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§1. GEOMETRY OF LINES (JAN 19,21,24,26,28)

Let’s start with a familiar example of a moduli space. Recall that the
Grassmannian G(r, n) parametrizes r-dimensional linear subspaces of Cn.
For example,

G(1, n) = Pn−1

is a projective space1. Let’s try to understand the next case, G(2, n). The
projectivization of a 2-dimensional subspace U ⊂ Cn is a line l ⊂ Pn−1, so
in essence G(2, n) is a moduli space of lines in the projective space. Most of
our discussion remains valid for general G(r, n), but the case of G(2, n) is
notationally easier.

§1.1. Grassmannian as a complex manifold. Thinking about G(2, n) as
just a set is boring: we need to introduce some geometry on it. We care
about two flavors of geometry, Analytic Geometry and Algebraic Geometry.
We won’t need much of either in the beginning and will develop the latter
substantially as we go along. A basic object of analytic geometry is a com-
plex manifold, i.e. a Hausdorff topological space X covered by charts Xi homeo-
morphic to open subsets of Cn. Coordinate functions on Cn are called local
coordinates in the chart. On the overlaps Xi ∩ Xj we thus have two com-
peting systems of coordinates, and the main requirement is that transition
functions between these coordinate systems are holomorphic. Maps between
complex manifolds are presumed to be holomorphic maps, i.e. maps that are
holomorphic in charts.

Let’s see how this is done for the Grassmannian. Any 2-dimensional
subspace U ⊂ Cn is a row space of a 2 × n matrix A of rank 2. Let Aij

denote the 2 × 2 submatrix of A with columns i and j and let pij = det Aij

be the corresponding minor. Since rankA = 2, we can find some i < j such
that pij $= 0 (why?) . Then (Aij)−1A has a form

[
. . . ∗ 1 ∗ . . . ∗ 0 ∗ . . .
. . . ∗ 0 ∗ . . . ∗ 1 ∗ . . .

]
(1.1.1)

where the i-th column is
[
1
0

]
, the j-th column is

[
0
1

]
, and the remaining

n − 2 columns are arbitrary. Notice that multiplying A by an invertible
2× 2 matrix on the left does not change the row space.

We cover G(2, n) by
(n
2

)
charts

Xij = {U ∈ G(2, n) |U is represented by a matrix A like (1.1.1)}.
Geometrically, this chart parametrizes 2-dimensional subspaces that sur-
ject onto the coordinate subspace 〈ei, ej〉 under projection along the com-
plementary coordinate subspace (why?) . Each subspace from Xij is a row
space of a unique matrix (1.1.1), in particular Xij can be identified with
C2(n−2).

To show that G(2, n) is a complex manifold we have to check that the
transition functions between charts Xij and Xi′j′ are holomorphic. Any

1I will often italicize various words in these lecture notes. If you see something italicized,
make a pause and ask yourself: do I know what this means? I hope that this will help you
to learn the vocabulary faster.
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2×n matrix that represents a subspace U ∈ Xij∩Xi′j′ has pij $= 0 and pi′j′ $=
0. In the chart Xij , the subspace is represented by a matrix A as in (1.1.1).
In the chart Xi′j′ , the subspace is represented by a matrix (Ai′j′)−1A. The
matrix entries of it depend holomorphically (in fact just rationally) on the
matrix entries of A, thus the transition functions are indeed holomorphic.

In this example (and in general) the structure of a topological space on
X is introduced simultaneously with constructing charts: the subset is de-
clared open iff its intersection with each chart is open. It is easy to check
(why?) that G(2, n) is indeed Hausdorff.

§1.2. Moduli space or a parameter space? All lines in Pn−1 are isomorphic
to P1 and to each other. So G(2, n) is not really a moduli space, but rather a
parameter space: it classifies not geometric objects up to isomorphism but
rather it classifies geometric sub-objects (lines) in a fixed geometric ob-
ject (projective space). This distinction is mostly philosophical (depends
on how do you decide when two objects are equivalent). Later we will
study Chow varieties and Hilbert schemes: those parametrize all geometric
sub-objects (technically called algebraic subvarieties or subschemes) of Pn.

As a rule, parameter spaces are easier to construct than moduli spaces.
To construct an honest moduli space M of geometric objects X , one can

• embed these objects in Pn−1 for some n;
• construct a “parameter space” H for the embedded objects;
• divide H by the equivalence relation (two embedded objects are

equivalent if they are abstractly isomorphic) to get M.
In many cases of interest objects are abstractly isomorphic if and only if
they are projectively equivalent in Pn−1 (i.e. differ by an element of GLn).
So in effect we will have to construct an orbit space

M = H/ GLn

and a quotient map
H→M

that sends each point to its orbit. For example, G(2, n)/ GLn is a point – all
lines of Pn−1 are abstractly (and projectively!) isomorphic.

Often a more general procedure is necessary:
• first construct a parameter space H of pairs (X, v), where v is some

sort of an extra data on X (often called “marking”). For example, v
can be an embedding X ↪→ Pn but often it’s something else.

• then construct a “forgetful” map H → M by “forgetting” mark-
ing v. Usually this map is a quotient map for the group action.

In any case, the basic principle is

1.2.1. PRINCIPLE. A good model for a moduli space is provided by an orbit
space for a group action.

So we will have to understand how to construct quotients by group ac-
tions. Those techniques are provided by invariant theory – the second com-
ponent from the title of this course.

1.2.2. REMARK. For now, the term “quotient map” will have a very crude
set-theoretic meaning: we just require that the fibers are exactly the orbits
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for the group action. We are not going to worry (as we should) about the
relationship between geometries on the source and on the target of the quo-
tient map. Later on, when we have more examples to play with, we will
give a much more refined definition of the “quotient map”. Likewise for
now an “orbit space” has simply a set-theoretic meaning: the set of orbits.

§1.3. Stiefel coordinates. To illustrate these ideas, let’s construct the Grass-
mannian itself as a quotient! We can mark a subspace by its basis: consider
triples (U, v1, v2), where U ⊂ Cn is a subspace with basis {v1, v2}. Writing
down v1, v2 in terms of the standard basis e1, . . . , en of Cn, we see that these
triples are parametrized by an open subset

Mat02,n ⊂ Mat2,n

of matrices of rank 2 (with rows v1 and v2) . This is a very simple space – in
this business an open subset of an affine space is the easiest space you can
possibly hope for!

Matrix coordinates on Mat02,n in times long gone were known as Stiefel
coordinates on the Grassmannian. The “forgetful” map

Mat02,n → G(2, n) (1.3.1)

has the following meaning: rank 2 matrices X and X ′ have the same row
space if and only if X = gX ′ for some matrix g ∈ GL2. This (1.3.1) is a
quotient map for the action of GL2 on Mat02,n by left multiplication.

§1.4. Plücker coordinates. Since we already have a good grasp of the Grass-
mannian, we don’t really need invariant theory to construct the map (1.3.1).
Nevertheless, let me use this example to explain how to use invariants to
construct quotient maps (and thus moduli spaces). In fact, this will tell us
something new about the Grassmannian.

1.4.1. DEFINITION. We start with a very general situation: let G be a group
acting on a set X . A function f : X → C is called an invariant function if it
is constant along G-orbits, i.e. if

f(gx) = f(x) for any x ∈ X, g ∈ G.

Invariant functions f1, . . . , fr form a complete system of invariants if they sep-
arate orbits. This means that for any two orbits O1 and O2, there exists at
least one function fi such that fi|O1 $= fi|O2 .

In this case then the map

F : X → Cr, F (x) = (f1(x), . . . , fr(x))

is obviously a quotient map (onto its image): its fibers are exactly the orbits!
Often we want to have a quotient map with target Pr rather than Cr.

Thus we need the following generalization:

1.4.2. DEFINITION. Fix a homomorphism

χ : G → C∗.

A function f : X → C is called a semi-invariant of weight χ if

f(gx) = χ(g)f(x) for any x ∈ X, g ∈ G
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(notice that an invariant function is a special case of a semi-invariant of
weight χ = 1). Suppose f0, . . . , fr are semi-invariants of the same weight χ.
We will call them a complete system of semi-invariants of weight χ if

• for any x ∈ X , there exists a function fi such that fi(x) $= 0;
• for any two points x, x′ ∈ X not in the same orbit, we have

[f0(x) : . . . : fr(x)] $= [f0(x′) : . . . : fr(x′)].

The first condition means that we have a map

F : X → Pr, F (x) = [f0(x) : . . . : fr(x)],

which is clearly constant along G-orbits:

[f0(gx) : . . . : fr(gx)] = [χ(g)f0(x) : . . . : χ(g)fr(x)] = [f0(x) : . . . : fr(x)].

The second condition means that F is a quotient map onto its image.

1.4.3. EXAMPLE. G = GL2 acts by left multiplication on Mat02,n. Consider
the 2×2 minors pij as functions on Mat02,n. It is convenient to set pji := −pij

for j > i. Consider the homomorphism

det : GL2 → C∗.

1.4.4. PROPOSITION. The minors pij form a complete system of semi-invariants
on Mat02,n of weight det.

Proof. We have

pij(gA) = det(g)pij(A) for any g ∈ GL2, A ∈ Mat02,n .

It follows that pij ’s are semi-invariants of weight det. For any A ∈ Mat02,n,
at least one of the pij ’s does not vanish. So we have a map

F : Mat02,n → P(n
2)−1

given by the minors pij .
Now take A, A′ ∈ Mat02,n such that F (A) = F (A′). We have to show

that A and A′ are in the same G-orbit. Suppose pij(A) $= 0, then certainly
pij(A′) $= 0. By twisting A and A′ by some elements of GL2, we can assume
that both A and A′ have a form (1.1.1). In particular,

pij(A) = pij(A′) = 1.

Since F (A) = F (A′), we now have

pi′j′(A) = pi′j′(A′) for any i′, j′.

Now it’s really easy to see that A = A′: a key point is a trivial observa-
tion that an element in the first (resp. second) row and the k-th column of
A (1.1.1) can be computed as pkj (resp. pik). Thus A = A′. !

Since we already know that

Mat02,n /GL2 = G(2, n),

this gives an inclusion
i : G(2, n) ↪→ P(n

2)−1

called the Plücker embedding. The minors pij are in this context called
Plücker coordinates on G(2, n).
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1.4.5. REMARK. A little warning: for now we have only proved that i is
the inclusion of sets. It is also clear that i is a holomorphic map of mani-
folds: in each chart it is given by 2 × 2 minors of a matrix representing a
2-dimensional subspace in this chart, these minors are obviously holomor-
phic. To show that this inclusion is an embedding of complex manifolds, a
little extra work is required, see below.

What is a rationale for considering minors pij and not something else as
a complete system of semi-invariants? Well, let’s consider all possible semi-
invariants on Mat02,n which are polynomials in 2n matrix entries. In fact, by
continuity, this is the same thing as polynomial semi-invariants on Mat2,n.
Let

O(Mat2,n) = C[a1i, a2i]1≤i≤n

denote the algebra of polynomial functions on Mat2,n. It is easy to see
(why?) that the only holomorphic homomorphisms GL2(C) → C∗ are pow-
ers of the determinant. Let

Ri = O(Mat2,n)GL2

deti

be a subset of polynomial semi-invariants of weight deti. Notice that the

scalar matrix
[
t 0
0 t

]
acts on Ri by multiplying it on deti

[
t 0
0 t

]
= t2i. It fol-

lows that all polynomials in Ri have degree 2i, in particular

Ri = 0 for i < 0, R0 = C.

We assemble all semi-invariants in one package (algebra of semi-invariants):

R =
⊕

i≥0

Ri ⊂ O(Mat2,n).

Since the product of semi-invariants of weights χ and χ′ is a semi-invariant
of weight χ · χ′, R is a graded subalgebra of O(Mat2,n).

The following theorem was classically known as the First Fundamental
Theorem of invariant theory.

1.4.6. THEOREM. The algebra R is generated by the minors pij for 1 ≤ i < j ≤ n.

Thus considering only pij ’s makes sense: all semi-invariants can not sep-
arate orbits any more effectively than the generators. We are not going to
use this theorem and the proof. But this raises some general questions:

• is the algebra of polynomial invariants (or semi-invariants) always
finitely generated?

• do these basic invariants separate orbits?
• how to compute these basic invariants?

We will see that the answer to the first question is positive under very gen-
eral assumptions (Hilbert’s finite generation theorem). The answer to the sec-
ond question is “not quite” but a detailed analysis of what’s going on is
available (Hilbert–Mumford’s stability and the numerical criterion for it). As
far as the last question is concerned, the generators of the algebra of in-
variants can be computed explicitly only in a handful of cases – from this
perspective we are lucky that we have Plücker generators.
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§1.5. Grassmannian as a projective variety. What is the image of a Plücker
embedding G(2, n) ↪→ P(n

2)−1? Let U be a row space of a matrix
[
a11 . . . a1n

a21 . . . a2n

]

and consider a bivector

b = (a11e1 + . . . + a1nen) ∧ (a21e1 + . . . + a2nen) =
∑

i<j

pijei ∧ ej .

Thus if we identify P(n
2)−1 with the projectivization of Λ2Cn, the map i sim-

ply sends a subspace U generated by vectors u, u′ ∈ Cn to u∧u′. Therefore,
the image of i is a subset of decomposable bivectors. Let’s show that this
subset is a projective algebraic variety

1.5.1. DEFINITION. Let f1, . . . , fr ∈ C[x0, . . . , xn] be homogeneous polyno-
mials. The vanishing set

X = V (f1, . . . , fr) = {x ∈ Pn | f1(x) = . . . = fr(x) = 0}

is called a projective algebraic variety. For each chart Ui ⊂ Pn (points where
xi $= 0), X ∩Ui ⊂ Ui - An is an affine algebraic variety given by vanishing of
f1, . . . , fr dehomogenized with respect to xi.

What kind of polynomials vanish along the image of i? Notice that we
have

0 = b ∧ b =
∑

i<j<k<l

(pijpkl − pikpjl + pilpjk)ei ∧ ej ∧ ek ∧ el.

Thus, quadratic polynomals

xijxkl − xikxjl + xilxjk

vanish along the image of i. These polynomials are called Plücker relations

1.5.2. PROPOSITION. i(G(2, n)) is a projective variety given by vanishing of
Plücker relations. The map i is an immersion of complex manifolds.

In particular, we can use this fact to redefine G(2, n) purely algebraically
as a projective algebraic variety in the Plücker projective space defined by
Plücker relations.

Proof. We already know that Plücker relations vanish along the image of i,
so we just have to work out the vanishing set of Plücker relations

X = V (xijxkl − xikxjl + xilxjk) ⊂ P(n
2)−1.

We can do it in charts. For simplicity, let’s only consider the chart U12,
where we have x12 = 1. What are the equations of X ∩ U12? Some of them
are

xkl = x1kx2l − x1lx2k, 2 < k < l ≤ n, (1.5.3)
i.e. any xkl whatsoever is just a minor of the matrix

[
1 0 −x23 −x24 . . . −x2n

0 1 x13 x14 . . . x1n

]
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It follows that this point of the Plücker vector space is a row space of a
matrix above, and all other Plücker relations in this chart are just formal
consequences of (1.5.3), i.e. X = G(2, n) set-theoretically.

But of course more is true: X12 = X ∩U12 is defined by equations (1.5.3),
which can be interpreted as follows: X12 is embedded in A(n

2)−1 as a graph
of the map

A2(n−2) → A(n
2)−1−2(n−2) = A(n−2

2 ),

A =
[
1 0 a13 a14 . . . a1n

0 1 a23 a24 . . . a2n

]
.→ {pkl(A)}3≤k<l≤n.

In particular,
X ∩ U12 - A2(n−2)

and the transition functions between various affine charts of X are exactly
the same as transition functions between charts of G(2, n) (why?) . It follows
that X is a complex manifold isomorphic to G(2, n) via the map i. !

Notice that of course not any projective (or affine) algebraic variety X is
a complex manifold: they are often singular. How can we check if X is a
smooth manifold? For simplicity (by considering charts), we can assume
that X = {f1 = . . . = fr = 0} ⊂ An is an affine variety. Let p ∈ X . Suppose
that we can choose l equations (after reordering, let’s assume that the first
l equations work) such that

• in some complex neighborhood of p, X = {f1 = . . . = fl = 0},
• The rank of the Jacobian matrix

J =





∂f1
∂x1

. . . ∂f1
∂xn

... . . . ...
∂fl
∂x1

. . . ∂fl
∂xn





is equal to l.
Then, by the Implicit Function Theorem, X is (locally near p) a complex man-
ifold of dimension n − l with tangent space Ker J . Notice that different
points p ∈ X may (and usually will) require different subcollections of l
equations.

Here is the Algebraic Geometry’s approach. The same variety X can
be defined by different sets of equations, and sometimes they will fail to
detect smoothness of X . For example, if we define the y-axis of A2 by the
equation x2 = 0 (rather than simply x = 0), the Jacobian matrix will have
rank 0 (rather than 1), which reflects the fact that a double line should be
thought as singular at all points.

By Hilbert’s Nullstellensatz, the ideal of all polynomials that vanish along
X is the radical

√
I . Let’s suppose that I is already a radical ideal, i.e. I =

√
I .

If I is not a prime ideal then X is reducible, i.e. is a union of two algebraic
varieties (if fg ∈ I but f, g $∈ I then V (I) = V (I, f) ∪ V (I, g)). If we want
X to be a smooth manifold then these components of X better be smooth
individually (and don’t intersect). So let’s suppose that I is prime. In this
case X is called an irreducible affine variety.

Let f1, . . . , fr be generators of I (recall that I has finitely many generators
by Hilbert’s basis theorem) and consider the Jacobian matrix J . For any point
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p ∈ X , the kernel of J is called a tangent space TpX (it is easy to see (why?)
that it does not depend on the choice of generators). Let s be the maximal
possible dimension of TpX . A point p is called non-singular if dimTpX = s,
otherwise it is called singular. The set of non-singular (resp. singular) points
is called a smooth locus Xsm (resp. singular locus Xsing).

If X is irreducible then the coordinate algebra

O(X) = C[x1, . . . , xn]/I

is a domain and its quotient field is called the field of rational functions on X ,
denoted by C(X). The dimension of X is defined as follows:

dimX = tr.deg.CC(X)

(the transcendence degree). For a proof of the following, see [X1, II.1.1].

1.5.4. THEOREM.
• s = dimX .
• Xsm ⊂ X is Zariski-open.

If X is a non-singular algebraic variety then X is also a complex manifold
of the same dimension. To distinguish X the variety from X the complex
manifold, the latter is denoted by Xan.

§1.6. Second fundamental theorem – relations. We proved that G(2, n) is
defined by Plücker relations in the Plücker projective space. We can ask
for more: is it possible to describe all polynomials in

(n
2

)
variables xij that

vanish along G(2, n)? Algebraically, we consider the homomorphism of
polynomial algebras

ψ : C[xij ]1≤i<j≤n → C[a1i, a2i]1≤i≤n, xij .→ pij(A)

and we ask: what is the kernel of ψ? (Notice that the image of ψ is equal
to the algebra of GL2-semi-invariants by the First fundamental theorem of
invariant theory, but we are not going to use this). Let I = Kerψ. A good
way of thinking about I is that its elements are relations between 2 × 2
minors of a general 2× n matrix.

1.6.1. THEOREM (Second fundamental theorem of invariant theory). The ker-
nel of ψ is generated (as an ideal) by Plücker relations

xijxkl − xikxjl + xilxjk

for all fourtuples i < j < k < l.

Proof. The proof consists of several steps.
Step 1. Plücker relations are in I . We already know this, see Proposi-

tion 1.5.2. Let I ′ ⊂ I be an ideal generated by the Plücker relations. The
goal is to show that I = I ′.

Step 2. This is called the straightening law – it was introduced by Al-
fred Young (who has Young diagrams named after him). We encode each
monomial xi1j1 . . . xikjk in a Young tableaux

[
i1 i2 . . . ik
j1 j2 . . . jk

]
(1.6.2)
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The tableaux is called standard if it has increasing rows:

i1 ≤ i2 ≤ . . . ≤ ik and j1 ≤ j2 ≤ . . . ≤ jk.

In this case we also call the corresponding monomial a standard monomial.
We claim that any monomial in xij ’s is equivalent modulo I ′ (i.e. modulo
Plücker relations) to a linear combination of standard monomials. Indeed,
suppose that x = xi1j1 . . . xikjk is not standard. By reordering the variables
in x, we can assume that

i1 ≤ i2 ≤ . . . ≤ ik

and if il = il+1 for some l then jl ≤ jl+1. Let l be the largest index such
that jl > jl+1. We argue by induction on l that x is a linear combination of
standard monomials. We have

il < il+1 < jl+1 < jl.

Consider the Plücker relation

xiljlxil+1jl+1 = −xilil+1xjl+1jl + xiljl+1xil+1jl mod I ′

Since the tableaux
[

il jl+1

il+1 jl

]
and

[
il il+1

jl+1 jl

]

are standard, once we substitute−xilil+1xjl+1jl+xiljl+1xil+1jl for xiljlxil+1jl+1

in x we will get a linear combination of two monomials which can be
both written as linear combinations of standard monomials by inductive
assumption.

Step 3. Finally, we claim that standard monomials are linearly indepen-
dent modulo I , i.e.

{ψ(x) |x is a standard monomial}

is a linearly independent subset of C[a1i, a2i]1≤i≤n. A cool idea is to order
the variables as follows:

a11 < a12 < . . . < a1n < a21 < a22 < . . . < a2n

and to consider the corresponding lexicographic ordering of monomials in
C[a1i, a2i]1≤i≤n. For any polynomial f , let init(f) denote the initial monomial
of f (i.e. the smallest monomial for lexicographic ordering). Notice that
init(f) is multiplicative:

init(fg) = init(f) init(g) (1.6.3)

for any (non-zero) polynomials. We have

init pij = a1ia2j ,

and therefore

init(ψ(x)) = init(pi1j1 . . . pikjk) = a1i1a1i2 . . . a1ika2j1a2j2 . . . a2jk .

Notice that a standard monomial x is completely determined by init(ψ(x)).
However, if the set of polynomials {ψ(x)} is linearly dependent, then at
least some of the initial monomials (namely, the smallest initial monomials)
should cancel each other. !
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A lot of calculations in Algebraic Geometry can be reduced to manip-
ulations with polynomials just like in the proof above. It is important to
master these (quintessential algebraic!) techniques.

§1.7. Hilbert polynomial. It is rarely the case that equations of the moduli
space are known so explicitly as in the case of the Grassmannian. But some
numerical information about these equations is often available, as we now
explain.

We start with a general situation: let X ⊂ Pn be a projective variety and
let I ⊂ C[x0, . . . , xn] be a homogeneous ideal of polynomials that vanish on
X . The algebra R = C[x0, . . . , xn]/I is known as a homogeneous coordinate
algebra of X . Note that R is graded (by degrees of polynomials):

R =
⊕

j≥0

Rj , R0 = C,

and R is generated by R1 as an algebra. The function

h(k) = dim Rk

is called the the Hilbert function of X . Notice that knowing h(k) is equivalent
to knowing dim Ik for any k:

h(k) + dim Ik =
(

n + k

k

)
(why?)

We have the following fundamental theorem:

1.7.1. THEOREM. There exists a polynomial H(t) (called Hilbert polynomial) with

h(k) = H(k) for k 1 0.

This polynomial has degree r = dimX and has a form
d

r!
tr + (lower terms),

where d is the degree of X , i.e. the number of points in the intersection of X with a
general projective subspace of codimension r (a subspace is general if it intersects
G(2, n) transversally in all intersection points).

We will prove this theorem later along with other important properties
of the Hilbert function. But now let’s use it!

1.7.2. PROPOSITION. Let n ≥ 3. The Hilbert function of G(2, n) in the Plücker
embedding is

h(k) =
(

n + k − 1
k

)2

−
(

n + k

k + 1

)(
n + k − 2

k − 1

)
. (1.7.3)

The degree of G(2, n) in the Plücker embedding is the Catalan number

1
n− 1

(
2n− 4
n− 2

)
= 1, 2, 5, 14, 42, 132, . . .

Proof. During the proof of the Second Fundamental Theorem 1.6.1 we have
established that h(k) is equal to the number of standard monomials of de-
gree k, i.e. to the number of standard tableaux with k columns. Let Nl be



MODULI SPACES AND INVARIANT THEORY 15

the number of non-decreasing sequences 1 ≤ i1 ≤ . . . ≤ il ≤ n. Then we
have

Nl =
(

n + l − 1
l

)
:

this is just the number of ways to choose l objects from {1, . . . , n} with
repetitions (so it is for example equal to the dimension of the space of poly-
nomials in n variables of degree l). The number of tableaux

[
i1 i2 . . . ik
j1 j2 . . . jk

]
, 1 ≤ i1 ≤ . . . ≤ ik ≤ n, 1 ≤ j1 ≤ . . . ≤ jk ≤ n

(but without the condition that il < jl for any l) is clearly equal to

N2
k =

(
n + k − 1

k

)2

.

Now we have to subtract the number of non-standard tableaux. We claim
that there is a bijection between the set of nonstandard tableaux and the set
of pairs (A, B), where A is a non-decreasing sequence of length k + 1 and
B is a non-decreasing sequence of length k − 1. This will prove (1.7.3).

Suppose that l is the number of the first column where il ≥ jl. Then we
can produce two sequences:

j1 ≤ . . . ≤ jl ≤ il ≤ . . . ≤ ik

of length k + 1 and

i1 ≤ . . . ≤ il−1 ≤ jl+1 ≤ jk

of length k − 1. In an opposite direction, suppose we are given sequences

i1 ≤ . . . ≤ ik+1 and j1 ≤ . . . ≤ jk−1.

Let l be the minimal index such that il ≤ jl and take a tableaux
[
j1 . . . jl−1 il+1 il+2 . . . ik
i1 . . . il−1 il jl . . . jk−1

]

If il > jl for any l ≤ k − 1, then take the tableaux
[
j1 . . . jk−1 ik
i1 . . . ik−1 ik+1

]
.

After some manipulations with binomial coefficients, (1.7.3) can be rewrit-
ten as

1
(n− 1)!(n− 2)!

(k + n− 1)(k + n− 2)2 . . . (k + 2)2(k + 1).

This is a polynomial in k of degree 2n−4 with a leading coefficient 1
(n−1)!(n−2)! .

Since the degree of G(2, n) is equal to (2n−4)! multiplied by the leading co-
efficient of h(k), we see that this degree is indeed the Catalan number. !
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§1.8. Enumerative geometry. Why do we need moduli spaces? One rea-
son is that their geometry reflects delicate properties of parametrized geo-
metric objects. As an example, let’s try to relate the degree of the Grass-
mannian (i.e. the Catalan number) to geometry of lines.

1.8.1. THEOREM. The number of lines in Pn−1 that intersect 2n− 4 general codi-
mension 2 subspaces is equal to the Catalan number

1
n− 1

(
2n− 4
n− 2

)

For example, there is only one line in P2 passing through 2 general points,
2 lines in P3 intersecting 4 general lines, 5 lines in P4 intersecting 6 general
planes, and so on. This is a typical problem from the classical branch of
Algebraic Geometry called enumerative geometry, which was described by
H. Schubert (around 1870s) as a field concerned with questions like: How
many geometric figures of some type satisfy certain given conditions? If
these figures are lines (or projective subspaces), the enumerative geometry
is nowdays known as Schubert calculus, and is more or less understood. Re-
cently enumerative geometry saw a renaissance (Gromov–Witten invariants,
etc.) due to advances in moduli theory.

Proof. The degree is equal to the number of points in

G(2, n) ∩ L,

where L ⊂ P(n
2)−1 is a general subspace of codimension 2n − 4, i.e. a sub-

space that intersects G(2, n) transversally in all intersection points. In other
words, it is the number of points in the intersection

G(2, n) ∩H1 ∩ . . . ∩H2n−4,

where Hi’s are hyperplanes, as long as this intersection is transversal.
Notice that the set of lines intersecting a fixed codimension 2 subspace

can be described as the intersection with a hyperplane

D = G(2, n) ∩H.

For example, lines intersecting W = 〈e3, . . . , en〉 are exactly the lines that
do not surject onto 〈e1, e2〉 when projected along W . This is equivalent to
vanishing of the Plücker coordinate p12. So D is exactly the complement of
the chart U12! It is called a special Schubert variety.

We can describe D explicitly by writing down the minor p12 = 0 in other
charts Xij : in most charts (when i > 2) D is a quadric of rank 4, in par-
ticular it is a singular hypersurface. This looks a bit worrisome for us be-
cause it implies that H is not everywhere transversal to G(2, n), (because
at transversal intersection points the intersection is non-singular). In par-
ticular, H is not really a general hyperplane (general hyperplanes intersect
G(2, n) everywhere transversally by Bertini’s Theorem). However, at any
point p of a smooth locus D0 ⊂ D the hyperplane H is transversal to G(2, n)
and the intersection of tangent spaces

TpD ∩ TpG(2, n) = TpD.
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Notice that any codimension 2 subspace in Pn−1 is GLn-equivalent to W .
So the claim that we have to check is that if g1, . . . , g2n−4 ∈ G = GLn are
sufficiently general group elements then any point in

g1D ∩ . . . ∩ g2n−4D

is
• away from the singular locus of each giD;
• a transversal intersection point of giD’s.

Quite remarkably, the proof relies only on the fact that GLn acts transi-
tively on G(2, n) and on nothing else. It is known as the Kleiman–Bertini
transversality argument. But first we have to explain a very powerful tech-
nique in algebraic geometry called dimension count. !

Firstly, let’s discuss regular morphisms and rational maps between alge-
braic varieties. This is very straightforward but there are several delicate
points. We start with an affine case: suppose we have affine varieties

X ⊂ An and Y ⊂ Am.

A regular function on X is a restriction of a polynomial function. Regular
functions form a coordinate algebra O(X). A morphism (or a regular mor-
phism)

f : X → Am

is a map given by m regular functions f1, . . . , fm ∈ O(X). If the image
lies in Y ⊂ Am then we have a morphism X → Y . It defines a pull-back
homomorphism of coordinate algebras f∗ : O(Y ) → O(X) and is completely
determined by it. An isomorphism of algebraic varieties is a morphism that has
an inverse. This happens if and only if the pullback f∗ is an isomorphism
of algebras.

Now suppose, in addition, that X is irreducible. Suppose f ∈ C(X) is
a rational function. Recall that this means that f is a ratio of two regular
functions, and so we can write f = p/q, where p and q are some polyno-
mials. Notice, however, that of course different polynomials can define the
same function on X , so the presentation f = p/q is not unique. Let x ∈ X
be a point. We say that f is defined at x if it can be written as a ratio of two
regular functions such that q(x) $= 0. The set of points where f is defined is
obviously a Zariski open subset of X .

Suppose we have m rational functions f1, . . . , fm such that if all of them
are defined at x ∈ X then (f1(x), . . . , fm(x)) ∈ Y . In this case we say that
we have a rational map

f : X ""# Y

(so a rational map is not everywhere defined). Here is a good exercise on
comparing definitions of regular and rational maps:

1.8.2. LEMMA. If a rational map f : X ""# Y is everywhere defined then in fact
f is a regular morphism.

Proof. For any point x ∈ X , choose a presentation f = px/qx with qx(x) $= 0.
Thus X is covered by principal Zariski open sets

D(qx) := {a ∈ X | qx $= 0}.
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Consider the ideal I = (qx) ⊂ O(X) generated by all denominators and
choose its finite basis q1, . . . , qr out of them. These functions don’t have
any zeros on X , and therefore I = O(X) by Hilbert’s Nullstellensatz. Thus
we can write

1 = a1q1 + . . . + arqr.

It follows that

f = a1fq1 + . . . + arfqr = a1p1 + . . . + arpr

is a regular function. !
Finally, let’s discuss rational maps of projective varieties. Even more

generally, a (Zariski) open subset U of a projective variety X is called a
quasi-projective variety. If x ∈ U ⊂ X ⊂ Pn and f = P/Q is a rational func-
tion in x0, . . . , xn such that deg P = deg Q then f defines a rational function
on U regular at x. (We can also just work in the affine chart An). A rational
function is regular on U if it is regular at any point. A rational function
U → An is a mapping with rational components. A regular morphism
f : U → V ⊂ Pm is a map such that for any point x ∈ X and y = f(x) there
exists a Zariski neighborhood U ′ of x and an affine chart y ∈ Am such that
the induced map U ′ → Am is regular.

Here is an important theorem:

1.8.3. THEOREM ([X1, 1.6.3]). Let f : X → Y be a regular map between irre-
ducible quasiprojective varieties. Suppose that f is surjective, dimX = n, and
dimY = m. Then m ≤ n and

• dimF ≥ n − m for any irreducible component F of any fibre f−1(y),
y ∈ Y .

• there exists a non-empty Zariski-open subset U ⊂ Y such that dim f−1(y) =
n−m for any y ∈ U .

Sketch of the Kleiman–Bertini transversality argument. The first part is a dimen-
sion count: denoting by Z the singular locus of D, consider a subset

W = {g1z = g2d2 = . . . = g2n−4d2n−4} ⊂ (G×Z)× (G×D)× . . .× (G×D)

Clearly, g1 and z can be arbirary, as are di for i ≥ 2, and then for each gi

with i ≥ 2 we have dimG(2, n) = 2n− 4 independent conditions. So

dimW = (2n−4) dimG+dimZ+(2n−5)(2n−5)−(2n−5)(2n−4) < (2n−4) dimG.

It follows that the projection

W → G× . . .×G (2n− 4 times) (1.8.4)

has empty general fibers, i.e. the general translates of D intersect away from
their singular points.

So we can throw away the singular locus and assume that D is non-
singular (but not compact now). The rest of the argument repeats itself but
now we have to analyze tangent spaces a little bit, which is a part of the
argument that we will skip. Consider a subset

W = {g1d1 = g2d2 = . . . = g2n−4d2n−4} ⊂ (G×D)×(G×D)× . . .×(G×D).

Now dimW = (2n− 4) dimG. A little reflection shows that W is also non-
singular. So generic fibers of the projection (1.8.4) are either empty or a
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bunch of non-critical points. A little local calculation (that we skip) shows
that this is equivalent to the transversality of the corresponding translates
g1D, . . . , g2n−4D. !
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HOMEWORK DUE ON FEB 7

Write your name and sign here:

Please turn in this problem sheet along with your solutions. If you have
submitted any solutions orally, please check that you have my signature
near these problems in the worksheet.

Problem 1. (a) Let L1, L2, L3 ⊂ P3 be three general lines. Show that there
exists a unique quadric surface S ⊂ P3 containing them all and that lines
that intersect L1, L2, L3 are exactly the lines from the ruling of S. Try to be
as specific as possible about the meaning of the word “general”. (b) Use the
previous part to give an alternative proof of the fact that 4 general lines in
P3 have exactly two common transversals (2 points).

Problem 2. Show that the Plücker vector space C(n
2) can be identified

with the space of skew-symmetric n× n matrices and G(2, n) with the pro-
jectivization of the set of skew-symmetric matrices of rank 2. Show that the
Plücker relations in this language are 4× 4 Pfaffians (1 point).

Problem 3. For any line L ⊂ P3, let [L] ∈ C6 be the corresponding Plücker
vector. The Grassmannian G(2, 4) ⊂ P5 is a quadric, and therefore can be
described as the vanishing set of a quadratic form Q, which in turn has an
associated inner product such that Q(v) = v ·v. Describe this inner product
and show that [L1] · [L2] = 0 if and only if lines L1 and L2 intersect (1 point).

Problem 4. 4 In the notation of the previous problem, show that five lines
L1, . . . , L5 have a common transversal if and only if

det





0 [L1] · [L2] [L1] · [L3] [L1] · [L4] [L1] · [L5]
[L2] · [L1] 0 [L2] · [L3] [L2] · [L4] [L2] · [L5]
[L3] · [L1] [L3] · [L2] 0 [L3] · [L4] [L3] · [L5]
[L4] · [L1] [L4] · [L2] [L4] · [L3] 0 [L4] · [L5]
[L5] · [L1] [L5] · [L2] [L5] · [L3] [L5] · [L4] 0




= 0

(4 points)
Problem 5. Prove (1.6.3). (1 point)
Problem 6. Let X ⊂ Pn be an irreducible hypersurface of degree d (i.e.

a vanishing set of an irreducible homogeneous polynomial of degree d).
Compute its Hilbert polynomial (1 point).

Problem 7. Let X ⊂ Pn be a hypersurface and let FX ⊂ G(2, n) be the
subset of lines contained in X . Show that FX is a projective algebraic vari-
ety (2 points).

Problem 8. (a) For any point p ∈ P3 (resp. plane H ⊂ P3) let Lp ⊂ G(2, 4)
(resp. LH ⊂ G(2, 4)) be a subset of lines containing p (resp. contained in H).
Show that each Lp and LH is isomorphic to P2 in the Plücker embedding
of G(2, 4). (b) Show that any P2 ⊂ G(2, 4) has a form Lp or LH for some p
or H . (3 points)

Problem 9. Consider the d-th Veronese map

P1 → Pd,
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[x : y] .→ [xd : xd−1y : . . . : yd],
and its image, the rational normal curve. (a) Show that this map is an em-
bedding of complex manifolds. (b) Show that the ideal of the rational nor-
mal curve is generated by 2× 2 minors of the matrix

det
[
z0 z1 . . . zn−1

z1 z2 . . . zn

]
,

and compute its Hilbert polynomial. (2 points)
Problem 10. Consider the Segre map

Pn−1 × Pn−1 → Pn2−1 = P(Matnn),

([x1 : . . . : xn], [y1 : . . . : yn]) .→ [x1y1 : . . . : xiyj : . . . : xnyn]
(a) Show that this map is an embedding of complex manifolds. (b) Show
that the ideal of the Segre variety in P(Matnn) is generated by 2× 2 minors
aijakl − ailakj (c) Compute the Hilbert polynomial of the Segre variety. (d)
Compute the degree of the Segre variety. (3 points)

Problem 11. In the notation of the previous problem, give a geometric in-
terpretation of the degree of the Segre variety in the spirit of Theorem 1.8.1.
What is the analogue of a special Schubert variety? (1 point)

Problem 12. Consider 4 lines L1, L2, L3, L4 ⊂ P3. Suppose no three of
them lie on a plane. Show that if 5 pairs of lines Li, Lj intersect then the
sixth pair of lines intersects as well. (1 point)

Problem 13. Check a “little local calculation” at the end of the proof of
Theorem 1.8.1. (3 points)

Problem 14. Let I ⊂ R = C[x0, . . . , xn] be a homogeneous ideal and let
V (I) ⊂ Pn be the corresponding projective variety. (a) Show that V (I) is
empty if and only if there exists s > 0 such that I contains all monomials
of degree s. (b) Show that there exists an inclusion-reversing bijection be-
tween projective subvarieties of Pn and radical homogeneous ideals of R
different from R+ := (x0, . . . , xn). (2 points)

Problem 15. An alternative way of thinking about a 2× n matrix

X =
[
x11 . . . x1n

x21 . . . x2n

]

is that it gives n points p1, . . . , pn in P1 (with homogeneous coordinates
[x11 : x21], . . ., [x1n : x2n]), at least as soon as X has no zero columns.
Suppose n = 4 and consider the rational normal curve (twisted cubic)
f : P1 ↪→ P3. (a) Show that points f(p1), . . . , f(p4) lie on a plane if and
only

F (X) = det





x3
11 x2

11x21 x11x2
21 x3

21
x3

12 x2
12x22 x12x2

22 x3
22

x3
13 x2

13x23 x13x2
23 x3

23
x3

14 x2
14x24 x14x2

24 x3
24



 = 0.

(b) Show using the first fundamental theorem of invariant theory that F (X)
is a polynomial in 2 × 2 minors of the matrix X . (c) Do the same thing
without using the first fundamental theorem (3 points).


