, if we associate to each form ω = df
f

the fraction

frac(ω) = 1
f
, then the equations of log canonical model are given by the kernel of the

homomorphism

φ : k[T1, . . . , Tl]→ k(x1, . . . , xn)

Ti → frac(ωT1)

where ωTi are any basis of the log canonical algebra.

Example 3.1. Take numbers a, b, c and consider the homomorphism from the polynomial

algebra in variables A, B, C to the field of rational functions k(x) in one variable, which

sends A to 1/(x− a), B to 1/(x− b), and C to 1/(x− c). Find generator(s) of the kernel of

this homomorphism.

The following code in Macaulay2 answers the question:

R = QQ[A,B,C, a , b , c , MonomialOrder=>Lex] ;

18 SHELBY COX

S = f r a c (QQ[x , a , b , c]) ;

phi = map(S ,R,{1 / (x−a) ,1/(x−b) ,1/(x−c) , a , b , c }) ;

ker phi

with the output:

i d e a l (B∗C∗b − B∗C∗c − B + C, A∗C∗a − A∗C∗c − A + C, A∗B∗a − A∗B∗b − A

+ B)

Remark 3. I was unable to find a way to do this in Magma, SAGE or Mathematica.

The kernel methods in those computer algebra softwares only find the kernel of a quotient

homomorphism.

3.3.1. Known Equations. I was able to directly compute equations for the log canonical

model in several cases. The code for these specific cases, and in the most general case, is

provided in the appendix; I list only the equations here.

Example 3.2. A3. The hyperplanes of A3 are:

{x1, x2, x3, x1 − x2, x2 − x3, x1 − x3}

The basis of the log canonical algebra corresponding to the minimal bounded regions is:

t1 =
1

x1(x1 − x3)(x2 − x3)

t2 =
1

x1(x1 − x2)(x2 − x3)

t3 =
1

x2(x1 − x2)(x1 − x3)

t4 =
1

x2(x2 − x3)(x1 − x3)

t5 =
1

x3(x1 − x2)(x2 − x3)

t6 =
1

x3(x1 − x2)(x1 − x3)

HONORS THESIS 19

The kernel of the homomorphism has a Groebner basis:

t3t5 − t3t6 − t4t6

t2t4 − t2t5 + t3t6 + t4t6

t1t5 − t2t5 + t2t6

t1t4 − t2t5 + t2t6 + t4t6

t1t3 − t2t6 + t3t6

Example 3.3. A4. The log canonical model of the complement of A4 has a quadratic

Groebner basis of 175 equations.

Example 3.4. B3. The log canonical model of the complement of B3 has a quadratic

Groebner basis of 71 equations.

Remark 4. In all cases that I was able to directly compute, the equations of the log canonical

model had a quadratic Groebner basis.

4. Coxeter Arrangements

I worked through several examples with Coxeter arrangements, most thoroughly with An

and Bn:

An =
{
xi, xi − xj | 1 ≤ i < j ≤ n

}
Bn =

{
xi, xi ± xj | 1 ≤ i < j ≤ n

}
Coxeter arrangements were the first examples I worked with because of their simplicity and

symmetry. For example, we know that the dimension of R1 of a Coxeter arrangement is equal

to the product of its exponents. We can also use the Weyl action on Coxeter arrangements

to find quadratic relations.

4.1. An. The Coxeter arrangement An is particularly special because we already know that

it is Koszul [3] and because of its relation to the Whitehouse module, which is described in

20 SHELBY COX

Arrangement Exponents + 1
An 2, 3, . . . , n+ 1
Bn 2, 4, . . . , 2n
Cn 2, 4, . . . , 2n
Dn 2, 4, . . . , 2n− 2, n
E6 2, 5, 6, 8, 9, 12
E7 2, 6, 8, 10, 12, 14, 18
E8 2, 8, 12, 14, 18, 20, 24, 30
F4 2, 6, 8, 12
G2 2, 6

Figure 9. Exponents of Coxeter Arrangements.

the next section. In this section, I describe some explicit bases for R1(An) and some of the

equations for the log canonical model.

4.1.1. Bases of R1. There are two bases of An that are particularly useful. The first is the

basis corresponding to minimal bounded regions, which has a particularly simple form:{
sign(σ)

xσ(1)(xσ(1) − xσ(2)) · · · (xσ(n−1) − xσ(n))
| σ ∈ Sn

}

Linear Independence. Let Ti be the elements of the set above. Suppose that

n!∑
i=1

λiTi = 0

for some constants, λi. Clear denominators and evaluate the sum at the point [1 : 0 : · · · : 0].

This shows that λ1 = 0. Similar arguments show that λi = 0 for all i, hence the Ti are

linearly independent.

Generating. As with the previous basis, it is obvious that this basis has the correct number

of elements and is linearly independent, so it must also be generating.

We can choose a basis of A3 via matrix:

1
x1−x2

1
x1−x3

1
x1

T0 T1

1
x2

T2 T3

1
x3

T4 T5

HONORS THESIS 21

Each Ti has a factor of the fractions indicated beside the rows and columns, as well as a

factor of 1/(x2 − x3). For example,

T0 =
1

x1(x1 − x2)(x2 − x3)

In general we can choose a basis for An via the n− 1 dimensional matrix with labels:

1

x1
· · · 1

xn

1

x1 − x2
· · · 1

x1 − xn
...

1

xn−1 − xn
Clearly, this gives a basis with n! elements.

Linear Independence. First we prove directly that the basis chosen for A3 is linearly

independent, and then that the proposed basis for An is linearly independent by induction.

Suppose that some linear combination of the given Ti is 0. That is,

5∑
i=0

λiTi = 0

Then clearing denominators, we have

λ0x2x3(x1 − x3) + λ1x2x3(x1 − x2) + λ2x1x3(x1 − x3) + λ3x1x3(x1 − x2)

+λ4x1x2(x1 − x3) + λ5x1x2(x1 − x2) = 0

Since the λi must work for any choice of xi, we can take x1 = 0. This leaves:

−λ0x2x23 − λ1x22x3 = 0

Then taking x2 = x3 6= 0 implies λ0 = −λ1 and taking x2 = −x3 6= 0 implies λ0 = λ1.

Hence, we must have λ0 = λ1 = 0. Similar choices of xi complete the proof for A3.

22 SHELBY COX

Now in general, clear denominators and take any xi = 0. The non-zero images are a basis

for An−1 and so by induction we are done.

Generating. The number of basis elements given by the labels is n!, and we know that

R1(A) has dimension n!. Since we have already shown that the fractions are linearly inde-

pendent, we conclude that they must also generate R1.

4.1.2. Quadratic Relations. We can find equations for the log canonical models of A3 and

A4 using Macaulay2, but for n ≥ 5 the program crashes.

We can find some equations via the second basis provided in the previous subsection. We

do this by taking 2× 2 “minors” of the label matrix.

Example 4.1. n = 3. When n = 3, the relations come from minors of the matrix:

1
x1−x2

1
x1−x3

1
x1

T0 T1

1
x2

T2 T3

1
x3

T4 T5

Specifically, the relations we get are:

T0T3 − T1T2

T2T5 − T3T4

T1T4 − T0T5

Note that we found using Macaulay2 that the log canonical model of A3 is generated by five

equations, so the three above equations cannot form a basis of the log canonical model.

We can obtain more equations of the log canonical model by applying the Sn+2 group

action to the equations from the 2× 2 minors of the matrix.

Example 4.2. n = 3

HONORS THESIS 23

4.2. Bn. We can make similar observations for Bn. Specifically, the labels for Bn are:

1

x1
,

1

x1 − xj
for i < j ≤ n

...

1

xn

The proof that this is a basis of R1(Bn) is very similar to the proof to An, and I do not

reproduce it here. An example of the basis when n = 3 is given below:

Example 4.3. n = 3

1
x2

1
x2+x3

1
x2−x3

1
x1

T1 T6 T11

1
x1+x2

T2 T7 T12

1
x1−x2

T3 T8 T13

1
x1+x3

T4 T9 T14

1
x1−x3

T5 T10 T15

That is, the basis we get is:

T1 =
1

x1x2x3
T6 =

1

x1(x2 + x3)x3
T11 =

1

x1(x2 − x3)x3

T2 =
1

(x1 + x2)x2x3
T7 =

1

(x1 + x2)(x2 + x3)x3
T12 =

1

(x1 + x2)(x2 − x3)x3

T3 =
1

(x1 − x2)x2x3
T8 =

1

(x1 − x2)(x2 + x3)x3
T13 =

1

(x1 − x2)(x2 − x3)x3

T4 =
1

(x1 + x3)x2x3
T9 =

1

(x1 + x3)(x2 + x3)x3
T14 =

1

(x1 + x3)(x2 − x3)x3

T5 =
1

(x1 − x3)x2x3
T10 =

1

(x1 − x3)(x2 + x3)x3
T15 =

1

(x1 − x3)(x2 − x3)x3

Just like with the labels for An, we can use the labels above for Bn to find some of the

equations for the log canonical model of Bn:

24 SHELBY COX

Example 4.4. n = 3. Referring to the matrix of Ti above, we get the relations:

TiTi+6 − Ti+1Ti+5

I was unable to confirm whether or not these were a basis for the equations of LC(Bn).

4.3. The Whitehouse Module. The Whitehouse module, W n, is a free Lie Algebra in

n+ 2 variables with an inner product (x, y) and exactly the following relations:

[x, y] = −[y, x](1)

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0(2)

(x, [y, z]) = ([z, x], y)(3)

We then consider the homogeneous degree 1 part of the algebra (i.e., elements with one of

each variable, like (x1, [x2, x3])) , which we denote by W 1
n . A basis of W 1

n is given by the

elements

(xn+2, [· · · [xn+1, xσ(n)], xσ(n−1)], · · ·], xσ(1)]), σ ∈ Sn

Note that there is a natural action of Sn+2 on Wn given by permuting the xi.

Example 4.5 (n=2). A basis of W2 is given by

(x4, [[x3, x2], x1]), (x4, [[x3, x1], x2])

The action of S4 on W2 is generated by transpositions, so it suffices to describe the action

of the 6 transpositions. A full explanation of each calculation is provided in the appendix.

HONORS THESIS 25

In summary,

(x1 x2) · A = B; (x1 x2) ·B = A

(x1 x3) · A = −A; (x1 x3) ·B = B − A

(x1 x4) · A = A−B; (x1 x4) ·B = −B

(x2 x3) · A = A−B; (x2 x3) ·B = −B

(x2 x4) · A = −A; (x2 x4) ·B = B − A

(x3 x4) · A = B; (x3 x4) ·B = A

4.4. Relation to the Log Canonical Algebra of An. Here, An refers to the Coxeter

arrangement in RPn−1 given by the following equations:

{xi, xi − xj : 1 ≤ i < j ≤ n}

I have proved that the following set is a basis of R1(An):{
sign(σ)

xσ(1)(xσ(1) − xσ(2)) · · · (xσ(n−1) − xσ(n))
| σ ∈ Sn

}

We can then consider an action of Sn+2 on An given by permutations of the variables, the

Cremona involution and one additional action.

4.4.1. Cremona Involution. The Cremona involution is obtained by inverting all the vari-

ables:

xi 7→
1

xi

and then multiplying by a factor of

1∏
i x

2
i

It is easy to apply the Cremona involution in general:

1

xσ(1)(xσ(1) − xσ(2)) · · · (xσ(n−1) − xσ(n))
7→ (−1)n−1

xσ(n)(xσ(1) − xσ(2)) · · · (xσ(n−1) − xσ(n))

26 SHELBY COX

4.4.2. Additional Action. The addition action can be described as matrix multiplication by
1 −1

. . .
...

−1

x1
...

xn

Example 4.6 (n=2). Let

A =
1

x1(x1 − x2)
, B =

1

x2(x1 − x2)

be the basis of the log canonical algebra of A2. Then we can compute the entire action of

S4:

(1) (x1 x2) · A = −B

(2) Cremona:

A 7→ −1

x2(x1 − x2)
= −B

(3) Additional:

x1 7→ x1 − x2

x2 7→ −x2

So,

A 7→ 1

(x1 − x2)x1
= A

B 7→ 1

(−x2)x1
= A−B

References

[1] M. Brion and M. Vergne. Arrangement of hyperplanes I Rational functions and JeffreyKirwan residue.

Ann. Sci. cole Norm. Sup. 32, 1999.

[2] S. Yuzvinskĭı. Orlik-Solomon algebras in algebra and topology. Uspekhi Mat. Nauk, 56(2(338)):87–166,

2001.

[3] Sean Keel and Jenia Tevelev. Equations for M0,n. Internat. J. Math., 20(9):1159–1184, 2009.

[4] G. C. Shephard and J. A. Todd. Finite unitary reflection groups. Canad. J. Math., 6:274–304, 1954.

HONORS THESIS 27

[5] Thomas Zaslavsky. Facing up to arrangements: face-count formulas for partitions of space by hyperplanes.

Mem. Amer. Math. Soc., 1(issue 1, 154):vii+102, 1975.

[6] Torsten Hoge and Gerhard Rhrle. Supersolvable reflection arrangements. Proceedings of the American

Mathematical Society, 142(11):37873799, Apr 2014.

Appendix A. Code

A.1. Brion-Vergne Algorithm. In [1] (section 3.5), Brion and Vergne give an algorithm

for finding a basis of the degree 1 component of the log canonical algebra, R1(M(A)), for A

a hyperplane arrangement in RPn. The following is a brief discussion of the algorithm and

an implementation of the algorithm in SAGE. I believe that with little or no modification,

the given code could also be run in Python.

The algorithm is as follows:

1. Fix any ordering on the hyperplanes of A = {Hi}ki=1 (in particular, the ordering does not

have to be consistent with an ordering on monomials). Denote by fi the equation of the

hyperplane Hi.

2. An n + 1-tuple, p, of hyperplanes in the arrangement corresponds to a basis element if

the following two conditions are satisfied:

(a) The elements of p form a basis of RPn. I will refer to this as the basis condition.

(b) For each 1 ≤ j ≤ k, the set

{Hi ∈ p : i ≥ j} ∪
{
Hj

}
is linearly independent. I will refer to this as the second condition.

3. Associate to each (n+ 1)-tuple, (Hi1 , . . . , Hin+1), satisfying the above condition the form

dfi1
fi1
∧ · · · ∧

dfin+1

fin+1

These forms generate R1(A).

Remark 5. The algorithm can be slightly computationally simplified by noting that no

(n + 1)-tuple without the first hyperplane in the arrangement will ever satisfy the second

28 SHELBY COX

condition, since no (n + 2)-tuple of hyperplanes can be linearly independent. Therefore it

suffices to check only (n+ 1)-tuples which include the first hyperplane.

Example A.1. Recall that A3 = {x1, x2, x3, x1 − x2, x2 − x3, x1 − x3}. Fix the ordering of

the hyperplanes to be the order in which they were listed. We begin by listing triples of

hyperplanes which contain the first hyperplane and form a basis of RP2:

x1 x2 x3(1)

x1 x2 x2 − x3(2)

x1 x2 x1 − x3(3)

x1 x3 x1 − x2(4)

x1 x3 x2 − x3(5)

x1 x1 − x2 x2 − x3(6)

x1 x1 − x2 x1 − x3(7)

x1 x2 − x3 x1 − x3(8)

Now we need to check to see if each triple satisfies the second condition.

(1) There is nothing to check, so triple (1) satisfies the second condition.

(2) We have two sets to check: {x3, x2 − x3} and {x1 − x2, x2 − x3}. They are both

linearly independent, so triple (2) satisfies the second condition.

(3) There are three sets to check: {x3, x1 − x3}, {x1 − x2, x1 − x3} and {x2 − x3, x1 − x3}.

They are all linearly independent sets, so triple (3) satisfies the second condition.

(4) There is just one set to check: {x2, x3, x1 − x2}. Since it is linearly independent,

triple (4) satisfies the second condition.

(5) There are two sets to check: {x2, x3, x2 − x3} and {x1 − x2, x2 − x3}. The first of the

sets is not linearly independent, so triple (5) does not satisfy the second condition.

(6) There are two sets to check: {x2, x1 − x2, x2 − x3} and {x3, x1 − x2, x2 − x3}. They

are both linearly independent, so triple (6) satisfies the second condition.

HONORS THESIS 29

(7) There are three sets to check: {x2, x1 − x2, x1 − x3}, {x3, x1 − x2, x1 − x3} and

{x2 − x3, x1 − x3}. They are all linearly independent, so triple (7) satisfies the

second condition.

(8) There are three sets to check: {x2, x2 − x3, x1 − x3}, {x3, x2 − x3, x1 − x3} and

{x1 − x2, x2 − x3, x1 − x3}. The last set is not linearly independent, so triple (8)

fails the second condition.

We are left with the basis:

dx1
x1
∧ dx2
x2
∧ dx3
x3

dx1
x1
∧ dx2
x2
∧ d(x2 − x3)

(x2 − x3)
dx1
x1
∧ dx2
x2
∧ d(x1 − x3)

(x1 − x3)
dx1
x1
∧ dx3
x3
∧ d(x1 − x2)

(x1 − x2)
dx1
x1
∧ d(x1 − x2)

(x1 − x2)
∧ d(x2 − x3)

(x2 − x3)
dx1
x1
∧ d(x1 − x2)

(x1 − x2)
∧ d(x1 − x3)

(x1 − x3)

In my implementation of the algorithm, I defined several helper-methods (isBasis, sCond,

poss, getInd) to simplify the main method (getGens). Here is a brief description of each

method:

isBasis Takes two parameters: a list of hyperplanes p (in RPn) and an integer k. The integer

k should be the minimum of n+ 1 and the number of hyperplanes in p. The method

creates a matrix whose rows are the elements of p. Returns True if the rank of the

matrix is equal to k, False otherwise.

sCond Takes three parameters: a hyperplane arrangement L, a subarrangement p, and the

list of indices of p in L, vp.

30 SHELBY COX

poss Takes two parameters: a list of hyperplanes, p, and an integer k. Returns all subsets

of p with k elements, which include the first element of p. This method is used in

getGens to get a list of (n+ 1)-tuples to check.

getInd Takes two parameters: a list of L and a sublist (not necessarily with the same order)

l. Returns a list of the indices of elements of l in L.

getGens Takes one parameter: a list of hyperplanes S. Goes through a list of possible basis

elements and checks the two conditions of the Brion-Vergne algorithm. Returns a

list of basis elements (as lists of hyperplanes).

The following is the code for the implementation, ready to run in SAGE. An example of

A3 is given as an example.

import i t e r t o o l s

##se t B = hyperp lanes in the arrangement , v e c t o r format

##n i s the dimension o f the ambient space

##the example o f A 3 i s g i ven here

B = [[1 , 0 , 0] , [0 , 1 , 0] , [0 , 0 , 1] , [1 , 1 , 0] , [0 , 1 , 1] , [1 , 0 , 1]] ;

##take s a l i s t o f hyperp lanes , p

##k i s min o f dimension or l en (p)

def i s B a s i s (p , k) :

##checks i f a g iven s e t o f hyperp lanes forms a b a s i s o f the space

i f matrix (p) . rank () == k :

return True

return False

##given a s e t o f hyperp lanes L , in vec t o r format and a sub s e t o f L , p ,

##t h i s method checks the second cond i t i on o f the a l gor i thm fo r p

def sCond (L , p) :

HONORS THESIS 31

vp = g e t I n d i c e s (L , p)

for y in range (len (vp)−1) :

for x in range (vp [y]+1 ,vp [y+1]) :

tocheck = p [y +1:]

tocheck . append (L [x])

##i f the s e t i s l i n e a r l y dependent

i f i s B a s i s (tocheck , len (tocheck)) == False :

##then the g iven sub s e t does not s a t i s f y the second

cond i t i on

return False

return True

##take s a l i s t p o f hyperp lanes , in RPˆ{k−1}

def poss (p , k) :

##re turns p o s s i b l e b a s i s e lements o f the LCA

##from the l i s t o f hyperp lanes , p

##k i s the dimension o f the ambient space

##s ince the f i r s t e lement o f p needs to be in every b a s i s e lement

##of the BV algor i thm , we only l ook at s u b s e t s wi th i t

poss = []

##go through a l l s u b s e t s o f s i z e k , w i thou t the f i r s t e lement

for l in i t e r t o o l s . combinat ions (p [1 :] , k−1) :

##i t e r t o o l s r e turns tup l e s , so make the output a l i s t f i r s t

m = l i s t (l)

##add the f i r s t e lement o f p to the l i s t

m. append (p [0])

##add the p o s s i b l e b a s i s e lement to poss

poss . append (m)

return poss

32 SHELBY COX

def g e t I n d i c e s (L , l) :

##l a sub s e t o f L

##re turns the i n d i c e s o f e lements o f l in L

ind = []

for x in l :

ind . append (L . index (x))

return ind

##S i s a s e t o f hyperp lanes , g i ven in vec to r form

def getGens (S) :

##k w i l l be dim + 1

k = len (S [0])

##de f i n e an empty l i s t to s t o r e the genera tor s

Gens = []

##go through a l l p o s s i b l e n+1 element s u b s e t s o f S

##which inc l ude the f i r s t e lement o f S

for s in poss (S , k) :

i = g e t I n d i c e s (S , s)

##i f the two cond i t i on s o f the BV a lgor i thm are s a t i s f i e d

i f i s B a s i s (s , k) and sCond (s , i , S) :

Gens . append (s)

return Gens

print (getGens (B))

The output of the above code is the following:

HONORS THESIS 33

[[[1 , 0 , 0] , [0 , 1 , 0] , [0 , 0 , 1]] , [[1 , 0 , 0] , [0 , 1 , 0] , [0 , 1 , −1]] ,

[[1 , 0 , 0] , [0 , 1 , 0] , [1 , 0 , −1]] , [[1 , 0 , 0] , [0 , 0 , 1] , [1 , −1,

0]] , [[1 , 0 , 0] , [1 , −1, 0] , [0 , 1 , −1]] , [[1 , 0 , 0] , [1 , −1, 0] ,

[1 , 0 , −1]]]

A.2. Converting BV-output to M2. The following code in Python converts the output

of the Brion-Vergne algorithm implemented in the previous subsection to an m2 file which

is ready to run in Macaulay2. It should be noted that although this program was designed

to convert the output of the Brion-Vergne algorithm, it can also be used to create the m2

file for the next step of the calculation from any basis given as a list of lists of vectors (lists).

To use the code, following these four steps:

Step 0. Copy and paste the code below into a text file, and save it with a .py extension.

Step 1. Create a text file (in the code, I call it raw-basis.txt) and paste the output of

the previous algorithm in it. This code assumes that the text file is in the same working

directory as the python code. You can also put in whatever basis of R1, as long as it is

formatted property. See note below.

IMPORTANT NOTE: When copying the output of the previous file, do not include

the first two and last two brackets. For example, copy:

[1 , 0 , 0] , [0 , 1 , 0] , [0 , 0 , 1]] , [[1 , 0 , 0] , [0 , 1 , 0] , [1 , 1 , −1]] ,

[[1 , 0 , 0] , [0 , 0 , 1] , [1 , 1 , −1]

and not:

[[[1 , 0 , 0] , [0 , 1 , 0] , [0 , 0 , 1]] , [[1 , 0 , 0] , [0 , 1 , 0] , [1 , 1 , −1]] ,

[[1 , 0 , 0] , [0 , 0 , 1] , [1 , 1 , −1]]]

Step 2. Change the dimension (n, in the fourth line of code) to the appropriate number.

Change the name of the file with the basis (line 8 of the code) to the appropriate file name.

Step 3. Run the code. The output is an m2 file in the working directory. It can be run

in Macaulay2 as-is; more explanation is given in the next subsection.

34 SHELBY COX

import re

##dimension o f the arrangement (#var − 1)

n = 3

##genera te a l i s t o f s t r i n g s to use as v a r i a b l e s , x1 , . . . , xn

var = [’ x ’ + str (i +1) for i in range (n+1)]

##open the f i l e wi th the raw ba s i s output from SAGE program

t e x t l i n e s = open(”raw−b a s i s . txt ” , ” r ”)

##and read the output to a s t r i n g

s t r i n g l i n e s = t e x t l i n e s . read ()

##s p l i t s the raw ba s i s s t r i n g on s p e c i a l cha rac t e r s

f r e e l i s t s t r = re . s p l i t (” \ [([ˆ [\]] ∗) \] ” , s t r i n g l i n e s)

##rep l a c e s s p e c i a l cha rac t e r s wi th None

for i in range (len (f r e e l i s t s t r)) :

i f f r e e l i s t s t r [i] == ’ , ’ or f r e e l i s t s t r [i] == ’] , [’ :

f r e e l i s t s t r [i] = None

##removes a l l None e lements from f r e e l i s t s t r

f r e e l i s t s t r = l i s t (f i l t e r (None , f r e e l i s t s t r))

#pr in t (l en (f r e e l i s t s t r))

##changes hyperp lanes from vec to r format to equat ion format

p l aneL i s t = []

for i in range (len (f r e e l i s t s t r)) :

sL ine = f r e e l i s t s t r [i] . s p l i t (’ , ’)

##w i l l r e p l a c e ze ta7 wi th z (not needed f o r r e a l arrangements)

HONORS THESIS 35

##more code needed f o r arrangements wi th more than one complex

c o e f f i c i e n t

s p l i t L i n e = [sLine [x] . r e p l a c e (’ zeta7 ’ , ’ z ’) for x in range (len (

sLine))]

##make a new s t r i n g to s t o r e an equat ion

iP lane = ’ ’

for k in range (len (s p l i t L i n e)) :

iP lane += ’ (’ + s p l i t L i n e [k] + ’) ∗ ’ + var [k]

i f k != len (s p l i t L i n e) − 1 :

iP lane += ’+’

p l aneL i s t . append (iP lane)

##group l i n e equa t ions in

t i = []

i = 0

count = 1

while i < len (f r e e l i s t s t r) :

newT = ’ ’

for j in range (n) :

i f j == 0 :

newT += ’ t ’ + str (count) + ’ = 1/(’

newT += ’ (’ + p laneL i s t [i+j] + ’) ’

i f j != n−1:

newT += ’ ∗ ’

i f j == n−1:

newT += ’) ; ’

t i . append (newT)

i += n

count += 1

36 SHELBY COX

##open the f i l e to wr i t e to

toWrite = open(’ code .m2 ’ , ’w ’)

##wr i t e in the M2 code

toWrite . wr i t e (’Q = QQ \n ’)

toWrite . wr i t e (’R = Q[x1 . . x ’ + str (len (t i)) + ’ , MonomialOrder=>Lex] ; \n ’

)

toWrite . wr i t e (’S = f r a c (Q[x1 . . x ’ + str (n+1) + ’]) ; \n \n ’)

##then wr i t e in the f r a c t i o n s

for t in t i :

toWrite . wr i t e (”%s \n” % t)

##then the r e s t o f the code

s = ’ t1 ’

for i in range (2 , len (t i) +1) :

s = s + ’ , t ’ + str (i)

toWrite . wr i t e (’ \n ’ + ’ phi = map(S ,R,{ ’ + str (s) + ’ }) ; \n ’)

toWrite . wr i t e (’ I = ker phi ; \n ’)

toWrite . wr i t e (’ mingens gb I \n ’)

A.3. Equations of the Log Canonical Model. The following code is used to find equa-

tions for the log canonical model (the last step in the calculation!). The example below is

the code for A3 which is generated by the previous two steps in the algorithm.

The first chunk of code defines the polynomial rings we will work with. In the ring R,

there should be one variable for each element of a basis of the log canonical algebra. The

number of variables in the fraction ring S should be equal to the dimension of the ambient

(affine) space or the dimension of the ambient projective space, plus one.

The second chunk of code defines the fractions that form a basis of the log canonical

algebra. The final chunk of code defines a map, phi, which sends the variables of the

HONORS THESIS 37

polynomial ring R to the fractions we defined in the second chunk. Then we find the kernel

of phi, I, and print the minimum generators of a Groebner basis of I, which are generators

for the equations of the log canonical model.

Remark 6. Although finding a Groebner basis is usually computationally expensive, it does

not appear to be as costly as finding the kernel of the map phi. That is, whenever the kernel

can be found using Macaulay2, a Groebner basis for it can also be found.

Q = QQ

R = Q[x1 . . x6 , MonomialOrder=>Lex] ;

S = f r a c (Q[x1 . . x4]) ;

t1 = 1 / (((1) ∗x1+(0)∗x2+(0)∗x3) ∗ ((0) ∗x1+(1)∗x2+(0)∗x3) ∗ ((0) ∗x1+(0)∗x2

+(1)∗x3)) ;

t2 = 1 / (((1) ∗x1+(0)∗x2+(0)∗x3) ∗ ((0) ∗x1+(1)∗x2+(0)∗x3) ∗ ((1) ∗x1+(0)∗x2

+(−1)∗x3)) ;

t3 = 1 / (((1) ∗x1+(0)∗x2+(0)∗x3) ∗ ((0) ∗x1+(1)∗x2+(0)∗x3) ∗ ((0) ∗x1+(1)∗x2

+(−1)∗x3)) ;

t4 = 1 / (((1) ∗x1+(0)∗x2+(0)∗x3) ∗ ((0) ∗x1+(0)∗x2+(1)∗x3) ∗ ((1) ∗x1+(−1)∗x2

+(0)∗x3)) ;

t5 = 1 / (((1) ∗x1+(0)∗x2+(0)∗x3) ∗ ((1) ∗x1+(−1)∗x2+(0)∗x3) ∗ ((1) ∗x1+(0)∗x2

+(−1)∗x3)) ;

t6 = 1 / (((1) ∗x1+(0)∗x2+(0)∗x3) ∗ ((1) ∗x1+(−1)∗x2+(0)∗x3) ∗ ((0) ∗x1+(1)∗x2

+(−1)∗x3)) ;

phi = map(S ,R,{ t1 , t2 , t3 , t4 , t5 , t6 }) ;

I = ker phi ;

mingens gb I

Remark 7. There are two things that we can do to make the program slightly more efficient.

38 SHELBY COX

(1) First, we can clear denominators, so that we are just working over polynomial rings.

To do this automatically in the code, change line 48 of sage-to-m2.py to:

newT += ’ t ’ + str (count) + ’ = cd /(’

and add a new line to the m2 code which defines cd to be the product of all the

hyperplanes in the arrangement.

(2) We can also work over a finite field instead of Q. To do this, change line 35 of the

sage-to-m2.py code to

iP lane += ’ (aˆ ’ + s p l i t L i n e [k] + ’) ∗ ’ + var [k]

and change line 62 to

toWrite . wr i t e (’Q = GF(k , Var iab le=>a) ; \n ’)

or make the appropriate changes in the code.m2 output file.

A.4. Generating Arrangements from Group Actions. Some line arrangements are

generated by a subset of lines and some group action (for example, the Klein arrangement,

given in [?]). The following code generates all the hyperplanes in the arrangement and

outputs a list of the hyperplanes in vector form.

#take s a l i s t o f hyperp lanes , L

#and a l i s t o f ac t ions , G

#re turns a l i s t [g∗ l f o r each g in G, l in L]

def f indNewLines (G, L) :

toReturn = []

for a in G:

for l in L :

toReturn . append (a∗ l)

return toReturn

HONORS THESIS 39

##checks i f two l i n e s (as column matr ices) are s c a l a r mu l t i p l e s o f each

o ther

def sameLine (n , l) :

k = 0

kse t = False

for x in range (l . nrows ()) :

i f l [x] [0] != 0 and n [x] [0] != 0 :

i f not kse t :

k = (l [x] [0]) /(n [x] [0])

k se t = True

e l i f (l [x] [0]) /(n [x] [0]) != k :

return False

i f l [x] [0] == 0 and n [x] [0] != 0 :

i f k != 0 :

return False

i f not kse t :

k se t = True

i f l [x] [0] != 0 and n [x] [0] == 0 :

#12345 i s j u s t some random number

i f kse t and k != 12345:

return f a l s e

i f not kse t :

k = 12345

kse t = True

return True

#checks i f a l i s t L conta ins a l i n e e q u i v a l e n t to n

def conta insL ine (n , L) :

for l in L :

40 SHELBY COX

i f sameLine (n , l) :

return True

return False

#w i l l f i nd a l l the l i n e s in the arrangement

#arrgen i s a l i s t o f l i n e s t ha t genera te the arrangement

#ac t i on s are the group ac t i on s used to genera te the arrangement

#guess i s an upperbound on the number o f l i n e s to genera te

def genLines (arrgen , ac t ions , guess) :

#make a new l i s t to ho ld a l l the l i n e s

l i n e s = [l for l in arrgen]

#whi l e we have l e s s than the upper bound on the number o f l i n e s

while len (l i n e s) < guess :

#ge t some candida te new l i n e s

nl = findNewLines (gens , l i n e s)

count = 0

for n in nl :

#i f the new l i n e i sn ’ t in the l i s t a l ready , add i t

i f not conta insL ine (n , l i n e s) :

l i n e s . append (n)

count += 1

#i f we didn ’ t add any l i n e s , then we ’ ve f i n i s h e d the l i s t !

i f count == 0 :

return l i n e s

A.5. Code and Output for Specific Arrangements.

A.5.1. A3. Input:

−−#dec l a r e and p r i n t the po lynomia l a l gebra , r ing o f r a t i o n a l f unc t i on s

HONORS THESIS 41

R = QQ[T1 , T2 , T3 , T4 , T5 , T6 , MonomialOrder=>Lex] ;

S = f r a c (QQ[x1 , x2 , x3]) ;

−−#dec l a r e necessary f r a c t i o n s

t1 = 1/(x1 ∗(x1−x3) ∗(x2−x3)) ;

t2 = 1/(x1 ∗(x1−x2) ∗(x2−x3)) ;

t3 = 1/(x2 ∗(x1−x2) ∗(x1−x3)) ;

t4 = 1/(x2 ∗(x2−x3) ∗(x1−x3)) ;

t5 = 1/(x3 ∗(x2−x3) ∗(x1−x2)) ;

t6 = 1/(x3 ∗(x1−x3) ∗(x1−x2)) ;

−−#de f i n e the map from the po lynomia l a l g e b ra to the r ing o f r a t i o n a l

f unc t i on s

phi = map(S ,R,{ t1 , t2 , t3 , t4 , t5 , t6 }) ;

−−#f ind and name the k e rne l o f the above map

I = ker phi ;

−−##f ind a Groebner b a s i s f o r the k e rne l

mingens gb I

Output:

T3T5−T3T6−T4T6 T2T4−T2T5+T3T6+T4T6 T1T5−T2T5+T2T6 T1T4−T2T5+T2T6+T4T6

T1T3−T2T6+T3T6

A.5.2. A4. Input:

R = QQ[T1 , T2 , T3 , T4 , T5 , T6 , T7 , T8 , T9 , T10 , T11 , T12 , T13 , T14 , T15 , T16 , T17 , T18 ,

T19 , T20 , T21 , T22 , T23 , T24 , MonomialOrder=>Lex] ;

S = f r a c (QQ[x1 , x2 , x3 , x4]) ;

t1 = 1/(x1 ∗(x1−x2) ∗(x2−x3) ∗(x3−x4)) ;

42 SHELBY COX

t2 = 1/(x1 ∗(x1−x2) ∗(x2−x4) ∗(x3−x4)) ;

t3 = 1/(x1 ∗(x1−x3) ∗(x2−x3) ∗(x2−x4)) ;

t4 = 1/(x1 ∗(x1−x3) ∗(x3−x4) ∗(x2−x4)) ;

t5 = 1/(x1 ∗(x1−x4) ∗(x2−x4) ∗(x2−x3)) ;

t6 = 1/(x1 ∗(x1−x4) ∗(x3−x4) ∗(x2−x3)) ;

t7 = 1/(x2 ∗(x1−x2) ∗(x1−x3) ∗(x3−x4)) ;

t8 = 1/(x2 ∗(x1−x2) ∗(x1−x4) ∗(x3−x4)) ;

t9 = 1/(x2 ∗(x2−x3) ∗(x1−x3) ∗(x1−x4)) ;

t10 = 1/(x2 ∗(x2−x3) ∗(x3−x4) ∗(x1−x4)) ;

t11 = 1/(x2 ∗(x2−x4) ∗(x1−x4) ∗(x1−x3)) ;

t12 = 1/(x2 ∗(x2−x4) ∗(x3−x4) ∗(x1−x3)) ;

t13 = 1/(x3 ∗(x1−x3) ∗(x1−x2) ∗(x2−x4)) ;

t14 = 1/(x3 ∗(x1−x3) ∗(x1−x4) ∗(x2−x4)) ;

t15 = 1/(x3 ∗(x2−x3) ∗(x1−x2) ∗(x1−x4)) ;

t16 = 1/(x3 ∗(x2−x3) ∗(x2−x4) ∗(x1−x4)) ;

t17 = 1/(x3 ∗(x3−x4) ∗(x1−x4) ∗(x1−x2)) ;

t18 = 1/(x3 ∗(x3−x4) ∗(x2−x4) ∗(x1−x2)) ;

t19 = 1/(x4 ∗(x1−x4) ∗(x1−x2) ∗(x2−x3)) ;

t20 = 1/(x4 ∗(x1−x4) ∗(x1−x3) ∗(x2−x3)) ;

t21 = 1/(x4 ∗(x2−x4) ∗(x1−x2) ∗(x1−x3)) ;

t22 = 1/(x4 ∗(x2−x4) ∗(x2−x3) ∗(x1−x3)) ;

t23 = 1/(x4 ∗(x3−x4) ∗(x1−x3) ∗(x1−x2)) ;

t24 = 1/(x4 ∗(x3−x4) ∗(x2−x3) ∗(x1−x2)) ;

phi = map(S ,R,{ t1 , t2 , t3 , t4 , t5 , t6 , t7 , t8 , t9 , t10 , t11 , t12 , t13 , t14 , t15 , t16 ,

t17 , t18 , t19 , t20 , t21 , t22 , t23 , t24 }) ;

HONORS THESIS 43

I = ker phi ;

Output:

Appendix B. Calculations

B.1. Whitehouse Module.

B.1.1. n = 2.

(1) (x1 x2) · A = B

(2) (x1 x3)

(x1 x3) · A = (x4, [[x1, x3], x2]) by (1)

= −(x4, [[x3, x1], x2])

= −A

(x1 x3) ·B = (x4, [[x1, x2], x3]) by (2)

= (x4, [[x3, x2], x1])− (x4, [[x3, x1], x2])

= B − A

44 SHELBY COX

(3) (x1 x4)

(x1 x4) · A = (x1, [[x3, x4], x2]) by (3)

= ([x2, x1], [x3, x4]) by symmetry of the inner product

= ([x3, x4], [x2, x1]) by (3)

= (x4, [[x2, x1], x3]) by (2)

= (x4, [[x3, x1], x2])− (x4, [[x3, x2], x1])

= A−B

(x1 x4) ·B = (x1, [[x3, x2], x4]) by (3)

= ([x4, x1], [x3, x2]) by skew-symmetry of the bracket

= −([x1, x4], [x3, x2]) by (3)

= −(x4, [[x3, x2], x1])

= −B

(4) (x2 x3)

(x2 x3) · A = (x4, [[x2, x1], x3]) by (2)

= (x4, [[x3, x1], x2])− (x4, [[x3, x2], x1])

= A−B

(x2 x3) ·B = −B

HONORS THESIS 45

(5) (x2 x4)

(x2 x4) · A = (x2, [[x3, x1], x4]) by (3)

= ([x4, x2], [x3, x1]) by skew-symmetry of the bracket

= −([x2, x4], [x3, x1]) by (3)

= −(x4, [[x3, x1], x2])

= −A

(x2 x4) ·B = (x2, [[x3, x4], x1]) by (3)

= ([x1, x2], [x3, x4]) by symmetry of the inner product

= ([x3, x4], [x1, x2]) by (3)

= (x4, [[x1, x2], x3]) by (2)

= (x4, [[x3, x2], x1])− (x4, [[x3, x1], x2])

= B − A

46 SHELBY COX

(6) (x3, x4)

(x3, x4) · A = (x3, [[x4, x1], x2]) by (3) twice

= ([x1, [x2, x3]], x4) by (1) twice

= ([[x3, x2], x1], x4) by symmetry of the inner product

= (x4, [[x3, x2], x1])

= B

(x3, x4) ·B = (x3, [[x4, x2], x1]) by (3) twice

= ([x2, [x1, x3]], x4) by (1) twice

= ([[x3, x1], x2], x4) by symmetry of the inner product

= (x4, [[x3, x1], x2])

= A

