Homework 2

We fix a finite field extension $K \subset F$. We also assume that $F \subset \overline{K}$.

1. Let $\alpha \in F$ and let $f(x)$ be its minimal polynomial over K. Show that there exists $k \geq 0$ such that all roots of $f(x)$ in \overline{K} have multiplicity p^k and α^{p^k} is separable over K.

2. (a) Show that elements of F separable over K form a field L (called a separable closure of K in F). We define $[F : K]_s := [L : K]$.

(b) Show that the separable closure of L in F is equal to L. (b) Prove that the number of different homomorphisms $F \to \overline{K}$ over K is equal to $[F : K]_s$.

3. An extension F/K is called purely inseparable if $[F : K]_s = 1$. Show that F/K is purely inseparable if and only if $\text{char } K = p$ and F is generated over K by elements $\alpha_1, \ldots, \alpha_r$ such that the minimal polynomial of each α_i has the form $x^{p^{k_i}} - a_i$ for some $a_i \in K$ and a positive integer k_i.

4. Let $L = \overline{F_p}(x, y)$ be the field of rational functions in two variables and let $K = \overline{F_p}(x^p, y^p)$ be its subfield. (a) Show that L/K is an algebraic extension and compute its degree. (b) Show that there exist infinitely many pairwise different intermediate subfields between K and L. (c) Show that L cannot be expressed as $K(\alpha)$ for some $\alpha \in L$.

5. A field k is called perfect if either $\text{char } k = 0$ or $\text{char } k = p$ and the Frobenius homomorphism $F : k \to k$ is an isomorphism. Show that if k is perfect then any algebraic extension of k is separable over k and perfect.

6. Let F be a splitting field of the polynomial $f \in K[x]$ of degree n. Show that $[F : K]$ divides $n!$ (do not assume that F is separable over K).

7. Let $F \subset \overline{K}$ be a finite Galois extension of K and let $L \subset \overline{K}$ be any finite extension of K. Consider the natural K-linear map $L \otimes_K F \to \overline{K}$. (a) Show that its image is a field, in fact a composite field LF. (b) Show that LF is Galois over L. (c) Show that $\text{Gal}(LF/L)$ is isomorphic to $\text{Gal}(F/L \cap F)$.

8. (a) Find the minimal polynomial over \mathbb{Q} of $\sqrt[4]{3} + \sqrt[4]{3}$. (b) Compute the Galois group of its splitting field.

9. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of prime degree p. Suppose that $f(x)$ has exactly $p - 2$ real roots. Show that the Galois group of the splitting field of $f(x)$ is S_p.

10. For any $d \geq 2$, prove existence of an irreducible polynomial in $\mathbb{Q}[x]$ of degree d with exactly $d - 2$ real roots (Hint: take some obvious reducible polynomial with exactly $d - 2$ real roots and perturb it a little bit to make it irreducible).

11. Let G be any finite group. Show that there exist finite extensions $\mathbb{Q} \subset K \subset F$ such that F/K is a Galois extension with a Galois group G.

12. Let F be a splitting field of the polynomial $f(x) \in K[x]$. Show that $\text{Gal } F/K$ acts transitively on roots of $f(x)$ if and only if $f(x)$ is irreducible (do not assume that $f(x)$ is separable).

13. Let F be a splitting field of a biquadratic polynomial $x^4 + ax^2 + b \in K[x]$. Show that $\text{Gal}(F/K)$ is isomorphic to a subgroup of D_4.