1. For any \(k \geq 0 \), let \(p_k = \sum_{i=1}^{n} \alpha_i^k \). Show that
\[
\begin{vmatrix}
1 & \cdots & 1 \\
\alpha_1 & \cdots & \alpha_n \\
\vdots & \ddots & \vdots \\
\alpha_1^{n-1} & \cdots & \alpha_n^{n-1}
\end{vmatrix} = \prod_{i>j} (\alpha_i - \alpha_j);
\]
\[
\begin{vmatrix}
p_0 & p_1 & \cdots & p_{n-1} \\
p_1 & p_2 & \cdots & p_n \\
p_2 & p_3 & \cdots & p_{n+1} \\
\vdots & \vdots & \ddots & \vdots \\
p_{n-1} & p_n & \cdots & p_{2n-2}
\end{vmatrix} = \prod_{i>j} (\alpha_i - \alpha_j)^2.
\]

2. (continuation of the previous problem). (a) Let \(p \) be an odd prime number. Show that the discriminant of the cyclotomic polynomial \(\Phi_p(x) \) is equal to \((-1)^{\frac{p-1}{2}} p^{p-2}\). (b) Use (a) to give a different proof of the Kronecker–Weber theorem for quadratic extensions.

3. Let \(q \) be an odd prime and let \(a \) be an integer coprime to \(q \). Then
\[
\left(\frac{a}{q} \right) \equiv a^{\frac{q-1}{2}} \mod q.
\]

4. Let \(p \) be a on odd prime. Let \(\alpha \) be a primitive 8-th root of unity in \(\mathbb{F}_p \) and let \(y = \alpha + \alpha^{-1} \). (a) Show that \(y^p = (-1)^{\frac{p-1}{2}} y \). (b) Show that \(y^2 = 2 \).
(c) Show that \(\left(\frac{2}{p} \right) = (-1)^{\frac{p^2-1}{8}} \).

5. Compute \(\left(\frac{2013}{1597} \right) \).

6. Let \(R \) be a domain with the field of fractions \(K \). Let \(F/K \) be an algebraic extension and let \(S \) be the integral closure of \(R \) in \(F \). For any \(\alpha \in F \), show that there exists \(r \in R \) such that \(r \alpha \in S \).

7. Suppose \(n, m \geq 2 \) are coprime positive integers. Show that \(\mathbb{C}[x, y]/(x^n - y^m) \) is a domain and find its normalization.

8. Let \(A \) be an integrally closed domain with the field of fractions \(K \). Let \(F/K \) be an algebraic extension of fields. Let \(\alpha \in F \). Show that \(\alpha \) is integral over \(A \) if and only if its minimal polynomial has coefficients in \(A \).

9. Prove that the Gauss Lemma holds not only in a UFD but in any integrally closed domain \(R \) in the following form: suppose \(f(x) \in R[x] \) is a monic polynomial and \(f(x) = g(x)h(x) \), where \(g(x), h(x) \in K[x] \) are monic polynomials (here \(K \) is the field of fractions of \(R \)). Then \(g(x), h(x) \in R[x] \).

10. Let \(A \subset B \) be domains and suppose that \(B \) is integral over \(A \). Let \(I \subset B \) be an ideal. Show that \(B/I \) is integral over \(A/A \cap I \).

11. (a) Let \(A \subset B \) be rings and suppose that \(B \) is integral over \(A \). Show that \(A \) is a field if and only if \(B \) is a field. (b) Let \(A \subset B \) be rings and suppose that \(B \) is integral over \(A \). Let \(\mathfrak{p} \subset B \) be a prime ideal. Show that \(\mathfrak{p} \) is a maximal ideal of \(B \) if and only if \(\mathfrak{p} \cap A \) is a maximal ideal of \(A \).

12. Let \(A \) be an integrally closed domain with the field of fractions \(K \). Let \(F/K \) be a Galois extension with the Galois group \(G \). Let \(B \) be the integral closure of \(A \) in \(F \). Show that \(G \) preserves \(B \) and that \(B^G = A \).