1. Find an equation for the plane that contains the line \(\frac{x-1}{2} = \frac{y+1}{3} = \frac{z}{2} \) and is parallel to the line \(\frac{x-3}{4} = \frac{y-3}{3} = \frac{z+1}{4} \).

2. The projection of a point \(P \) onto a plane \(S \) is defined to be the point \(Q \) of \(S \) such that \(PQ \) is perpendicular to \(S \). Find the projection of the point \((1, 2, -1) \) onto the plane \(2x + y - 3z = 5 \).

3. Find an equation for the plane that passes through the point \((1, 2, -1) \) and contains the line of intersection of planes \(x+y+z = 4 \) and \(x-y-2z = 2 \).

4. A cooling tower for a nuclear reactor is to be constructed in the shape of a hyperboloid of one sheet. The diameter at the base is 150m and the minimum diameter, 200m above the base, is 100m. Find an equation for the tower (set-up the coordinate system with the origin in the center of the base and the \(z \)-axis pointing up).

5. Describe and sketch the surface
 (a) \(y^2 - z^2 = 1 \);
 (b) \(y^2 - z^2 = x \).

6. Describe and sketch the surface
 (a) \(4y^2 - z^2 = x^2 \);
 (b) \(4y^2 - z^2 = 1 + x^2 \).

7. Reduce the equation \(x^2 - y^2 + z^2 - 2x + 2y + 4z + 2 = 0 \) to one of the standard forms, classify it, and sketch it.

8. Find an equation for the surface obtained by rotating
 (a) the parabola \(x = z^2 \);
 (b) the line \(x = 3z \)
around the \(x \)-axis.

9. Find parametric equations of two lines contained in the surface \(x^2 + y^2 = 1 + 4z^2 \) and passing through the point \((1, 2, 1) \).

10. Sketch the region given by inequalities \(z \leq x^2 + y^2 \) and \(2z \leq x^2 + y^2 + 1 \).

11. Find an equation for the surface consisting of all points \(P \) for which the distance from \(P \) to the \(x \)-axis is twice the distance from \(P \) to the \(yz \)-plane. Identify and sketch the surface.

12. Find an equation for the surface consisting of all points \(P \) for which the sum of the distance from \(P \) to the point \((-1, 0, 0) \) and the distance from \(P \) to the point \((1, 0, 0) \) is equal to 5. Identify and sketch the surface.