Homework 5

1. Show that a finite field extension F/K is solvable if and only if $\text{Gal}(L/K)$ is solvable, where L is the Galois closure of F in \bar{K}.

2. Let p be a prime number and let $\zeta_p \in \mathbb{C}$ be a primitive p-th root of unity. Show that $\text{Gal}(\mathbb{Q}(\zeta_p, \sqrt[p]{2})/\mathbb{Q})$ is a semidirect product of $\mathbb{Z}/p\mathbb{Z}$ and \mathbb{F}_p^\times.

3. Suppose D_4 acts on $F = \mathbb{C}(x_1, \ldots, x_4)$ by permutations of variables (here we identify variables with vertices of the square). Show that F^{D_4} is generated over \mathbb{C} by 4 rational functions.

4. Let M be a module over a ring R. A sequence of submodules $M = M_1 \supset M_2 \supset \ldots \supset M_r = 0$ is called a filtration of M (of length r). A module M is called simple if it does not contain any proper submodules other than 0 and itself. A filtration is called simple if each M_i/M_{i+1} is simple. A module M is said to be of finite length if it admits a simple finite filtration. Two filtrations of M are called equivalent if they have the same length and the same collection of subquotients $\{M_1/M_2, M_2/M_3, \ldots, M_{r-1}/M_r\}$ (up to isomorphism and renumbering). Prove that if M has finite length then any two simple filtrations of M are equivalent and any filtration of M can be refined to a simple filtration.

5. (a) Let $f(x) \in K[x]$ be an irreducible separable polynomial with roots $\alpha = \alpha_1, \alpha_2, \ldots, \alpha_n \in \bar{K}$. Suppose that there exist rational functions $\theta_1(x), \ldots, \theta_n(x) \in K(x)$ such that $\alpha_i = \theta_i(\alpha)$ for any i. Suppose also that $\theta_i(\theta_j(\alpha)) = \theta_j(\theta_i(\alpha))$ for any i, j. Show that the Galois group of the splitting field of $f(x)$ is Abelian. (b) Give an example of the situation as in part (a) with $K = \mathbb{Q}$ and such that the Galois group of $f(x)$ is not cyclic. Give a specific polynomial $f(x)$, and compute its roots and functions θ_i.

6. (a) Let \bar{K} be an algebraic closure of K. Show that there exists the unique maximal (by inclusion) subfield $K_{ab} \subset \bar{K}$ such that K_{ab}/K is Galois and the Galois group $\text{Gal}(K_{ab}/K)$ is Abelian. (b) Deduce from the Kronecker–Weber Theorem that $\mathbb{Q}_{ab} = \bigcup_{n \geq 1} \mathbb{Q}(\zeta_n)$.

7. Let $K = \mathbb{C}[z^{-1}, z]$ be the field of Laurent series (series in z, polynomials in z^{-1}). Let $K_m = \mathbb{C}[z^{\frac{1}{m}}, z^{-\frac{1}{m}}] \supset K$. (a) Show that K_m/K is Galois with a Galois group $\mathbb{Z}/m\mathbb{Z}$. (b) Show that any Galois extension F/K with a Galois group $\mathbb{Z}/m\mathbb{Z}$ is isomorphic to K_m. (c) Show that $K_{ab} = \bigcup_{m \geq 1} K_m$ the field of so called Puiseux series.

4This was proved by Abel himself.

5Sir Isaac Newton proved that the field of Puiseux series in in fact algebraically closed.