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Abstract

We show that the Craighero–Gattazzo surface, the minimal resolution of an explicit
complex quintic surface with four elliptic singularities, is simply connected. This was
conjectured by Dolgachev and Werner, who proved that its fundamental group has
a trivial profinite completion. The Craighero–Gattazzo surface is the only explicit
example of a smooth simply connected complex surface of geometric genus zero with
ample canonical class. We hope that our method will find other applications: to prove a
topological fact about a complex surface we use an algebraic reduction mod p technique
and deformation theory.

1. Introduction

Simply connected minimal complex surfaces of general type of geometric genus zero, i.e. without
global holomorphic 2-forms, occupy a special place in the geography of surfaces; see the excellent
survey [BCP11]. These surfaces are homeomorphic (but not diffeomorphic) to del Pezzo surfaces,
i.e. blowups of P2 in 9 − K2 points where 1 6 K2 6 8. Describing their Gieseker moduli
space of canonically polarized surfaces, or even finding explicit examples, is difficult. The first
example was found by Barlow [Bar85]. Her surface has K2 = 1 and contains four (−2)-curves.
Contracting them gives a canonically polarized surface with four A1 singularities. One can show
by deformation theory that the local Gieseker moduli space of the Barlow surface is smooth and
eight-dimensional, and there exist nearby surfaces which are smooth (see [LC97, Theorem 7] and
[Lee02]).

More examples, including examples for every 1 6 K2 6 4, were found using Q-Gorenstein
deformation theory, starting with the pioneering work of Lee and Park [LP07]; see also [PPS09a,
PPS09b, SU16]. From the moduli space perspective, the Gieseker moduli space of canonically
polarized surfaces with ADE singularities is compactified by the Kollár–Shepherd-Barron–
Alexeev (KSBA) moduli space of canonically polarized surfaces with semi log canonical
singularities [KS88]. We call the complement of the Gieseker space the KSBA boundary. Lee,
Park, and others explicitly constructed special points on the KSBA boundary, and proved (using
deformation theory) that the local KSBA moduli space is smooth at these points, and that one
can find nearby surfaces which are smooth. To compute the fundamental group of the smoothing,
one has to look into what happens when the singularity is replaced with the Milnor fiber. In
the presence of special curves on the singular surface, one can use Van Kampen’s theorem to
compute the fundamental group of the smoothing; see the proof of Theorem 6.2.

Another remarkable surface was found by Craighero and Gattazzo [CG94]. Their surface S
is the minimal resolution of singularities of an explicit quintic surface (2.1) with four elliptic

Received 14 August 2015, accepted in final form 14 June 2016, published online 28 February 2017.
2010 Mathematics Subject Classification 14J10, 14J29 (primary), 14J25, 14D06 (secondary).
Keywords: Godeaux surfaces, fundamental group, deformation theory, moduli space.
This journal is c© Foundation Compositio Mathematica 2017.

https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0010437X16008125
Downloaded from https://www.cambridge.org/core. University of Massachusetts Amherst, on 04 Jan 2021 at 14:46:59, subject to the Cambridge Core terms of use, available at

http://www.compositio.nl/
http://www.ams.org/msc/
http://www.compositio.nl/
https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0010437X16008125
https://www.cambridge.org/core


J. Rana, J. Tevelev and G. Urzúa

singularities. This surface has K2
S = 1. It was proved by Dolgachev and Werner [DW99] that S is

canonically polarized and that its algebraic fundamental group (i.e. the profinite completion of
the fundamental group) is trivial. In addition, it was proved by Catanese and Pignatelli [CP00,
Theorem 0.31] that the local moduli space of S is smooth of dimension eight. It was originally
claimed in [DW99] that S is simply connected, but a serious flaw was discovered in the proof;
see [DW99, Erratum].

The goal of this paper is to prove that S is simply connected using an algebraic reduction
mod p technique and deformation theory. We would like to use the Lee–Park argument involving
the Milnor fiber of a Q-Gorenstein deformation and Van Kampen’s theorem. In order to do that,
we need a Q-Gorenstein family of complex surfaces S → U over a smooth irreducible complex
curve U , such that one of the fibers is the Craighero–Gattazzo surface S and another fiber is
a simply connected surface with a cyclic quotient singularity and containing a special curve
configuration needed to prove simply connectedness. However, it is not clear how to explicitly
construct a family containing the Craighero–Gattazzo as a fiber because no explicit model of the
moduli space is known.

Our trick is to work out an integral model of the Craighero–Gattazzo surface over a ring
of algebraic integers. One obvious model is given by the quintic equation. In an REU (research
experience for undergraduates) directed by the first two authors, Charles Boyd discovered that
this arithmetic threefold has a non-reduced fiber in characteristic seven, and its local equation
has a very special form. Over the complex disc, analogous families of quintic surfaces were studied
by the first author in [Ran14], where it was proved that the KSBA replacement acquires a 1

4(1, 1)
singularity in the special fiber. In fact, it is proved in [Ran14] that numerical quintic surfaces
with a 1

4(1, 1) singularity form a divisor in the KSBA moduli space (and this divisor is explicitly
described). The upshot is that, to some degree, it can be hoped that this singularity appears in
one-parameter families of surfaces, including families over a ring of algebraic integers. We show
that the KSBA limit of S over the 7-adic disc is a surface S0 with a 1

4(1, 1) singularity. We
use the word ‘KSBA limit’ somewhat loosely here because existence of the mixed characteristic
KSBA moduli space (or even canonical KSBA integral models) is still only conjectural.

The minimal resolution of S0 turns out to be a very special and beautiful Dolgachev surface,
i.e. an elliptic fibration over P1 with two multiple fibers, one of multiplicity two and one of
multiplicity three. We call it the Boyd surface. By pure luck, it carries a special curve, which,
if it were a complex surface, would have allowed us to conclude that the Craighero–Gattazzo
surface S is simply connected. Of course our degeneration is over the 7-adic unit disc, so we can
not use Van Kampen’s theorem directly. Our main idea is to use deformation theory to conclude
that S admits an analogous (but no longer explicit) degeneration over the complex unit disc to
a complex surface D0 with a 1

4(1, 1) singularity such that its minimal resolution is a complex
Dolgachev surface analogous to the Boyd surface.

As an application of our construction, we show in Theorem 7.2 that there exist simply
connected Dolgachev surfaces (with multiple fibers of multiplicity 2, 3) which carry algebraic
genus two Lefschetz fibrations, specifically genus two fibrations without multiple components in
fibers and such that the only singularities of fibers are nodes. Dolgachev and Werner showed
existence of a genus two fibration on the Craighero–Gattazzo surface [DW99, Proposition 3.2]. If
this fibration had only nodal singular fibers, then by combining our theorem that the Craighero–
Gattazzo surface is simply connected, we would have the existence of a simply connected
numerical Godeaux surface with a genus two Lefschetz fibration. By [Fre82], these surfaces are
homeomorphic to P2 blown-up in nine or eight points, respectively. In the symplectic category,
Lefschetz fibrations on knot surgered elliptic surfaces in the homotopy class of P2 blown-up at
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The Craighero–Gattazzo surface is simply connected

Figure 1. The Craighero–Gattazzo quintic.

nine points were constructed in [FS04] and in the homotopy classes of P2 blown-up at eight or
seven points in [BK15].

2. Stable limit of the Craighero–Gattazzo surface in characteristic seven

Let X ⊂ P3
C be the quintic surface (see Figure 1)

a2(x2y3 + x3t2 + y2z3 + z2t3) +m2(x3z2 + x2z3 + y3t2 + y2t3)

+ 2am(xyz3 + xy3t+ x3zt+ yzt3) + 14m(x3yz + y3zt+ xz3t+ xyt3)

+ 7b(x2y2z + y2z2t+ x2yt2 + xz2t2) + 14a(xy3z + x3yt+ yz3t+ xzt3)

+ c(x2yz2 + x2z2t+ xy2t2 + y2zt2) + 7e(xy2z2 + x2y2t+ x2zt2 + yz2t2)

+ f(x2yzt+ xy2zt+ xyz2t+ xyzt2) + 49(x3y2 + y3z2 + z3t2 + x2t3) = 0. (2.1)

The coefficients are (from [CP00, p. 25], multiplied by 49)

a = 7r2, b = −2r2 + 13r + 18, c = 73r2 + 75r + 92,

e = −r2 + 24r + 9, f = 181r2 + 241r + 163, m = 3r2 + 5r + 1,

where r is a complex root of the equation

r3 + r2 − 1 = 0. (2.2)

The surface is invariant under the µ4 action which cyclically permutes the variables as follows:
x→ y→ z→ t→ x. It is singular at the points

P1 = [1 : 0 : 0 : 0], P2 = [0 : 1 : 0 : 0], P3 = [0 : 0 : 1 : 0], P4 = [0 : 0 : 0 : 1].

Its minimal resolution is the Craighero–Gattazzo surface S. Exceptional divisors over P1, . . . , P4

are elliptic curves E1, . . . , E4 such that E2
i = −1 for each i. These singularities are sometimes

called singularities of type Ẽ8.
Equation (2.1) gives an integral model of X over SpecZ[r]. Since 3 is a simple root

of (2.2) in Z/(7), by Hensel’s lemma we have a section SpecZ7 → SpecZ7[r], where Z7 is
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the ring of 7-adic integers. Pulling back the integral model with respect to the base change
SpecZ7 → SpecZ7[r]→ SpecZ[r] gives the family X over SpecZ7. The corresponding root of
(2.2) modulo 73 is equal to 143 and after some manipulations the equation of X to the order
of 73 takes the form

f1f
2
2 + 7f2f3 + 72f5 + (higher order terms), (2.3)

where f1, f2, f3, f5 ∈ Z/(7)[x, y, z, t] are the following forms (the subscript indicates the degree):

f1 = x+ y + z + t,

f2 = xz + yt,

f3 = 2(x2y + y2z + z2t+ xt2) + x2z + xz2 + y2t+ yt2

− 3(xy2 + yz2 + x2t+ zt2 + xyz + xyt+ xzt+ yzt),

and

f5 = x3y2 + x3z2 + y3z2 + x2z3 + y3t2 + z3t2 + x2t3 + y2t3

+x3yz + y3zt+ xz3t+ xyt3 − xy2z2 − x2y2t− x2zt2 − yz2t2

−x2yzt− xy2zt− xyz2t− xyzt2 −−3x2y3 − 3y2z3 − 3x3t2 − 3z2t3

− 2x2y2z − 2x2yz2 − 2x2z2t− 2y2z2t− 2x2yt2 − 2xy2t2 − 2y2zt2 − 2xz2t2

− 3xy3z − 3x3yt− 3yz3t− 3xzt3.

This expansion shows that the special fiber of X is the union of the plane L = (f1 = 0) and
the quadric surface Q = (f2 = 0) with multiplicity two. In particular, it is not reduced.

Let k be an algebraically closed field of characteristic 7 and let R be its ring of Witt vectors.
We denote the pull-back of X to SpecR (with respect to the canonical inclusion Z7 ↪→ R) by
the same letter X . We also pullback L and Q to k.

We would like to compute the stable limit of the generic fiber of X . Over the complex disc,
stable Q-Gorenstein limits of families of the form (2.3) were computed by the first author [Ran14],
and semi-stable Gorenstein limits of sufficiently general families by Ashikaga and Konno [AK91].
In our case the disc is 7-adic but the computation is the same. We now describe what the stable
limit is, postponing the proof to Lemma 2.4.

Let ∆ = L ∩Q ⊂ Q ' P1
k × P1

k. It is a curve in the linear system |O(1, 1)|. The curve

Q ∩ (f2
3 − 4f1f5 = 0) ⊂ P1

k × P1
k

is the union of two curves in the linear system |O(3, 3)|:

B1 = Q ∩ (xy2 + 3x2z − 3y2z + 3xz2 − 3xt2 + zt2 = 0) (2.4)

and
B2 = Q ∩ (yz2 + 3y2t− 3z2t+ 3yt2 − 3yx2 + tx2 = 0). (2.5)

Figure 2 shows how these curves intersect, where A1, . . . , A4 are rulings of P1
k × P1

k and
{Q1, Q2} = ∆ ∩B1 ∩B2.

Lemma 2.1. Let
π : Z → P1

k × P1
k

be the double cover branched along B1 ∪B2. The surface Z has four simple elliptic singularities
of type Ẽ8 over P1, . . . , P4, and two A1 singularities over Q1 and Q2. It is smooth elsewhere.
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The Craighero–Gattazzo surface is simply connected

Figure 2. Data in Q ' P1
k × P1

k.

Proof. Direct calculation. 2

We denote the ramification curves in Z by B1 and B2, and we denote the singular points of
Z by the same letters as their images in P1 × P1. Finally, π−1(∆) is the union of two smooth
rational curves: ∆1 and ∆2.

Unless it causes confusion, we adopt the following convention throughout this paper: we use
the same letter to denote an irreducible curve and its proper transform after some birational
transformation.

Definition 2.2. We call the minimal resolution Y of Z the Boyd surface.

The Boyd surface contains elliptic curves E1, . . . , E4 of self-intersection −1 (preimages of
elliptic singularities of Z), (−2)-curves N1 and N2 (preimages of A1 singularities of Z), and
(−4)-curves ∆1 and ∆2.

Definition 2.3. Let S0 be the surface obtained by contracting the (−4)-curve ∆1.

Lemma 2.4 (Cf. [Ran14]). There exists a flat family S → SpecR with special fiber S0 and
generic fiber the Craighero–Gattazzo surface S (after pull-back to C). Near the singular point of
the special fiber, the family is formally isomorphic to

(xy = z2 + 7) ⊂ 1
2(1, 1, 1)R := SpecR[x, y, z]µ2 ,

where µ2 acts by x 7→ −x, y 7→ −y, z 7→ −z.

Proof. We first produce the stable limit of the Craighero–Gattazzo quintic X in characteristic
seven. Let X 0 be the generic fiber of X given by (2.3). Consider the family X̂ → SpecR given
by equations

(f1w
2 + f3w + f5 + h.o.t. = 0, f2 = 7w) ⊂ P4

[x:y:z:t:w](1, 1, 1, 1, 2)R
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obtained by substituting f2 for 7w in the first three terms of (2.3) and dividing by 343. Here,
and throughout, ‘h.o.t.’ refers to higher-order terms with respect to the 7-adic valuation. The
generic fiber of X̂ is clearly isomorphic to X 0.

The special fiber X̂0 is given by

(f1w
2 + f3w + f5 = 0, f2 = 0) ⊂ P4

[x:y:z:t:w](1, 1, 1, 1, 2)k.

We claim that it is isomorphic to the surface Z ′ obtained by blowing down four elliptic (−1)-
curves on S0 to Ẽ8-singularities.

The point (0 : 0 : 0 : 0 : 1) is an isolated singularity with equation, in a local chart,

(f1 + f3 + f5 = 0, f2 = 0) ⊂ 1
2(1, 1, 1, 1).

The singularity is formally isomorphic to

(xy = z2) ⊂ 1
2(1, 1, 1)k,

which has a (−4)-curve as the resolution graph. Moreover, the equation of the whole family X̂
near this point is formally isomorphic to

(xy = z2 + 7) ⊂ 1
2(1, 1, 1)R.

Next we analyze X̂0 away from t0 = (0 : 0 : 0 : 0 : 1). We use the generically two-to-one map
π : S0\{t0}→ Q given by [x : y : z : t : w]→ [x : y : z : t]. Away from ∆ = L ∩Q, π is a double
cover branched along (f2

3−4f1f5 = 0) = B1∪B2. Thus, it can be identified with Z ′\(∆2∪N1∪N2).
Over ∆, but away from t0 (which includes Q1 and Q2) the map π is one-to-one. The preimages
of Q1 and Q2 are lines (with coordinate w). The preimages of the other four points where f3 = 0
are empty; in Figure 2 these are the points where B1 and B2 are tangent to ∆. It follows that
X̂0 and Z ′ are normal surfaces isomorphic in codimension one, and therefore isomorphic.

It remains to note that the family X̂ has Ẽ8 singularities along the sections (1 : 0 : 0 : 0 : 0),
(0 : 1 : 0 : 0 : 0), (0 : 0 : 1 : 0 : 0), and (0 : 0 : 0 : 1 : 0). Resolving them gives a family S → SpecR
with special fiber S0 and generic fiber (after pulling back to SpecC) the Craighero–Gattazzo
surface S. 2

3. Study of the Boyd surface: vanishing of obstructions

We have a commutative diagram,

where the vertical maps are double covers and the horizontal maps are birational. Here P is
obtained by blowing up Q1 and Q2 (let N̄1 and N̄2 be the exceptional divisors), blowing up
P1, . . . , P4 (let Ḡ1, . . . , Ḡ4 be the exceptional divisors), and then blowing up these four points
again in the direction of the tangent cone to B1∪B2 (let Ē1, . . . , Ē4 be the exceptional divisors).

Since

B1 +B2 + 2N̄1 + 2N̄2 ∼ 6σ∗(OQ(1, 1))− 3
4∑
i=1

Ḡi − 6
4∑
i=1

Ēi,
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we have

B1 +B2 + 2N̄1 + 2N̄2 ∼ 3

( 4∑
i=1

Ai +
4∑
i=1

Ḡi

)
(3.1)

as well as

B1 +B2 +

4∑
i=1

Ḡi ∼ 2

(
3σ∗(OQ(1, 1))− N̄1 − N̄2 − 3

4∑
i=1

Ēi −
4∑
i=1

Ḡi

)
. (3.2)

We define W to be the double cover of P branched along the smooth curve

B = B1 +B2 + Ḡ1 + · · ·+ Ḡ4.

Let Ni, Ei, Gi ⊂W be the preimages of N̄i, Ēi, Ḡi, respectively. The curves G1, . . . , G4 are (−1)-

curves, and contracting them gives the Boyd surface Y . The curves N1 and N2 are (−2)-curves

on Y , while E1, . . . , E4 are elliptic (−1)-curves (i.e. elliptic curves with self-intersection −1).

Theorem 3.1. We have H2(Y, TY (−log(∆1 +N1))) = 0.

Proof. We follow [Ran14, 4.8, 4.10] closely. It suffices to show that

H2(W,TW (−log(∆1 +N1))) = 0. (3.3)

Indeed, if this is the case, then Serre duality implies

0 = H0(W,Ω1
W (log(∆1 +N1))(KW ))

= H0(Y, τ∗[Ω
1
W (log(∆1 +N1))(G1 + · · ·+G4)](KY ))

(by Lemma 3.3)

= H0(Y,Ω1
Y (log(∆1 +N1))(KY )) = H2(Y, TY (−log(∆1 +N1)))∨.

Arguing as in [Ran14, 4.8], (3.3) will follow if we can show that

H2(W,TW (−log(∆1 + ∆2 +N1)))− = 0, (3.4)

and

H2(W,TW (−log(N1)))+ = 0, (3.5)

where +/− denotes the symmetric/skew-symmetric part with respect to the µ2-action on the

double cover. Explicitly, and using Serre duality multiple times, if α ∈ H0(W,Ω1
W (log(∆1 +

N1))(K)), then since

Ω1
W (log(∆1 +N1))(K) ⊂ Ω1

W (log(∆1 + ∆2 +N1))(K)

the one-form α must be invariant. But µ2 interchanges ∆1 and ∆2, so that α does not have a

pole along ∆1. Thus, α ∈ Ω1
W (logN1)(K) is an invariant one-form. Equation (3.5) implies that

α = 0.
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Proof of (3.4). At each of the points Q3, . . . , Q6 (the remaining points of Bi ∩ ∆) we blowup
twice to obtain a surface P1 where ∆ and Bi have normal crossings. Let C̄i, F̄i, i = 3, . . . , 6 be
the exceptional divisors of these blowups, so that on P1 we have C̄2

i = −2 and F̄ 2
i = −1. Let

σ′ : P1 → Q be the composition of these blowups, and let f : W1 → P1 be the double cover
branched over B1 +B2 +

∑
Ḡi +

∑
C̄i.

The surface W1 contains (−1)-curves Ci and (−2)-curves Fi which contract to give the surface
W . By the (−1)- and (−2)-curve principles [PSU13, Proposition 4.3, Theorem 4.4] (here we only
need the (−1)-curve principle), we have

H2(W1, TW1(−log(∆1 + ∆2 +N1))) ' H2(W,TW (−log(∆1 + ∆2 +N1))).

Note that the double cover f is defined by (see (3.2))

B1 +B2 +
∑

Ḡi +
∑

C̄i ∼ 2L,

where
L ∼ 3σ′∗(OQ(1, 1))−

∑
Ḡi − 3

∑
Ēi −

∑
N̄i −

∑
F̄i.

Also we have

KP1 = −2σ′∗(OQ(1, 1)) +
∑

N̄i +
∑

Ḡi + 2
∑

Ēi +
∑

C̄i + 2
∑

F̄i,

and so
KP1 + L ∼ σ′∗(OQ(1, 1))−

∑
Ēi +

∑
C̄i +

∑
F̄i.

By Lemma 3.2, we have

f∗(TW1(−log(∆1 + ∆2 +N1)))− = TP1(−log(∆ + N̄1))(−L).

By Serre duality, it suffices to prove vanishing of

H0(P1,Ω
1
P1

(log(∆ + N̄1))(KP1 + L)),

or

H0

(
P1,Ω

1
P1

(log(∆ + N̄1))

(
σ′∗(OQ(1, 1))−

∑
Ēi +

∑
C̄i +

∑
F̄i

))
.

By Lemma 3.3, we have

σ′∗

(
Ω1
P1

(log(∆ + N̄1))

(
σ′∗(OQ(1, 1))−

∑
Ēi +

∑
C̄i +

∑
F̄i

))
⊂ σ′∗

(
Ω1
P1

(
∆ + N̄1 + σ′∗(OQ(1, 1))−

∑
Ēi +

∑
C̄i +

∑
F̄i

))
= σ′∗

(
Ω1
P1

(
σ′∗(∆) + σ′∗(OQ(1, 1))− N̄2 −

∑
Ēi −

∑
F̄i

))
⊂ Ω1

Q ⊗OQ(2, 2)⊗ IQ2

4⊗
i=1

IPi .

Since Ω1
Q = OQ(−2, 0)⊕OQ(0,−2), we have

Ω1
Q ⊗OQ(2, 2) = OQ(0, 2)⊕OQ(2, 0).

Thus, any global section of Ω1
Q⊗OQ(2, 2)⊗IQ2

⊗4
i=1IPi is a global section of OQ(0, 2)⊕OQ(2, 0)

vanishing at the points Q2, P1, . . . , P4. Since these points are in three distinct horizontal and
vertical fibers of Q, any such global section must be zero. This completes the proof of (3.4).
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Lemma 3.2. Let Y be a smooth projective surface defined over an algebraically closed field of
characteristic 6= 2. Let f : X → Y be a double cover with a smooth branch divisor B ⊂ Y .
Let C = f−1(D) be the preimage of a smooth curve D on Y , and suppose that D intersects B
transversally. Then

f∗(Ω
1
X(logC)) = Ω1

Y (log(D))⊕ Ω1
Y (log(D +B))(−L)

and
f∗(TX(−logC)) = TY (−log(D +B))⊕ TY (−log(D))(−L),

where B ∼ 2L. Moreover, these decompositions break the sheaves into their invariant and anti-
invariant subspaces under the action of µ2 by deck transformations.

Proof. The surface X is defined in the total space of the line bundle L by the equation z2 = x
where x is a global section of OY (2L). This allows us to work étale-locally, using the argument
of [Ran14, 4.6]. 2

Lemma 3.3. Let Y be a smooth projective surface defined over an algebraically closed field. Let
σ : X → Y be the blowup of p ∈ Y with exceptional divisor E. Then for every integer m > 0,
we have σ∗(Ω

1
X(mE)) = Ω1

Y . Moreover, σ∗(Ω
1
X(−E)) = Ω1

Y ⊗ Ip, where Ip is the ideal sheaf of
the point p.

Proof. Let η be the generic point of Y . The sheaves σ∗(Ω
1
X(mE)) and Ω1

Y are subsheaves of the
constant sheaf with stalk Ω1

Y,η (the sheaf of rational differentials). A local section of σ∗(Ω
1
X(mE))

is regular outside of p and therefore regular at p since Ω1
Y is locally free. Thus, we have an injective

map i : σ∗(Ω
1
X(mE))→ Ω1

Y . It is surjective because given a local 1-form α ∈ Ω1
Y (U), the 1-form

σ∗(α) ∈ Ω1
X(σ−1(U)) ⊂ Ω1

X(mE)(σ−1(U)) maps to α.
For the second part, we have an injective map i : σ∗(Ω

1
X(−E))→ Ω1

Y , as above. Moreover,
any one-form i(α) in the image of i vanishes at p, since α vanishes along E. Thus, the image of
i is the sheaf Ω1

Y ⊗ Ip. 2

Proof of (3.5). Note that we have the short exact sequence

0→ TW (−log(∆1 + ∆2 +N1))→ TW (−log, N1)→ N∆1/W ⊕N∆2/W → 0.

Since H2(W,N∆1/W ⊕N∆2/W ) = 0, it suffices to prove that

H2(W,TW (−log(∆1 + ∆2 +N1)))+ = 0.

This part is more delicate and the proof occupies the rest of the section.
By Lemma 3.2, we have

f∗(TW1(−log(∆1 + ∆2 +N1)))+ = TP1

(
−log

(
∆ + N̄1 +B1 +B2 +

∑
Ḡi +

∑
C̄i

))
.

Again applying the (−1) and (−2)-curve principles, it suffices to show that

H2(P1, TP1(−log(∆ +B1 +B2))) = 0.

To begin with, we claim that

H2(P1, TP1(−log(B1 +B2))) = 0. (3.6)
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Because B1 and B2 have simple normal crossings after contracting the curves C̄i and F̄i, it
suffices to show that

H2(P, TP(−log(B1 +B2))) = 0

or equivalently (by Serre duality)

H0

(
P,Ω1

P(log(B1 +B2))

(
−2D +

∑
N̄i +

∑
Ḡi + 2

∑
Ēi

))
= 0.

Letting F = OP(−2D +
∑
N̄i +

∑
Ḡi + 2

∑
Ēi), we have the short exact sequence

0→ Ω1
P1
⊗F → Ω1

P(log(B1 +B2))⊗F → (OB1 ⊕OB2)⊗F → 0.

The products Bj · F = −4 < 0 for j = 1, 2 and thus

H0((OB1 ⊕OB2)⊗F) = 0.

The projection formula and Lemma 3.3 give

H0(P1,Ω
1
P1
⊗F) ' H0(Q,Ω1

Q(−2D)).

The sheaf Ω1
Q(−2D) = OQ(−4,−2) ⊕ OQ(−2,−4) has no global sections, completing the proof

of claim (3.6).
Now consider the short exact sequence

0→ TP1(−log(∆ +B1 +B2))→ TP1(−log(B1 +B2))→ N∆/P1
→ 0.

By claim (3.6), vanishing of H2(P1, TP1(−log(∆+B1 +B2))) will be complete once we show that
the map

H1(P1, TP1(−log(B1 +B2)))→ H1(P1,N∆/P1
) (3.7)

is surjective. We identify H1(P1, TP1(−log(B1 + B2))) with the space of first-order infinitesimal
deformations of P1 which contain an embedded first-order deformation of B1 ∪ B2. We identify
H1(P1,N∆/P1

) with the space of obstructions to deforming ∆ in P1. Thus, the map (3.7) factors
through the natural map

H1(P1, TP1)→ H1(P1,N∆/P1
) (3.8)

which sends an infinitesimal first-order deformation of P1 to the obstruction to deforming ∆ in
this first-order deformation of P1. We have to show that given any such obstruction, there is a
deformation of the pair (P1, B1 +B2) that maps to the given obstruction.

Recall that P1 is obtained from P1×P1 by blowing up once at each of Q1, . . . , Q6;P1, . . . , P4,
and again at each of Q3, . . . , Q6 in the direction of the proper transform of ∆ and at each of
P1, . . . , P4 in the direction of tangent cone of B1∪B2. We denote by σ2 : P1→ Q̃ the ‘intermediate’
blowup, i.e. the map which contracts the last eight (−1)-curves on P1.

We have the following exact sequence of sheaves on Q̃

0→ (σ2)∗TP1 → TQ̃→

6⊕
i=3

k2
Qi
⊕

4⊕
i=1

k2
Pi
→ 0.

Looking at the corresponding exact sequence in cohomology, we see that every infinitesimal
first-order deformation of P1 arises from either an infinitesimal first-order deformation of Q̃
(corresponding to an element of H1(Q̃, TQ̃)) or from an infinitesimal first-order deformation of
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The Craighero–Gattazzo surface is simply connected

the points Q3, . . . , Q6, P1, . . . , P4 on Q̃, or both. This latter space is isomorphic to a vector space
V = (k2)8. We note that V has a linear subspace V1 ' k8 corresponding to infinitesimal first-order
deformations of the points Q3, . . . , Q6, P1, . . . , P4 to points along the exceptional divisors of σ2,
i.e. changing the tangent direction of the infinitely-near blowup.

Similarly, because P1×P1 is rigid, every first-order infinitesimal deformation of Q̃ arises from
a first-order infinitesimal deformation of the points Q1, . . . , Q6;P1, . . . , P4 in P1×P1. This latter
deformation space is isomorphic to the vector space W = (k2)10. Thus, we have short exact
sequences

0→ V → H1(P1, TP1)→ H1(Q̃, TQ̃)→ 0

0→ H0(P1 × P1, TP1×P1)→W → H1(Q̃, TQ̃)→ 0

signifying that every first-order infinitesimal deformation of P1, and therefore of (P1, B1 ∪ B2),
arises from a first-order infinitesimal deformation of the points Q1, . . . , Q6; P1, . . . , P4 in P1×P1

(i.e. an element of W ) or a first-order deformation of Q3, . . . , Q6, P1, . . . , P4 in Q̃, or both.
We note that (3.8), and even V1 → H1(P1,N∆/P1

), is surjective, i.e. each obstruction in
H1(P1,N∆/P1

) arises from a first-order infinitesimal deformation of Q1, . . . , Q6 and the tangent
directions of Q3, . . . , Q6 in P1×P1 that fails to induce a first-order embedded deformation of ∆.

Lemma 3.4. The space H1(P1,N∆/P1
) has dimension seven and has the following distinguished

basis. Each basis element comes from a first-order deformation of P1 which fixes Q1, Q2, Q3 (this
takes care of infinitesimal automorphisms of P1 × P1) and either:
• Ik for k = 1, 2, 3 leaves the tangent direction at Q3 fixed, i.e. parallel to ∆, and moves
Qk+3 ∈ {Q4, Q5, Q6} off ∆ while keeping the remaining points and their tangent directions
fixed, i.e. parallel to ∆; or

• Ik for k = 4, 5, 6, 7 fixes Qk−1 ∈ {Q3, Q4, Q5, Q6} and changes the tangent direction at Qk−1,
moving the remaining points of Q4, Q5, Q6 along ∆ and keeping the tangent directions at
these remaining points fixed, i.e. parallel to ∆.

Proof. Simple calculation. 2

To show that the map (3.7) is surjective, it suffices to show that for each deformation type
listed, there exists an equisingular deformation of B1 ∪B2 in P1 × P1 which passes through the
points to which Q1, . . . , Q6 deform and which has the desired tangent direction at each point.

To begin, let us choose bi-homogeneous coordinates ((α : α′), (β : β′)) on Q = P1×P1 so that
α = x/y = −t/z and β = x/t = −y/z. Let g1 and g2 be the equations (bihomogeneous of degree
(3, 3)) of B1 and B2, respectively. Referring to (2.4) and (2.5), we have

g1 = −αα′2β3 + 3α2α′β2β′ − 3β2β′α′3 − 3αα′2ββ′2 + 3α3ββ′2 + α2α′β′3

g2 = −ββ′2α′3 − 3αα′2β2β′ + 3αα′2β′3 − 3ββ′2α2α′ + 3β3α2α′ − β2β′α3.

Global first-order deformations B̃1 and B̃2 of B1 and B2 are given by equations

g1 + εḡ1 = g1 + ε
∑

06i,j63

aijα
iα′3−iβjβ′3−j

and
g2 + εḡ2 = g2 + ε

∑
06i,j63

bijα
iα′3−iβjβ′3−j ,

respectively. In order to describe equisingular first-order deformations of B1 ∪ B2, we move the
singularities of B1 and B2 at P1, . . . , P4 to the points (εc1, εd1), . . . , (εc4, εd4), given in local
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coordinates on U1, . . . , U4 ⊂ Q, respectively, where

U1 = {α = β = 1}, U2 = {α′ = β = 1},
U3 = {α = β′ = 1}, U4 = {α′ = β′ = 1}.

To simplify calculations, we change coordinates on U1, . . . , U4, so that the points (εc1, εd1), . . . ,
(εc4, εd4) are at the origin.

Letting gij + εḡij be the degree j part of the equation gi + εḡi with respect to the
new coordinates, we have the following conditions. These ensure that B1 ∪ B2 maintains the
singularities, with possibly different tangent cones, at the points to which P1, . . . , P4 deform.
For simplicity we use the same notation for P1, . . . , P4 and the points to which they deform:

(1) g10 + εḡ10 = 0 on each Ui; this forces B̃1 to pass through P1, . . . , P4;

(2) g11 + εḡ11 = 0 on U1, U4; this forces B̃1 to be singular at P1 and P4;

(3) g12 + εḡ12 = (m + m1ε)(g21 + εḡ21)2, for some constants m,m1, on U1, U4 (where m,m1

may differ on U1, U4); this forces the tangent cones of B̃1 at P1 and P4 to be the same as
those of B̃2 at P1 and P4;

(4) g13 + εḡ13 = (g21 + εḡ21)(h+ εh1), where h and h1 are quadratic forms; by Lemma 3.6, this
forces B̃1 to have tacnodes at the points P1 and P4;

(5) g20 + εḡ20 = 0 on each Ui; this forces and B̃2 to pass through P1, . . . , P4;

(6) g21 + εḡ21 = 0 on U2, U3; this forces B̃2 to be singular at P2 and P3;

(7) g22 + εḡ22 = (n + n1ε)(g11 + εḡ11)2, for some constants n, n1, on U2, U3 (where n, n1 may
differ on U2, U3); this forces the tangent cones of B̃2 at P2 and P3 to be the same as those
of B̃1 at P2 and P3;

(8) g23 + εḡ23 = (g11 + εḡ11)(h+ εh1), where h and h1 are quadratic forms; by Lemma 3.6, this
forces B̃2 to have tacnodes at the points P2 and P3.

Returning to original coordinates, and after simple algebraic manipulations, this gives the
following system of 28 linear equations in ci, di, aij , bij (four blocks for four charts).

Equations 3.5.

a33 = 0

b33 = d1 − 3c1

a32 = −3c1 − 6d1

a23 = 2c1 − 3d1

a22 = a31 + b23 + 3b32

a13 = 2a31 − 2b32 + 4b23

2c1 − d1 + 3a12 + a03 + 2a21 − a30 = 0

a30 = −c2 − 3d2

b30 = 0

b31 = 3c2 + 2d2

b20 = 3d2 + c2

b32 = 2b10 + 4a31 + 2a20

b21 = 6b10 + 6a31 + 3a20

5c2 + 3d2 + 5b00 + 3b11 + 6b22 + 5b33 = 0
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a03 = c3 + 3d3

b03 = 0

b02 = 2d3 + 3c3

b13 = 3d3 + c3

b01 = 5a13 + 2b23 + 3a02

b12 = 4a13 + 6b23 + a02

c3 + 2d3 − 3b11 + b33 + 2b22 + b00 = 0

a00 = 0

b00 = d4 − 3c4

a01 = 3c4 + 6d4

a10 = 3d4 − 2c4

a20 = 2a02 + 2b01 + 3b10

a11 = a02 + 4b01 + 6b10

4c4 + 5d4 + 2a03 + 3a12 + a21 + 5a30 = 0.

Next, we determine all additional conditions on aij , bij , ci, di which ensure that B̃1 and
B̃2 pass through the points to which Q1, . . . , Q6 deform, with the desired multiplicities at each
point. To do so, we look in the chart U4. Here, the equation of ∆ is

α(1 + β) + β − 1 = 0.

Solving for α gives

α =
1− β
1 + β

.

Thus, the points at which ∆ intersects B1 and B2 are the roots of the following polynomials:

(β2 + 1)(β2 + 4β + 6)2

and
(β2 + 1)(β2 + 6β + 6)2.

This gives the six points at which B1 and B2 intersect ∆:

Q1 = (−i, i), Q2 = (i,−i),
Q3 = (3− 5i,−2 + 4i), Q4 = (3 + 5i,−2− 4i),

Q5 = (−5 + 4i,−3 + 5i), Q6 = (−5− 4i,−3− 5i),

where i2 + 1 = 0 mod 7.
The intersections of ḡ1 = 0 and ḡ2 = 0 with ∆ are given by the zeros of the following

polynomials:

ĝ1 = (1 + β)3(a00 + a01β + a02β
2 + a03β

3)

+ (1 + β)2(1− β)(a10 + a11β + a12β
2 + a13β

3)

+ (1 + β)(1− β)2(a20 + a21β + a22β
2 + a23β

3)

+ (1− β)3(a30 + a31β + a32β
2 + a33β

3)
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ĝ2 = (1 + β)3(b00 + b01β + b02β
2 + b03β

3)

+ (1 + β)2(1− β)(b10 + b11β + b12β
2 + b13β

3)

+ (1 + b)(1− β)2(b20 + b21β + b22β
2 + b23β

3)

+ (1− β)3(b30 + b31β + b32β
2 + b33β

3).

Using these equations, we obtain eight additional linear equations in aij , bij , ci, di. These
ensure that B̃1 and B̃2 pass through Q1, Q2, that B̃1 passes through Q3, Q4, and that B̃2 passes
through Q5, Q6. Note that each restriction arises from setting β equal to i, −i, −2 + 4i, −2− 4i,
−3 + 5i, or −3− 5i in the appropriate equation.

(B1Q1)

(3c1 − 3c4 + 3d1 + d4 − 2a20 − 2a21 − a31 + 3a02 − a12 + 3a03 − 2b10 + 3b32 + 2b23)i

+ 3c1 − 3c4 + 3d1 + d4 + 2a20 − 2a21 + a31 − 3a02 − a12 + 3a03 + 2b10 − 3b32 − 2b23 = 0

(B1Q2)

(−3c1 + 3c4 − 3d1 − d4 + 2a20 + 2a21 + a31 − 3a02 + a12 − 3a03 + 2b10 − 3b32 − 2b23)i

+ 3c1 − 3c4 + 3d1 + d4 + 2a20 − 2a21 + a31 − 3a02 − a12 + 3a03 + 2b10 − 3b32 − 2b23 = 0

(B2Q1)

(−3c2 − c3 − 3d3 − a20 − 3a31 − a02 − 2b11 + b22 + 3b32 + b23)i

+ 3c2 + c3 + 3d3 − a20 − 3a31 − a02 + 2b11 − b22 + 3b32 + b23 = 0

(B2Q2)

(3c2 + c3 + 3d3 + a20 + 3a31 + a02 + 2b11 − b22 − 3b32 − b23)i

+ 3c2 + c3 + 3d3 − a20 − 3a31 − a02 + 2b11 − b22 + 3b32 + b23 = 0

(B1Q3)

(−c4 + 2d1 − 2d4 + 3a20 + 3a21 − a31 + 3a12 + 2b10 − 2b32 − 3b23)i

+ 3c1 − c4 − 3d1 − 2d4 − 2a20 + 3a21 − 3a31 + a02 + a12 − a03 − 3b10 − 3b32 + b23 = 0

(B1Q4)

(c4 − 2d1 + 2d4 − 3a20 − 3a21 + a31 − 3a12 − 2b10 + 2b32 + 3b23)i

+ 3c1 − c4 − 3d1 − 2d4 − 2a20 + 3a21 − 3a31 + a02 + a12 − a03 − 3b10 − 3b32 + b23 = 0

(B2Q5)

(c1 + 3c2 + 2c3 + 2d1 − d3 + a20 − 3a31 + 2a02 − b10 + 3b11 − b22 + b23)i

+ 2c1 − 2c2 + 2c3 − 3d1 + 3d2 − d3 − 2a20 − a31 + 3a02 + b10 + 3b11 − 3b22 + b32 − 3b23 = 0

(B2Q6)

(−c1 − 3c2 − 2c3 − 2d1 + d3 − a20 + 3a31 − 2a02 + b10 − 3b11 + b22 − b23)i

+ 2c1 − 2c2 + 2c3 − 3d1 + 3d2 − d3 − 2a20 − a31 + 3a02 + b10 + 3b11 − 3b22 + b32 − 3b23 = 0.

Taking the derivatives of ĝ1 and ĝ2 with respect to β and setting β equal to −2 + 4i, −2−4i,
−3 + 5i, or −3 − 5i as appropriate gives the final four linear equations in aij , bij , ci, di. These
ensure that B̃1 and B̃2 are tangent to ∆ at Q3, Q4 and Q5, Q6, respectively.
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(dB1Q3)

(3c1 − 2c4 − 3d1 + 3d4 + a21 + 2a31 + 2a02 + a03 − b10 − 2b32)i

− c1 + c4 − 2d1 + 2d4 + 2a20 + a21 + 3a02 + a03 − 3b10 − 2b32 − b23 = 0

(dB1Q4)

(−3c1 + 2c4 + 3d1 − 3d4 − a21 − 2a31 − 2a02 − a03 + b10 + 2b32)i

− c1 + c4 − 2d1 + 2d4 + 2a20 + a21 + 3a02 + a03 − 3b10 − 2b32 − b23 = 0

(dB2Q5)

(c1 − 3c2 − c3 + 2d1 + d2 − 3d3 + 3a20 + 2a31 + 3a02 + 2b10 − 2b11 − 3b22 − 2b23)i

− c2 − 3c3 − 3d2 − 2d3 − 3a31 − 3a02 − b10 − b22 − 3b32 = 0

(dB2Q6)

(−c1 + 3c2 + c3 − 2d1 − d2 + 3d3 − 3a20 − 2a31 − 3a02 − 2b10 + 2b11 + 3b22 + 2b23)i

− c2 − 3c3 − 3d2 − 2d3 − 3a31 − 3a02 − b10 − b22 − 3b32 = 0.

Consider a basis element in H1(P1,N∆/P1
) corresponding via Lemma 3.4 to some deformation

of the points P1, . . . , P4, Q1, . . . , Q6 together with the tangent directions of P1, . . . , P4, Q4, . . . , Q6

in P1 × P1. There are two cases, as in Lemma 3.4.
Consider for example the basis element I1. The existence of an equisingular deformation

of (P1, B1 ∪ B2) mapping to I1 is equivalent to the existence of aij , bij , ci, di which satisfy
(3.5), as well as B1Q1, B1Q2, B2Q1, B2Q2, B1Q3, dB1Q3, B1Q4-1, B2Q5, B2Q6. Here, we
use Lemma 3.7.

Next we consider the basis element I4. The existence of an equisingular deformation of
(P1, B1 ∪B2) mapping to I4 is equivalent to the existence of aij , bij , ci, di which satisfy (3.5), as
well as B1Q1, B1Q2, B2Q1, B2Q2, B1Q3, dB1Q3, dB1Q3-1, B2Q4, B2Q5, B2Q6. Here, we use
Lemma 3.7.

Thus, each of the seven basis elements corresponds to finding a non-trivial solution of a large
system of linear equations. As working with such large matrices is unwieldy, we use Macaulay2
to check this (see the code included in the Appendix). In each case, we find that solutions indeed
form either a three- or four-dimensional vector space, depending on the basis element, completing
the proof. 2

Lemma 3.6. The singularity (h2
1 + h1h2 + h.o.t. = 0) ⊂ A2, where hi is a form of degree i, is a

tacnode (or a degeneration of a tacnode).

Proof. Completing the square, the equation becomes ((h1 + 1
2h2)2 + h.o.t. = 0) ⊂ A2. Letting

h = h1 + 1
2h2, the singularity becomes (h2 + h.o.t. = 0) ⊂ A2. As there are no terms of degree 3,

this is a tacnode. 2

Lemma 3.7. Let B = (g = 0) be the germ of a smooth curve in A2 which is simply tangent
to the x-axis at the origin, and let B̃ = (g + εḡ = 0) be its first-order infinitesimal embedded
deformation. Then B̃ is tangent to the x-axis if and only if ḡ(0, 0) = 0.

Proof. Suppose ḡ(0, 0) = 0. We have to show that there exists x0 with

g(εx0, 0) + εḡ(εx0, 0) = 0
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and that
d

dx
(g(εx0, 0) + εḡ(εx0, 0)) = 0.

Taking the Taylor expansion of these with respect to ε, the first of these obviously holds. The
second holds for

x0 =
−ḡ′1(0, 0)

g′′1(0, 0)
. 2

4. The Boyd surface is a Dolgachev surface

Lemma 4.1. Blowing-down N̄1 and N̄2 on P gives a Halphen surface of index three [CD89, ch. V,
§ 6] with a multiple fiber A1 + · · ·+A4 + Ḡ1 + · · · Ḡ4 of type I8.

Proof. By 3.1, P has a fibration P → P1
k with connected fibers such that the general fiber is

smooth of genus one; see [Bǎd01, § 7]. Moreover, the I8 fiber
∑4

i=1Ai +
∑4

i=1 Ḡi has multiplicity
three. Thus, this elliptic fibration is a Halphen surface of index three (after one blows down N̄1

and N̄2); see [CD89, ch. V, Theorem 5.6.1]. 2

Lemma 4.2. The Boyd surface Y is a Dolgachev surface in characteristic seven. The elliptic
fibration Y → P1

k has four singular fibers: one I4 with multiplicity three, one I4 with multiplicity
two, and two reduced I2.

Proof. We denote by α the composition W → P→ P1
k. Since this is a projective morphism, we

have a Stein factorization for α, i.e. maps β : W → C with connected fibers and γ : C → P1
k a

finite morphism such that α = γ ◦ β. Note that the multiplicity of the fiber B1 +B2 + N̄1 + N̄2

of P → P1
k is 1, and so γ : C → P1

k is a finite separable morphism. Note also that the fibers
B1 +B2 + N̄1 + N̄2 and I8 in P→ P1

k pull back to connected fibers of α with multiplicities two
and three, respectively. Since these multiplicities are coprime, we must have that the degree of
γ is one, and so γ is an isomorphism. In this way α has connected fibers. In addition, since it
has two multiple fibers, the Kodaira dimension of Y is non-negative [CD89].

The double cover W → P induces a connected étale cover between the non-multiple fibers
of α. Note that P→ P1

k can only have irreducible singular fibers apart from B1 +B2 + N̄1 + N̄2

and I8, because the Picard number of P is 12. Therefore, we can have either two I1 or one II as
extra singular fibers. But a fiber of type II is étale simply connected, and so it does not have a
connected étale cover of degree two. Thus, P→ P1

k has precisely two extra I1 singular fibers, and
their pre-images under W → P give two I2 reduced fibers for α. This elliptic fibration induces a
relatively minimal elliptic fibration Y → P1

k, after we blow-down the curves G1, . . . , G4.
Using well-known facts on double covers, one can easily verify that K2

Y = 0, χ(OY ) = 1, and

pg(Y ) = h2(−L) = h0(KP + L) = 0, (4.1)

where

L = 3σ∗(∆)−
4∑
i=1

Ēi − 2
4∑
i=1

Ḡi − N̄1 − N̄2

is the line bundle defining the double cover π′. Thus, q(Y ) = 0. 2

The previous lemma shows the canonical class of Y has the form

KY ∼ −F + Γ2 + 2Γ3 ≡ 1/6F, (4.2)
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where F is a general fiber, Γ2 is the I4 with multiplicity two, and Γ3 is the I4 with multiplicity
three.

Lemma 4.3. We have that KS0 is nef.

Proof. The Boyd surface Y is the minimal resolution of the surface S0, which has log terminal
singularities. Therefore, it suffices to show that KY is nef, which follows from (4.2). 2

5. Some mixed characteristic deformation theory

In this section we show that the Craighero–Gattazzo surface can be degenerated to a special
complex surface with a 1

4(1, 1) singularity. Our argument is based on the following simple fact.

Lemma 5.1. Let R be a DVR with residue field k and quotient field K. Let K̄ be the algebraic
closure of K. Let T be a smooth R-scheme. Let o ∈ T be a k-point. Let σ1, σ2 : SpecR → T
be two sections passing through o. Then there exists an irreducible smooth K̄-curve C and a
morphism C→ TK̄ such that its image contains σ1(η) and σ2(η), where η ∈ SpecR is the generic
point.

Remark 5.2. For the proof we only need σ1 to be a section; σ2 can be a section SpecR′ → TR′

after a finite surjective base change SpecR′→ SpecR.

Proof. We can substitute T with an affine connected component SpecA of o. By [Mum70, p. 56],
it suffices to prove that TK is geometrically connected. Since it is smooth over SpecK and has
a K-point σ1(η), it suffices to prove that it is connected. Arguing by contradiction, suppose
it is disconnected. Then H0(TK ,OTK ) contains a non-trivial idempotent e. Let π ∈ R be a
uniformizer. Since T is flat over SpecR, π is not a zero-divisor in A, and so e ∈ A[1/π]. Let n be
the minimal non-negative integer such that e can be written as a/πn with a ∈ A. Then a2 = πna.
Since T is smooth over SpecR, its special fiber is reduced. It follows that n = 0 because otherwise
a2 = 0 mod (π) and therefore a = 0 mod (π), which implies that n is not minimal. So e ∈ A,
which contradicts the connectedness of T . 2

Lemma 5.3. Let R be a complete DVR with residue field k and quotient field K. Let K̄ be the
algebraic closure of K. Let F be a limit-preserving contravariant functor from the category of
R-schemes to the category of sets.

Fix ζ0 ∈ F (Spec k). Let Fζ0 be its ‘deformation functor’, i.e. a functor from the category of
pointed R-schemes (X,x0), where x0 is a closed point with residue field k, to sets. Specifically,
Fζ0(X,x0) = {ξ ∈ F (X) |F (i)ξ = ζ0}, where i : Spec k = Spec k(x0) ↪→ X is the inclusion.

Suppose the restriction of Fζ0 to the category of spectra of local artinian R-algebras with
residue field k is smooth and satisfies Schlessinger’s conditions [Sch68]. Suppose also that the
natural map

Fζ0(SpecA)→ lim
←−

Fζ0(SpecA/mn) (5.1)

is bijective for every complete local Noetherian R-algebra (A,m) with residue field k.
Let Σ1,Σ2 ∈ Fζ0(SpecR) and let Σ̄1, Σ̄2 ∈ F (Spec K̄) be their pull-backs to Spec K̄. Then

there exists an irreducible smooth K̄-curve C, K̄-points y1, y2 ∈ C, and an element Σ ∈ F (C)
which restricts to Σ̄1 and Σ̄2 at y1 and y2, respectively.
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Proof. By [Sch68], Fζ0 admits a hull, and by (5.1) we can assume that the hull is induced by an
element ζ̄ ∈ Fζ0(SpecH), where (H,m) is a complete local Noetherian R-algebra with residue
field k. By Artin’s algebraization theorem [Art69, Theorem 1.6], there exists anR-scheme of finite
type T , a closed k-point o ∈ T , an element ζ ∈ Fζ0(T, o), and an isomorphism σ : ÔT,o→ H such
that F (σ)ζ and ζ̄ agree on H/mn for all n > 1. By (5.1), in fact F (σ)ζ = ζ̄.

Since Fζ0 is smooth, T → SpecR is formally smooth at o, and therefore we can assume that
T is a smooth R-scheme after shrinking it if necessary.

SinceR is complete, we can find sections σ1, σ2 : SpecR→ T such that F (σi)(ζ) and Σi agree
on R/nn for any n > 1, where n ⊂ R is the maximal ideal. By (5.1), F (σi)(ζ) = Σi. It remains
to apply Lemma 5.1. 2

In our application F will be a functor of Q-Gorenstein deformations, as worked out in [Hac04]
in characteristic zero and [AH11] in general. For simplicity, we allow only Cohen–Macaulay
surfaces. Following [AH11], let Kω be the category of Kollár families fibered in groupoids over
the category of schemes. An object of Kω over a scheme B is a triple (f : X → B,F, φ), where
f is a proper flat family of connected reduced Cohen–Macaulay surfaces, F is a coherent sheaf,
and φ : F → ωX/B is an isomorphism. Moreover, we assume that the formation of every reflexive

power F [n] commutes with arbitrary base change (we call this the Kollár condition) and that for
every geometric point s of B there exists a positive integer Ns such that F [Ns]|Xs is invertible
and ample. See [AH11] for the description of morphisms in Kω and for the proof that it is an
algebraic stack. The functor DefQG of Q-Gorenstein deformations is the associated set-valued
functor of isomorphism classes of Kollár families.

Theorem 5.4. Let R be a complete DVR with algebraically closed residue field k and quotient
field K. Let K̄ be the algebraic closure of K. Let X1 and X2 be two Q-Gorenstein families
over SpecR. Suppose their special fibers are both isomorphic to a k-surface X. Let KωR be the
restriction of Kω to the category of R-schemes. Suppose it is R-smooth at X → Spec k. Then
there exists an irreducible smooth K̄-curve C, K̄-points y1, y2 ∈ C, and a Q-Gorenstein family
over C with fibers at y1 and y2 isomorphic to (X1)K̄ and (X2)K̄ , respectively.

Proof. Since KωR is an algebraic R-stack, its associated set-valued functor DefQGR satisfies the
conditions of Lemma 5.3 by Artin’s criterion [Art74]. 2

In our situation, X1 will be a degeneration of the Craighero–Gattazzo surface to the
contraction S0 of the Boyd surface Y . To construct the second family, we will need the following
well-known fact.

Lemma 5.5. Let k be an algebraically closed field, let R be a complete DVR with residue field k,
let Y be a smooth projective surface over k and let C1, . . . , Cr ⊂ Y be smooth curves intersecting
transversally. Suppose

H2(Y, TY (−log(C1 + · · ·+ Cr))) = H2(Y,OY ) = 0.

Then there exists a smooth projective family of surfaces Y → SpecR with closed subschemes
C1, . . . , Cr ⊂ Y smooth and proper over SpecR such that the special fiber is (Y ;C1, . . . , Cr).

Proof. This is well-known but we sketch a proof for completeness. Let m ⊂ R be the maximal
ideal and let Rn = R/mn+1 for each n = 0, 1, . . . . We first lift (Y ;C1, . . . , Cr) to a scheme and a
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collection of subschemes flat over SpecRn for each n by induction on n. So assume we already

have a lift (Y n;Cn1 , . . . , C
n
r ) to SpecRn. We have an exact sequence

0→ TY (−log(C1 + · · ·+ Cr))→ TY → i1∗NC1/Y ⊕ · · · ⊕ ir∗NCr/Y → 0 (5.2)

of sheaves on Y , where ij : Cj → Y denotes the embedding for each j. Since H2(Y, TY (−log(C1 +

· · ·+Cr))) = 0, we have H2(Y, TY ) = 0 as well. Therefore, we can lift Y n to a scheme Y n+1 flat

(and then automatically smooth and proper) over SpecRn+1. Moreover, all possible lifts form

an affine space with underlying vector space H1(Y, TY ). Since

H1(Y, TY )→ H1(C1, NC1/Y )⊕ · · · ⊕H1(Cr, NCr/Y )

is surjective by H2(Y, TY (−log(C1 + · · · + Cr))) = 0, we can choose a lift such that the

corresponding class in H1(Ci, NCi/Y ) vanishes for each i. This class can be interpreted as an

obstruction to lifting Cni ⊂ Y n to a subscheme Cn+1
i ⊂ Y n+1 flat over SpecRn+1. So we can lift

all Ci to subschemes Cn+1
i ⊂ Y n+1 flat (and automatically smooth and proper) over SpecRn+1.

The projective limit Ŷ = lim
←
Y n is a formal scheme smooth and proper over SpfR. The projective

limits Ĉi = lim
←
Cni for i = 1, . . . , n are closed formal subschemes smooth and proper over SpfR.

Since H2(Y,OY ) = 0, we can lift any ample invertible sheaf on Y to an (automatically ample)

invertible sheaf on Ŷ. By Grothendieck’s existence theorem [EGAIII, 5.4.5], there exists a scheme

Y projective and flat (and then automatically smooth) over SpecR such that Ŷ is a completion

of its special fiber. By [EGAIII, 5.1.8], there exist closed subschemes C1, . . . , Cr ⊂ Y such that

Ĉ1, . . . , Ĉr are completions of their special fibers. They are flat (and automatically smooth and

proper) over SpecR. 2

Notation 5.6. We revert to the notation of the previous sections; in particular, R will denote the

ring of Witt vectors of an algebraically closed field k of characteristic seven. We denote by Y

the Boyd surface over k. The (−4)-curve ∆1 and the (−2)-curve N1 of Y intersect transversally

and in one point.

Lemma 5.7. There exists a smooth projective family of surfaces Y → SpecR with closed

subschemes C,N ⊂ Y smooth and proper over SpecR such that their geometric fibers are

transversal rational curves of self-intersection −4 and −2, respectively. The special fiber is the

Boyd surface (Y,∆1, N1).

Proof. This follows from Theorem 3.1, (4.1), preservation of intersection numbers, and

Lemma 5.5. 2

We need a few facts about the 1
4(1, 1) singularity. Let µ4 be the Z-group scheme

SpecZ[ι]/(ι4 − 1) with comultiplication ι→ ι⊗ ι. Let

X = SpecZ[u, v]µ4 = SpecZ[u4, u3v, u2v2, uv3, v4],

where µ4 acts on A2 with weights (ι, ι). For any scheme S, we say that XS → S is the standard

family of surfaces with 1
4(1, 1) singularity. If k is a field, then Xk is isomorphic to the cone over

the rational normal curve in P4
k.
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Definition 5.8. Let S be a locally Noetherian scheme and let X → S be a flat family of

geometrically connected reduced surfaces smooth outside of a section Σ : S → X . We say that

X → S has a 1
4(1, 1) singularity along Σ if there exists a (not necessarily cartesian) commutative

diagram

X ′ g //

��

X

��
S′

f // S

of morphisms with commuting sections Σ and Σ′ : S′ → X ′ such that f is surjective étale, g is

étale, and X ′ is isomorphic to an étale neighborhood of the section in the standard family XS′ .

Lemma 5.9. Let X → S be a flat family of geometrically connected reduced surfaces with a

section Σ : S → X over a locally Noetherian base scheme S and smooth outside of Σ. Then X
has 1

4(1, 1) singularity along Σ if and only if there exists a morphism π : Y → X over S such

that Y → S is smooth, π is an isomorphism outside of Σ, and P = π−1(Σ) is a P1-bundle over S

such that all geometric fibers have self-intersection −4. In this case X → S satisfies the Kollár

condition.

Proof. In one direction, we obtain Y by blowing up Σ. In the opposite direction, since the

question is étale-local on S and X , we can assume that X and S are spectra of Henselian local

rings. By [LN13, Theorem 2.13], it suffices to find relative Cartier divisors D1 and D2 of X → S

such that their scheme-theoretic intersections with P are disjoint sections of the P1-bundle. As

in the proof of [LN13, Theorem 2.11], their existence follows from surjectivity of PicX → PicP1
s

(see [EGAIV, Corollary 21.9.12]), where s ∈ S is the closed point. Finally, XS′ (being toric) and

hence X satisfy the Kollár condition. 2

Recall that we have a contraction Y
α−→ S0 of ∆1 to a 1

4(1, 1) singularity.

Lemma 5.10. We can ‘blow down’ the deformation Y → SpecR of Y to the deformation

Ȳ → SpecR of S0, i.e. there exists a morphism Y → Ȳ of deformations over SpecR which

on the special fiber gives α.

This morphism contracts C to a section Σ of Ȳ→ SpecR and it is an isomorphism outside Σ.

The family Ȳ → SpecR has a 1
4(1, 1) singularity along Σ and is smooth elsewhere. It is

Q-Gorenstein.

Proof. This follows from the fact that R1α∗(OY ) = 0 as in [Wah76] (where the equi-characteristic

local case is worked out). Specifically, let Ŷ be the formal completion of the special fiber in Y.

Let ˆ̄Y be a formal scheme with underlying topological space S0 and sheaf of rings α∗OŶ . The

vanishing of R1α∗(OY ) implies that ˆ̄Y is flat over SpfR by [Wah76, 0.4.4]. Since H2(S0,OS0) = 0

and S0 is projective, ˆ̄Y carries an ample line bundle, and therefore is a formal fiber of a scheme

Ȳ projective and flat over SpecR, by Grothendieck’s existence theorem [EGAIII, 5.4.5]. Since

the formal fiber functor is fully faithful [EGAIII, 5.4.1], the morphism Ŷ → ˆ̄Y is induced by the

morphism α : Y → Ȳ. The rest follows from Lemma 5.9. 2

Lemma 5.11. The R-stack KωR is smooth at S0→ Spec k.
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Figure 3. The big picture.

Proof. It suffices to prove that the special fiber of KωR, i.e. the algebraic stack of Kollár families
over k, is smooth at S0→ Spec k. There are several ways to deduce this from Theorem 3.1. One
is to use the theory of index one covers as in [Hac04, § 3] (which assumes characteristic zero
but in our case this is not important because the index of the singularity two is not divisible by
the characteristic seven). One can also mimic calculations in [Hac04] in the setting of [AH11].
Finally, one can apply [Wah81, Proposition 6.4] (or [LN13, Theorem 4.6]), which shows that the
morphism of deformation functors of artinian rings Def X → Def locX is smooth and that local
Q-Gorenstein deformations of a 1

4(1, 1)-singularity are unobstructed. 2

Let (D; Γ, N) be the general fiber of the family (Y; C,N )→ SpecR after pull-back to SpecC.
Let D→ D0 be the contraction of Γ. Here D0 is the general fiber of Ȳ → SpecR (after pull-back
to SpecC). Figure 3 shows the big picture.

Theorem 5.12. There exists a Q-Gorenstein family of complex surfaces S→ U over a smooth
irreducible complex curve such that one of the fibers is D0 and another fiber is the Craighero–
Gattazzo surface S.

Proof. This follows from Theorem 5.4 and Lemmas 5.10, 2.4, and 5.11. 2

The following corollary (of the proof) was first proved in [CP00, Theorem 0.31].

Porism 5.13. The Craighero–Gattazzo surface is unobstructed and its local moduli space is
smooth of dimension eight.
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Proof. Since the stack of Kollár families KωR is R-smooth at S0 → Spec k, the stack KωC is
C-smooth at S → SpecC. But in the neighborhood of a smooth surface such as S, KωC can be
identified with the Deligne–Mumford stack of Gieseker families of canonically polarized surfaces
with canonical singularities. 2

6. Calculation of the fundamental group

Proposition 6.1. The surface D is a complex Dolgachev surface with multiple fibers of
multiplicity two and three. In particular, π1(D) = 1.

Proof. We first claim that
πalg

1 (D0) = 1. (6.1)

We are going to use that πalg
1 (S) = 1 (see [DW99]). Since this is the only fact about S that we

need, we can shrink the curve U from Theorem 5.12 and without loss of generality assume that
U is a complex disc. Since S contracts onto D0, we have π1(S) = π1(D0). Now using the same
argument as in [Xia91, p. 601], we have an exact sequence

π1(S)→ π1(S)→ π1(U)→ 1,

and so π1(S) surjects onto π1(D0). The right exactness of profinite completions [RZ10,

Proposition 3.2.5] implies that πalg
1 (S) surjects onto πalg

1 (D0), which implies (6.1). Alternatively,

surjectivity of πalg
1 (S)→ πalg

1 (D0) follows from the Grothendieck’s specialization theorem [SGA1,
Corollary 2.3].

We have K2
D = 0. By Lemma 4.3 and Corollary 5.12, KD0 is nef. Therefore, D is not rational.

Indeed, if D is rational, then by Riemann–Roch h0(D,−KD) > 1 and so −KD ∼ E > 0. Since
KD · Γ = 2, we have Γ ⊂ E. We know that f∗(2KD0) ∼ −2E + Γ where f : D → D0 is the
minimal resolution. But E 6= Γ, and so f∗(2KD0) cannot be nef. Also, the Kodaira dimension
of D cannot be zero because of the Enriques classification and KD · Γ = 2, and cannot be two
because of Kawamata’s argument [Kaw92] (see [Ran14, Lemma 2.4]). Therefore, the Kodaira
dimension is one, and so D is an elliptic fibration over P1 (since q(D) = 0).

Say we have r multiple fibers of multiplicities m1, . . . ,mr. By [Xia91, p. 601],

π1(D) ' 〈a1, . . . , ar : a1 · · · ar = am1
1 = · · · = amr

r = 1〉.

But this group is residually finite (see [LS77, p. 126] and [LS77, p. 141 last paragraph]). We also

have πalg
1 (D) = πalg

1 (D0) (see [Kol93]), and so by the above we get π1(D) = 1. This implies that
there are only two multiple fibers m1F1,m2F2 with coprime multiplicities m1,m2. Let F be a
general fiber of D→ P1, and let Γ ·F = d. Then, since KD ∼ −F + (m1− 1)F1 + (m2− 1)F2, we
have Γ · KD = d − d/m1 − d/m2 = 2. In addition, since Γ · F1 = d/m1 and Γ · F2 = d/m2,
we have d = λm1m2, and so λ(m1m2 − m1 − m2) = 2. The only possible solutions, up to
permuting one and two, are λ = 2, m1 = 2, m2 = 3. 2

Theorem 6.2. We have π1(S) = 1.

Proof. Here we use the method of [LP07], which applies Van Kampen’s theorem and the Milnor
fiber of the Q-Gorenstein smoothing of 1

4(1, 1). We only need π1(D\Γ) = 1. By Van Kampen’s

theorem, we have π1(D) ' π1(D\Γ)/〈α〉 where α is a loop around Γ, and 〈α〉 is the smallest
normal subgroup of π1(D\Γ) containing 〈α〉. We can and do consider α as given by a loop
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around N , since N and Γ intersect transversally. As N · Γ = 1, the set N ′ := N ∩ (D\Γ) is
simply connected, and so α ⊂ N ′ ⊂ D\Γ is homotopically trivial. Therefore, 〈α〉 = 1, and so
π1(D\Γ) = 1 since by Proposition 6.1 we have π1(D) = 1. After this, one directly applies [LP07,
pp. 493 and 499]. 2

7. Genus two Lefschetz fibration on a Dolgachev surface

In § 5 we constructed a lifting of the Boyd surface Y (a Dolgachev surface in characteristic seven)
to some Dolgachev surface D in characteristic zero. Using results of § 3 we can be much more
explicit.

Theorem 7.1. The Boyd surface Y can be lifted to a complex Dolgachev surface D of type
2, 3, which possesses an I4 fiber of multiplicity two, two (−4) curves, and four elliptic (−1)
curves E1, . . . , E4. This surface has a Campedelli-type description as the minimal resolution of
singularities of the double cover of P1×P1 with four elliptic singularities and two A1 singularities.

Proof. In § 3, the main point was to prove that

H2(P1, TP1(−log(∆ +B1 +B2))) = 0.

By applying the (−1) and (−2) principles as before, we have

H2

(
P1, TP1

(
−log

(
∆ +B1 +B2 +

∑
N̄i +

∑
Ḡi +

∑
Ēi +

∑
C̄i +

∑
F̄i

)))
= 0.

By Lemma 5.5, preservation of intersection numbers, and H2(P1,OP1) = 0, we have that the
configuration of curves ∆ +B1 +B2 +

∑
N̄i +

∑
Ḡi +

∑
Ēi +

∑
C̄i +

∑
F̄i exists in P1 over C.

We will use the same notation as in characteristic seven. Then, by contracting
∑
N̄i +

∑
Ḡi +∑

Ēi+
∑
C̄i+

∑
F̄i, we obtain curves ∆+B1+B2 in P1

C×P1
C with the corresponding singularities.

In this way, we can check that ∆ ∼ (1, 1) and Bi ∼ (3, 3) in Pic(P1 × P1). Note that the two
singularities of B1 and the two singularities of B2 may not be located at the special position we
had in characteristic seven. Let us call these points P1, . . . , P4 as before.

The linear system |O(2, 2)| contains a member, which we call Γ, that passes through
P1, . . . , P4 with the direction of the tangent cone to B1 ∪ B2. Indeed, Γ exists because
h0(P1 × P1,O(2, 2)) = 9 and passing through four points with four given directions imposes
eight conditions.

Then one easily checks in P1 that

B1 +B2 + 2N̄1 + 2N̄2 ∼ 3Γ (7.1)

as well as

B1 +B2 +

4∑
i=1

Ḡi ∼ 2

(
3σ∗(∆)− N̄1 − N̄2 − 3

4∑
i=1

Ēi −
4∑
i=1

Ḡi

)
. (7.2)

In this way, (7.1) gives an elliptic fibration P1→ P1
C with one multiple fiber Γ of multiplicity

three, and (7.2) gives a double cover W → P1 of P1 branched along B1 + B2 +
∑4

i=1 Ḡi, just
as before. Again the pre-images of Ḡ1, . . . , Ḡ4 give (−1)-curves in W , which we contract to
obtain a surface D. Using the standard formulas for double covers, as before, we get K2

D = 0
and χ(OD) = 1. Also, we can directly compute pg(D) = 0 using the defining line bundle of the
double cover, and so q(D) = 0. The pull-back of the elliptic fibration P1 → P1

C gives an elliptic
fibration D → P1

C with two multiple fibers: the pre-images of Γ and B1 + B2 + N̄1 + N̄2, with
multiplicities three and two, respectively. The two (−4) curves are pre-images of ∆. 2
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Moreover, we note that the pull-backs of the two rulings of P1
C × P1

C give two distinct genus
two fibrations D→ P1

C.

Theorem 7.2. There exist Dolgachev surfaces (with multiple fibers of multiplicity 2, 3)
which carry genus two Lefschetz fibrations, specifically genus two fibrations without multiple
components in fibers and such that the only singularities of fibers are nodes.

Proof. In characteristic seven, we have two genus two fibrations on the Boyd surface induced by
the two rulings in P1 × P1. We first want to find out the singular fibers of these fibrations. For
that, we need to look at the induced morphisms Bi ⊂ P→ P1×P1

→ P1 for each i and for each
ruling.

Using (2.4) and (2.5) of B1 and B2, respectively, we obtain that, for the ruling β = x/t, the
morphism B1→ P1 has branch points at β satisfying (β2 + 1)2 = 0, and the morphism B2→ P1

is branched at β satisfying β4 + 4β2 + 1 = 0. One verifies that in the first case, the points of
ramification are Q1 = (−i, i) and Q2 = (i,−i), and B1 is tangent to the ruling with flex points
at Q1 and Q2. For the second ruling, the roles of B1 and B2 are interchanged in relation to
ramification, and B2 is tangent to the ruling with flex points at Q1 and Q2 for B2.

Using the previous observations on the ramification points of B1 → P1 and B2 → P1, we
obtain the following singular fibers for the genus two fibrations Y → P1 (we take it from one
ruling, the other is analogous).

(1) Two reduced singular fibers consisting of E1 ∪ A1 ∪ E4 and E2 ∪ A2 ∪ E3 where Ei are
disjoint elliptic (−1) curves, and Ai are (−2) rational curves, each intersecting two Ej at
one nodal point.

(2) Two reduced singular fibers over β = i,−i consisting of one nodal rational curve together
with N1, and another rational nodal curve with N2. Each of the Ni passes through the
corresponding node, forming a simple triple point for the fiber.

(3) Four reduced singular curves, each consisting of a nodal curve whose resolution is an elliptic
curve.

We claim that there exists a lifting of this Dolgachev surface to characteristic zero as in
Theorem 7.1 such that case (2) is eliminated. In other words, we have to construct a lifting of
P1 together with the curves ∆ +B1 +B2 +

∑
N̄i +

∑
Ḡi +

∑
Ēi +

∑
C̄i +

∑
F̄i such that the

flex ramification points for B1→ P1 disappear, becoming simple ramification for a degree three
morphism B1→ P1

C. Using the Macaulay2 code in the Appendix, we show the existence of a first
other deformation of that type. This together with unobstructed deformations, as in the remark
above, gives a lifting to SpecR such that, over the generic point, the curve B1 is not flex with
respect to any ruling. In this way, at least for one ruling, the corresponding genus two fibration
on the complex 2, 3 Dolgachev surface has only singular fibers which are reduced and with nodes
as singularities, i.e. it is a Lefschetz fibration. 2
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Appendix

This appendix contains the Macaulay2 source code used to compute the rank of matrices in the
proof of Theorem 3.1 and Theorem 7.2.

--For simplicity, this includes the extra variable y.

R=ZZ/7[t,c1,c2,c3,c4,d1,d2,d3,d4,a20,a21,a31,a02,a12,a03,b10,b11,b22,b32,b23,x,y];

--Adjoin a square root of -1:

R1=R/(t^2+1)

-- Twenty-one of the restrictions on coefficients arising from forcing desired singularities

at the points to which P1, P2, P3, P4 deform. These allow us to reduce the number of variables

from 40 to 19.

a33=0; b33=d1-3*c1; a32=-3*c1-6*d1; a23=2*c1-3*d1;

a22=2*a31+4*b23-2*b32; a13=2*a31-2*b32+4*b23;

a30=2*c1-d1+3*a12+2*a21+a03; b30=0; b31=3*c2+2*d2; b20=3*d2+c2;

b21=6*b10+6*a31+3*a20; b00=-c2-2*d2-2*b11-4*b22-b33;

b03=0; b02=2*d3+3*c3; b13=3*d3+c3; b01=5*a13+2*b23+3*a02;

b12=4*a13+6*b23+a02; a00=0; a01=3*c4+6*d4; a10=3*d4-2*c4;

a11=a02+4*b01+6*b10;

--The intersection of $\bar{B}_1$ and $\bar{B}_2$ with $\Delta$

(Here, x=$\beta$):

g1bar= (1+x)^3*(a00+a01*x+a02*x^2+a03*x^3)

+(1+x)^2*(1-x)*(a10+a11*x+a12*x^2+a13*x^3)

+(1+x)*(1-x)^2*(a20+a21*x+a22*x^2+a23*x^3)

+(1-x)^3*(a30+a31*x+a32*x^2+a33*x^3);

g2bar= (1+x)^3*(b00+b01*x+b02*x^2+b03*x^3)

+(1+x)^2*(1-x)*(b10+b11*x+b12*x^2+b13*x^3)

+(1+x)*(1-x)^2*(b20+b21*x+b22*x^2+b23*x^3)

+(1-x)^3*(b30+b31*x+b32*x^2+b33*x^3);

--The derivatives of g1bar and g2bar:

dg1bar= diff(x, g1bar);

dg2bar=diff(x, g2bar);

-- B1 and B2 pass through Q1 and Q2:

B1Q1=sub(g1bar, x=>t); B1Q2=sub(g1bar, x=>-t);

B2Q1=sub(g2bar, x=>t); B2Q2=sub(g2bar, x=>-t);

-- B1 passes through Q3 (x=-2+4i), Q4 (x=-2-4i):

B1Q3=sub(g1bar, x=>-2+4*t); B1Q4=sub(g1bar, x=>-2-4*t);

-- B2 passes through Q5, Q6;

B2Q5=sub(g2bar, x=>-3+5*t); B2Q6=sub(g2bar, x=>-3-5*t);

-- B1 is tangent at Q3, Q4:

dB1Q3=sub(dg1bar, x=>-2+4*t); dB1Q4=sub(dg1bar, x=>-2-4*t);

-- B2 tangent at Q5, Q6

dB2Q5=sub(dg2bar, x=>-3+5*t); dB2Q6=sub(dg2bar, x=>-3-5*t);

-- Each of the following ideals gives the kernel of one of the seven the systems of linear
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equations. Notice that in each, we include the remaining seven restrictions arising from

forcing desired singularities at the points to which

P1, P2, P3, P4 deform.

--move Q4 off Delta, moving Q5, Q6 along, keeping tangent direction at Q3, Q5, Q6

I1=ideal(a30+c2+3*d2, b32-2*b10-4*a31-2*a20, a03-c3-3*d3,

c3+2*d3-3*b11+b33+2*b22+b00, b00-d4+3*c4,

a20-2*a02-2*b01-3*b10,4*c4+5*d4+2*a03+3*a12+a21+5*a30,

B1Q1, B1Q2, B2Q1, B2Q2, B1Q3, dB1Q3, B1Q4-1,B2Q5, B2Q6);

--move Q5 off Delta, moving Q4, Q6 along, keeping tangent direction at Q3, Q4, Q6:

I2=ideal(a30+c2+3*d2, b32-2*b10-4*a31-2*a20, a03-c3-3*d3,

c3+2*d3-3*b11+b33+2*b22+b00, b00-d4+3*c4,

a20-2*a02-2*b01-3*b10,4*c4+5*d4+2*a03+3*a12+a21+5*a30,

B1Q1, B1Q2, B2Q1, B2Q2, B1Q3, dB1Q3, B1Q4, B2Q6,B2Q5-1) ;

--move Q6 off Delta, moving Q4, Q5 along, keeping tangent direction at Q3, Q4, Q5:

I3=ideal(a30+c2+3*d2, b32-2*b10-4*a31-2*a20, a03-c3-3*d3,

c3+2*d3-3*b11+b33+2*b22+b00, b00-d4+3*c4,

a20-2*a02-2*b01-3*b10,4*c4+5*d4+2*a03+3*a12+a21+5*a30,

B1Q1, B1Q2, B2Q1, B2Q2, B1Q3, dB1Q3, B1Q4,B2Q5, B2Q6-1)

--leave all points on Delta, moving Q4, Q5, Q6 along, change tangent direction at Q3:

I4=ideal(a30+c2+3*d2, b32-2*b10-4*a31-2*a20, a03-c3-3*d3,

c3+2*d3-3*b11+b33+2*b22+b00, b00-d4+3*c4,

a20-2*a02-2*b01-3*b10,4*c4+5*d4+2*a03+3*a12+a21+5*a30,

B1Q1, B1Q2, B2Q1, B2Q2, B1Q3, B1Q4, dB1Q3-1,B2Q5, B2Q6)

--leave all points on Delta, moving Q5, Q6 along, change tangent direction at Q4, keep tangent

direction at Q3:

I5=ideal(a30+c2+3*d2, b32-2*b10-4*a31-2*a20, a03-c3-3*d3,

c3+2*d3-3*b11+b33+2*b22+b00, b00-d4+3*c4,

a20-2*a02-2*b01-3*b10,4*c4+5*d4+2*a03+3*a12+a21+5*a30,

B1Q1, B1Q2, B2Q1, B2Q2, B1Q3, B1Q4, dB1Q4-1,B2Q5, B2Q6, dB1Q3)

--leave all points on Delta, moving Q4, Q6 along, change tangent direction at Q5, keep tangent

direction at Q3:

I6=ideal(a30+c2+3*d2, b32-2*b10-4*a31-2*a20, a03-c3-3*d3,

c3+2*d3-3*b11+b33+2*b22+b00, b00-d4+3*c4,

a20-2*a02-2*b01-3*b10,4*c4+5*d4+2*a03+3*a12+a21+5*a30,

B1Q1, B1Q2, B2Q1, B2Q2, B1Q3, B1Q4, dB2Q5-1,B2Q5, B2Q6, dB1Q3)

--leave all points on Delta, moving Q4, Q5 along, change tangent direction at Q6, keep tangent

direction at Q3:

I7=ideal(a30+c2+3*d2, b32-2*b10-4*a31-2*a20, a03-c3-3*d3,

c3+2*d3-3*b11+b33+2*b22+b00, b00-d4+3*c4,

a20-2*a02-2*b01-3*b10,4*c4+5*d4+2*a03+3*a12+a21+5*a30,

B1Q1, B1Q2, B2Q1, B2Q2, B1Q3, B1Q4, dB2Q6-1,B2Q5, B2Q6, dB1Q3)

-- Check the dimension of each ideal (note: each has one less dimension that Macaulay2 gives,
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because of the extra variable y)

-- four-dimensional

dim1=dim(I1); dim2=dim(I2); dim3=dim(I3); dim4=dim(I4);

--three-dimensional:

dim5=dim(I5); dim6=dim(I6); dim7=dim(I7);

-- The remaining code is used to prove the existence of the Lefschetz fibration. In particular,

we prove existence of a deformation of B1+B2 so that B1+B2 maintains its singularities

at P1,..., P4 and so that B1 is no longer tangent to the fiber x=i or x=-i at Q1, Q2:

-- $\bar{B}_1$ and $\bar{B}_2$ (alpha=y, beta=x):

g1bar= (a00+a01*x+a02*x^2+a03*x^3)

+y*(a10+a11*x+a12*x^2+a13*x^3)

+y^2*(a20+a21*x+a22*x^2+a23*x^3)

+y^3*(a30+a31*x+a32*x^2+a33*x^3);

g2bar=(b00+b01*x+b02*x^2+b03*x^3)

+y*(b10+b11*x+b12*x^2+b13*x^3)

+y^2*(b20+b21*x+b22*x^2+b23*x^3)

+y^3*(b30+b31*x+b32*x^2+b33*x^3);

-- Writing the local equation of B1 along the fiber at Q1 and Q2:

B1Q1bar=sub(sub(g1bar, x=>t), y=>y-t);

B1Q2bar=sub(sub(g1bar, x=>-t), y=>y+t);

-- These ensure B1 vanishes at Q1 and Q2:

van1=sub(B1Q1bar, y=>0); van2=sub(B1Q2bar, y=>0);

-- These (when nonzero) force B1 to be no longer tangent to the fiber x=i, x=-i at Q1, Q2:

dB1Q1=diff(y, B1Q1bar); dB1Q2=diff(y, B1Q2bar);

Lefschetz=ideal(a30+c2+3*d2, b32-2*b10-4*a31-2*a20, a03-c3-3*d3, c3+2*d3-3*b11+b33+2*b22+b00,

b00-d4+3*c4, a20-2*a02-2*b01-3*b10,4*c4+5*d4+2*a03+3*a12+a21+5*a30, van1, van2, dB1Q1-1, dB1Q2-1)

dimL= dim(Lefschetz); -- 10-dimensional
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Facultad de Matemáticas, Pontificia Universidad Católica de Chile,
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